Межгосударственный стандарт ГОСТ 9.602-2016 "Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии" (введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 7 октября 2016 г. N 1327-ст)

Межгосударственный стандарт ГОСТ 9.602-2016
"Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии"
(введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 7 октября 2016 г. N 1327-ст)

 

Unified system of corrosion and ageing protection. Underground constructions. General requirements for corrosion protection

 

Дата введения - 1 июня 2017 г.

Взамен ГОСТ 9.602-2005

 

Предисловие

 

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2015 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

 

1 Разработан Обществом с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" (ООО "Газпром ВНИИГАЗ"), Открытым акционерным обществом "Инжиниринговая нефтегазовая компания - Всесоюзный научно-исследовательский институт по строительству и эксплуатации трубопроводов, объектов ТЭК" (ОАО ВНИИСТ), Обществом с ограниченной ответственностью "НефтегазТехЭкспертиза" (ООО "НефтегазТехЭкспертиза") и Саморегулируемой Организацией - Некоммерческим Партнерством содействия в реализации инновационных программ в области противокоррозионной защиты (СРО НП "СОПКОР")

 

2 Внесен Межгосударственным техническим комитетом по стандартизации МТК 523 "Техника и технологии добычи и переработки нефти и газа"

 

3 Принят Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 31 августа 2016 г. N 90)

 

За принятие проголосовали:

 

Краткое наименование страны

по МК (ИСО 3166) 004-97

Код страны

по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Казахстан

KZ

Госстандарт Республики Казахстан

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

 

4 Приказом Федерального агентства по техническому регулированию и метрологии от 7 октября 2016 г. N 1327-ст межгосударственный стандарт ГОСТ 9.602-2016 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2017 г.

 

5 Взамен ГОСТ 9.602-2005

Введение

 

Подземные металлические сооружения (трубопроводы, резервуары, опоры, фундаменты) являются одной из самых капиталоемких составляющих промышленных объектов. От их надежного, бесперебойного функционирования зависит промышленная безопасность и жизнеобеспеченность промышленных и аграрных предприятий, городов и населенных пунктов.

Значительное влияние на срок службы подземных металлических сооружений оказывает коррозионная агрессивность окружающей среды (включая биокоррозионную агрессивность грунтов), а также внешние техногенные воздействия (блуждающие и индуцированные токи), которые могут привести к существенному снижению надежности и безопасности эксплуатируемых сооружений и в несколько раз сократить срок их службы.

Единственно возможным способом борьбы с этим негативным явлением является своевременное применение мер по противокоррозионной защите стальных подземных сооружений.

В настоящем стандарте установлены критерии опасности коррозии и методы их определения; требования к защитным покрытиям, нормативы их качества для разных условий эксплуатации подземных сооружений (адгезия защитных покрытий к поверхности трубы, адгезия между слоями защитных покрытий, стойкость к растрескиванию, стойкость к удару, стойкость к воздействию светопогоды и др.) и методы оценки качества защитных покрытий; регламентированы требования к электрохимической защите, а также методы контроля эффективности противокоррозионной защиты.

В настоящем стандарте учтены новейшие научно-технические разработки и достижения в практике противокоррозионной защиты, накопленные эксплуатационными, строительными и проектными организациями.

Внедрение настоящего стандарта позволит увеличить срок службы и надежность подземных металлических сооружений, сократить расходы на их техническую эксплуатацию.

1 Область применения

 

Настоящий стандарт устанавливает общие требования к защите от коррозии наружной поверхности подземных (в том числе подводных с заглублением в дно) стальных сооружений, проложенных ниже уровня поверхности земли или в обваловании, выполненных из углеродистых и низколегированных сталей (далее - сооружения): трубопроводов, транспортирующих природный газ (газопроводы магистральные и распределительные), нефть, нефтепродукты, и отводов от них; резервуаров (в том числе траншейного типа); водопроводов; трубопроводов тепловых сетей; свай, шпунтов, колонн и других несущих стальных подземных конструкций. Настоящий стандарт также устанавливает требования по ограничению токов утечки на источниках блуждающих токов, оказывающих влияние на защиту от коррозии подземных сооружений: электрифицированный рельсовый транспорт, линии передачи энергии постоянного тока по системе "провод-земля", промышленные предприятия, потребляющие постоянный электрический ток в технологических целях.

Настоящий стандарт не распространяется на следующие сооружения: железобетонные и чугунные сооружения; на сооружения специального оборонного и космического назначения, морские и прибрежные сооружения, в том числе, трубопроводы; сооружения атомных, приливных, гидроэлектрических станций и плотин; коммуникации, прокладываемые в зданиях; кабели в металлической оболочке; трубопроводы тепловых сетей с пенополиуретановой тепловой изоляцией и трубой-оболочкой из жесткого полиэтилена (конструкция "труба в трубе"), имеющие действующую систему оперативного дистанционного контроля состояния изоляции трубопроводов.

2 Нормативные ссылки

 

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 9.008-82 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Термины и определения

ГОСТ 9.039-74 Единая система защиты от коррозии и старения. Коррозионная агрессивность атмосферы

ГОСТ 9.102-91 Единая система защиты от коррозии и старения. Воздействие биологических факторов на технические объекты. Термины и определения

ГОСТ 9.103-78 Единая система защиты от коррозии и старения. Временная противокоррозионная защита металлов и изделий. Термины и определения

ГОСТ 9.401-91 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Общие требования и методы ускоренных испытаний на стойкость к воздействию климатических факторов

ГОСТ 12.0.004-90 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

ГОСТ 12.1.003-83 Система стандартов безопасности труда. Шум. Общие требования безопасности

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.2.004-75 Система стандартов безопасности труда. Машины и механизмы специальные для трубопроводного строительства. Требования безопасности

ГОСТ 12.3.016-87 Система стандартов безопасности труда. Строительство. Работы антикоррозионные. Требования безопасности

ГОСТ 12.4.172-87 Система стандартов безопасности труда. Комплект индивидуальный экранирующий для защиты от электрических полей промышленной частоты. Общие технические требования и методы контроля

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 1050-2013 Металлопродукция из нелегированных конструкционных качественных и специальных сталей. Общие технические условия

ГОСТ 2583-92 Батареи из цилиндрических марганцево-цинковых элементов с солевым электролитом. Технические условия

ГОСТ 2678-94 Материалы рулонные кровельные и гидроизоляционные. Методы испытаний

ГОСТ 2768-84 Ацетон технический. Технические условия

ГОСТ 4166-76 Реактивы. Натрий сернокислый. Технические условия

ГОСТ 4233-77 Реактивы. Натрий хлористый. Технические условия

ГОСТ 4234-77 Реактивы. Калий хлористый. Технические условия

ГОСТ 5180-84 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 5272-68 Коррозия металлов. Термины

ГОСТ 6323-79 Провода с поливинилхлоридной изоляцией для электрических установок. Технические условия

ГОСТ 6456-82 Шкурка шлифовальная бумажная. Технические условия

ГОСТ 6616-94 Преобразователи термоэлектрические. Общие технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 8711-93 (МЭК 51-2-84) Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам

ГОСТ 9812-74 Битумы нефтяные изоляционные. Технические условия

ГОСТ 10821-2007 Проволока из платины и платинородиевых сплавов для термоэлектрических преобразователей. Технические условия

ГОСТ 11262-80 Пластмассы. Метод испытания на растяжение

ГОСТ 11645-73 Пластмассы. Метод определения показателя текучести расплава термопластов

ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 13518-68 Пластмассы. Метод определения стойкости полиэтилена к растрескиванию под напряжением

ГОСТ 14236-81 Пленки полимерные. Метод испытаний на растяжение

ГОСТ 14261-77 Кислота соляная особой чистоты. Технические условия

ГОСТ 15140-78 Материалы лакокрасочные. Методы определения адгезии

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 16336-77 Композиции полиэтилена для кабельной промышленности. Технические условия

ГОСТ 16783-71 Пластмассы. Метод определения температуры хрупкости при сдавливании образца, сложенного петлей

ГОСТ 17299-78 Спирт этиловый технический. Технические условия

ГОСТ 17792-72 Электрод сравнения хлорсеребряный насыщенный образцовый 2-го разряда

ГОСТ 19179-73 Гидрология суши. Термины и определения

ГОСТ 23750-79 Аппараты искусственной погоды на ксеноновых излучателях. Общие технические требования

ГОСТ 26996-86 Полипропилен и сополимеры пропилена. Технические условия

ГОСТ 29227-91 (ИСО 835-1-81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 25812-83 Трубопроводы стальные магистральные. Общие требования к защите от коррозии

 

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов на территории государства по соответствующему указателю стандартов, составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

 

В настоящем стандарте применены термины по ГОСТ 5272, ГОСТ 9.008, ГОСТ 9.072, ГОСТ 9.103, [1] и [2].

4 Общие положения

 

4.1 Требования настоящего стандарта обязательны при проектировании, строительстве, реконструкции, ремонте, эксплуатации подземных сооружений. Настоящий стандарт является основанием для разработки нормативных документов (НД) и определения мероприятий по защите конкретных видов подземных металлических сооружений от коррозии.

4.2 При разработке проекта строительства и реконструкции сооружений одновременно разрабатывают проект защиты их от коррозии.

4.3 Мероприятия по защите от коррозии строящихся, действующих и реконструируемых сооружений предусматривают в проектной документации в соответствии с требованиями настоящего стандарта. Для комплексных объектов (магистральные трубопроводы, резервуарные парки, промышленные площадки с подземными трубопроводами и несущими подземными стальными конструкциями) при проектировании, как правило, предусматривается создание систем противокоррозионной защиты.

4.4 При проектировании, строительстве, эксплуатации и реконструкции подземных сооружений предусматривают мероприятия по определению источников блуждающих токов, оценке их опасности. Организации, эксплуатирующие сооружения и оборудование, которые являются источниками блуждающих токов, должны обеспечить ограничение их опасного влияния в соответствии с настоящим стандартом.

4.5 Все средства защиты от коррозии, предусмотренные проектом, принимают в эксплуатацию до сдачи в эксплуатацию сооружений.

4.6 Проектные решения должны учитывать влияние электромагнитных воздействий и ударов молнии, а также технических средств для ограничения указанных воздействий на средства защиты сооружений от коррозии.

4.7 При эксплуатации сооружений должны быть обеспечены систематический контроль эффективности противокоррозионной защиты и опасности коррозии, а также регистрация и анализ причин коррозионных повреждений.

5 Критерии опасности коррозии

 

5.1 Видами коррозионного воздействия на наружную поверхность подземных стальных сооружений являются:

- атмосферная коррозия;

- коррозия в почвенно-грунтовых водах и грунтах;

- биокоррозия;

- коррозия, вызванная блуждающими токами (переменными и постоянными);

- коррозия, вызванная индуцированным переменным током.

 

Примечания

1 Атмосферная коррозия подземных сооружений является вероятным и часто встречающимся на практике случаем (участки выхода подземных сооружений из земли, непроектный выход подземных коммуникаций на поверхность: размывы, выветривание, участки проведения работ со вскрытием подземных коммуникаций) и учитывается при планировании защитных мероприятий, в т.ч. требований к защитным покрытиям.

2 Определение термина "почвенно-грунтовые воды" соответствует ГОСТ 19179.

5.2 Оценка опасности атмосферной коррозии стальных сооружений осуществляется по величине коррозионных потерь в соответствии с ГОСТ 9.039 и степени коррозионной агрессивности атмосферы по ГОСТ 15150.

5.3 Коррозионная агрессивность грунта и почвенно-грунтовых вод по отношению к стальным подземным сооружениям характеризуется значениями удельного электрического сопротивления грунта (почвенно-грунтовых вод); средней плотностью катодного тока; наличием (или отсутствием) признаков биокоррозии.

5.4 Для оценки коррозионной агрессивности грунта по отношению к стали определяют удельное электрическое сопротивление грунта, измеренное в полевых или лабораторных условиях, и среднюю плотность катодного тока при смещении потенциала на 100 мВ отрицательней стационарного потенциала стали в грунте (см. таблицу 1). Если при определении первого показателя (удельного электрического сопротивления грунта) установлена высокая коррозионная агрессивность грунта, то другой показатель не определяют.

5.5 Методы определения удельного электрического сопротивления грунта и средней плотности катодного тока приведены в приложениях А и Б. Допускается применять другие аттестованные методы определения указанных параметров.

 

Примечания

1 Для трубопроводов тепловых сетей, проложенных в каналах, тепловых камерах, смотровых колодцах и т.д., критерием опасности коррозии является наличие воды или грунта в каналах (тепловых камерах, смотровых колодцах и т.д.), если вода или грунт соприкасаются с теплоизоляционной конструкцией или поверхностью трубопровода.

2 Воздействие фактора биокоррозии оценивают с применением терминов в соответствии с ГОСТ 9.102.

3 Если удельное электрическое сопротивление грунта, измеренное в полевых или лабораторных условиях, равно или более 130 , то коррозионную агрессивность грунта считают низкой и по средней плотности катодного тока не оценивают.

 

Таблица 1 - Коррозионная агрессивность грунта (почвенно-грунтовых вод) по отношению к углеродистой и низколегированной стали

 

Коррозионная агрессивность грунта

Удельное электрическое сопротивление грунта (почвеннно-грунтовых вод),

Средняя плотность катодного тока,

Низкая

Св. 50

До 0,05 включ.

Средняя

Св. 20 до 50 включ.

Св. 0,05 до 0,20 включ.

Высокая

До 20 включ.

Св. 0,20

5.6 Для находящихся в эксплуатации подземных стальных сооружений оценка опасности биокоррозии должна осуществляться на основании следующих признаков:

- тип (язва, питтинг), размеры и расположение коррозионного повреждения;

- наличие коррозионных повреждений под отслоившимся защитным покрытием;

- условия протекания коррозионного процесса (аэробный, анаэробный);

- наличие коррозионных повреждений, не связанных с воздействием блуждающих токов;

- идентификация продуктов биокоррозии.

5.7 Критерием биокоррозионной опасности (агрессивности грунта), связанным с воздействием сульфатредуцирующих бактерий, может являться наличие визуальных признаков оглеения грунта (окрашенности грунта в сероватые, сизые, голубоватые тона) и наличие в грунте восстановленных соединений серы. Метод качественного определения биокоррозионной агрессивности грунта приведен в приложении В.

5.8 Оценку опасности биокоррозии, обусловленной воздействием микроорганизмов, следует осуществлять на основании их идентификации и установления связи их жизнедеятельности с коррозионным процессом. Предварительным подтверждением опасности биокоррозии, обусловленной воздействием микроорганизмов, являются положительные результаты определения качественных признаков, которые приведены в приложении В.

5.9 Критерием наличия блуждающих токов от источников постоянного тока в грунте является значение разности потенциалов, измеренное относительно электродов сравнения между двумя отстоящими друг от друга на расстоянии 100 м точками на поверхности земли. Измерения проводятся в двух взаимно перпендикулярных направлениях. Метод определения наличия блуждающих постоянных токов в земле приведен в приложении Г.

Если максимальная разность потенциалов превышает 0,5 В, то это означает наличие блуждающих токов.

5.10 Для подземных трубопроводов, проектируемых параллельно существующим (в одном технологическом коридоре), наличие или отсутствие блуждающих токов необходимо оценивать в соответствии с 5.9 и по результатам измерений на существующих трубопроводах.

5.11 Признаком опасного влияния блуждающего постоянного тока на сооружения является наличие изменяющегося по знаку и значению смещения суммарного потенциала сооружения по отношению к его стационарному потенциалу (знакопеременная зона) или наличие только положительного смещения суммарного потенциала, как правило, изменяющегося по значению (анодная зона). Метод определения опасного влияния блуждающего постоянного тока приведен в приложениях Г и Д.

 

Примечание - Для вновь проектируемых сооружений опасным является наличие блуждающих токов в земле, способ определения которого приведен в приложении Г

5.12 Опасное влияние переменного тока промышленной частоты (в том числе индуцированного переменного тока) на стальные сооружения характеризуется наличием переменного тока плотностью более 2 (20 ) на вспомогательном электроде либо смещением среднего значения потенциала сооружения в отрицательную сторону не менее чем на 10 мВ по отношению к его стационарному потенциалу.

Метод определения опасного влияния переменного тока на подземные сооружения приведен в приложении Е.

5.13 Для проектируемых трубопроводов на участках с параллельным следованием их с воздушными линиями электропередачи напряжением 110 кВ и более, оценка влияния индуцированного (наведенного) переменного тока осуществляется в соответствии с ГОСТ 25812 "Трубопроводы стальные магистральные. Общие требования к защите от коррозии" (Проект) (приложение В).

5.14 Опасность коррозии переменным током промышленной частоты для несущих конструкций (свай, опор), используемых в качестве заземляющих устройств (естественных заземлителей), определяется плотностью тока, стекающего с поверхности арматуры подземных конструкций в грунт. Опасность коррозии существует, если плотность тока превышает 1 .

6 Выбор методов защиты от коррозии

 

6.1 Методы защиты от коррозии сооружения должны соответствовать его назначению, конструкции и условиям эксплуатации.

6.2 Основными методами защиты подземных стальных сооружений от коррозии в почвенно-грунтовых водах и грунтах и коррозии, вызванной блуждающими токами, являются:

- применение защитных покрытий;

- применение средств электрохимической защиты (катодная поляризация).

6.3 Дополнительными методами защиты от коррозии являются:

- выбор трасс прокладки проектируемых стальных сооружений (при прочих равных условиях) с учетом опасности воздействия блуждающих и индуцированных токов;

- ограничение токов и напряжений при воздействии индуцированного переменного тока;

- ограничение блуждающих токов на их источниках.

6.4 При определении методов защиты от коррозии сооружений предусматривают:

- оценку условий строительства и эксплуатации сооружения;

- оценку критериев опасности коррозии сооружения;

- выбор защитных покрытий, соответствующих условиям эксплуатации сооружения;

- оценку необходимости и выбор решений по электрохимической защите (катодной поляризации) сооружений;

- оценку необходимости и выбор дополнительных методов защиты от коррозии.

6.5 Независимо от коррозионной агрессивности грунта, для всех подземных сооружений предусматривают применение защитных покрытий в качестве основного метода защиты от коррозии.

6.6 Стальные подземные трубопроводы, резервуары (в том числе траншейного типа), расположенные в грунтах средней и высокой коррозионной агрессивности и биоагрессивных грунтах, в зонах опасного действия блуждающих постоянных и переменных токов, подлежат защите средствами электрохимической защиты (установками катодной защиты, установками дренажной защиты, протекторными установками (гальваническими анодами)). В остальных случаях необходимость обеспечения объекта средствами электрохимической защиты должна подтверждаться соответствующим обоснованием или требованиями заказчика.

6.7 Катодная поляризация обеспечивается средствами электрохимической защиты: установками катодной защиты, поляризованными и усиленными дренажами, протекторными установками.

Установки катодной защиты и протекторные установки применяют при защите подземных сооружений от коррозии в почвенно-грунтовых водах и грунтах, биокоррозии, коррозии переменными токами промышленной частоты и при защите от коррозии блуждающими постоянными токами.

Поляризованные и усиленные дренажи применяют при защите от коррозии, вызываемой блуждающими постоянными токами рельсового транспорта, электрифицированного на постоянном токе.

6.8 Магистральные трубопроводы подлежат обязательной электрохимической защите независимо от условий прокладки.

6.9 Трубопроводы сельскохозяйственного водоснабжения (групповые и межхозяйственные стальные водопроводы) и резервуары траншейного типа защищают методом катодной поляризации независимо от коррозионной агрессивности грунта.

6.10 Стальные трубопроводы оросительных систем и систем обводнения защищают методом катодной поляризации в грунтах высокой и средней коррозионной агрессивности.

6.11 Действующие теплопроводы канальной прокладки защищают методом катодной поляризации при наличии воды или грунта в канале, если вода или грунт соприкасаются с теплоизоляционной конструкцией или поверхностью трубопровода.

6.12 Сваи, опоры сооружений, элементы и узлы соединения несущих конструкций должны иметь защиту от коррозии. При отсутствии свободного доступа к ним для осмотров и возобновления защитных покрытий конструкции первоначально должны быть защищены от коррозии на весь период эксплуатации.

6.13 При проектировании защиты от коррозии свай и опор в составе конструкций сооружений, строящихся в районах с расчетной температурой наружного воздуха ниже минус 40°С, необходимо учитывать требования ГОСТ 9.401. За температуру наружного воздуха принимается температура наиболее холодной пятидневки.

6.14 Электрохимическую защиту свай, опор совместно с защитными покрытиями следует предусматривать при высокой коррозионной агрессивности грунтов, опасном влиянии блуждающих токов. Для элементов несущих конструкций сооружений из канатов и тросов электрохимическая защита не предусматривается.

6.15 Для защиты от биокоррозии с целью снижения агрессивности окружающей среды могут применяться допущенные к использованию в установленном порядке биоциды и ингибиторы коррозии.

6.16 Для защиты сооружений и оборудования от опасного влияния токов и напряжений индуцированного переменного тока высоковольтных линий электропередачи и защиты от поражения электрическим током обслуживающего персонала применяют технические устройства, обеспечивающие снижение величин переменного тока и напряжений до безопасных значений.

7 Требования к защитным покрытиям и методам контроля качества

 

7.1 Требования к защитным покрытиям подземных стальных сооружений (кроме магистральных трубопроводов и теплопроводов) усиленного и нормального типа приведены в таблицах 2 и 3 соответственно.

7.2 Рекомендуемые конструкции защитных покрытий, применяемые для защиты стальных подземных сооружений (кроме магистральных трубопроводов и теплопроводов), приведены в приложении Ж. Допускается применять другие конструкции защитных покрытий, обеспечивающие выполнение требований настоящего стандарта.

7.3 Для магистральных трубопроводов классификация и требования к защитным покрытиям определены в ГОСТ 25812.

7.4 Для защиты трубопроводов тепловых сетей от наружной коррозии применяют защитные покрытия, конструкции и условия применения которых приведены в приложении И. Допускается применять другие конструкции защитных покрытий, обеспечивающие выполнение требований настоящего стандарта.

 

Таблица 2 - Требования к защитным покрытиям усиленного типа

 

Наименование показателя(1)

Значение

Метод испытания

Номер защитного покрытия по таблице Ж.1 (приложение Ж)

1. Адгезия к стали,

не менее, при температуре 20°С, Н/см

70,0

 

 

 

В соответствии с приложением К

2

50,0

 

1 (для трубопроводов диаметром 820 мм и более)

 

 

 

40°С, Н/см

35,0

 

1 (для трубопроводов диаметром до 820 мм), 9

20,0

В соответствии с приложением К

3, 4, 5, 6, 10

35,0

 

2

 

 

 

 

20°С, МПа

20,0

 

1,9

10,0

 

3, 4, 10

0,5

В соответствии с приложением К

7, 8

5,0

11

7,0

12, 13

2. Адгезия в зоне нахлеста при температуре 20°С, Н/см, не менее:

 

 

 

Ленты к ленте

7,0

 

3, 4, 5

 

35,0

В соответствии с приложением К

9

 

20,0

10

Обертки к ленте

5,0

4

Слоя экструдированного полиолефина к ленте

15,0

3

3. Адгезия к стали после выдержки в воде в течение 1000 ч при температуре 20°С, Н/см, не менее

 

 

50,0

 

 

1 (для трубопроводов диаметром 820 мм и более)

МПа, не менее

35,0

 

 

В соответствии с приложением К

1, 2 (для трубопроводов диаметром до 820 мм)

30,0

9

15,0

3, 4

3,5

5,0

В соответствии с приложением К

11

12, 13

4. Прочность при ударе, не менее, Дж, при температуре:

 

 

 

 

В соответствии с приложением Л

Для всех защитных покрытий (кроме 1, 2, 3), для трубопроводов диаметром, мм:

минус 15°С

5,0

до 273 включ.

 

6,0

св. 273 до 530 включ.

8,0

св. 530 до 820

10,0

св. 820

 

 

 

Для всех защитных покрытий

(кроме 1, 2, 3, 4, 5, 9, 10,

11, 13), для трубопроводов

диаметром, мм:

 

 

 

В соответствии с приложением Л

20°С

5,0

до 273 включ.

 

6,0

св. 273 до 530 включ.

8,0

св. 530 до 820

10,0

св. 820

 

 

4,0

В соответствии с приложением Л

4, 5, 9, 10

 

 

 

 

 

 

 

6,0

 

В соответствии с приложением Л

 

11, 13

 

 

 

40°С

 

 

 

 

 

 

 

 

 

 

 

 

20°С, Дж/мм толщины защитного покрытия

 

 

Для всех защитных покрытий

(кроме 1, 2, 3, 4, 5), для трубопроводов диаметром, мм:

5,0

В соответствии с приложением Л

до 273 включ.

6,0

св. 273 до 530 включ.

8,0

св. 530 до 820

10,0

св. 820

4,0

В соответствии с приложением Л

4, 5, 9, 10, 11

6,0

В соответствии с приложением Л

13

 

 

1, 2 для трубопроводов диаметром, мм:

5,0

В соответствии с приложением Л

до 820 включ.

6,0

св. 820

5. Прочность при разрыве, МПа, не менее, при температуре 20°С(2)

12,0

По ГОСТ 11262

1, 2, 9

10,0

По ГОСТ 14236

3, 8, 10

6. Площадь отслаивания защитного покрытия при катодной поляризации, , не более, при температуре:

 

В соответствии с приложением М

 

20°С

5,0

Для всех защитных покрытий

60°С

10,0

1, 2, 9

7. Стойкость к растрескиванию под напряжением при температуре 50°С, ч, не менее

 

 

 

1000

По ГОСТ 13518

1, 2, 3, 8, 9, 10

8. Стойкость к воздействию светопогоды, ч, не менее

500

В соответствии с приложением Н

1, 2, 3, 8

9. Температура хрупкости, °С, не выше

-50°С

По ГОСТ 16783

4, 9

10. Температура хрупкости мастичного слоя (гибкость на стержне) °С, не более

 

-10°С

 

По ГОСТ 2678

 

5, 6, 8, 10

11. Переходное электрическое сопротивление защитного покрытия в 3%-ном растворе при температуре (205)°С, , не менее:

 

В соответствии с приложением П

 

Исходное

 

 

 

Через 100 сут. выдержки

 

1, 2, 9

3, 4, 5, 6, 7, 8, 10, 11, 12, 13

1, 2, 9

3, 4, 5, 6, 7, 8, 10, 11, 12, 13

12. Переходное электрическое сопротивление защитного покрытия(3) на законченных строительством участках трубопровода (в шурфах) при температуре выше 0°С, , не менее

 

Приведено в приложении П

 

 

 

1, 2, 3, 8, 9, 10

4, 5, 6

7

13. Диэлектрическая сплошность (отсутствия пробоя при электрическом напряжении), кВ/мм

5,0

7.14

Для всех защитных покрытий

14. Сопротивление вдавливанию (пенетрация) при температуре (205)°С, мм, не более

0,3

В соответствии с приложением Р

Для всех защитных покрытий

15. Водонасыщаемость за 24 ч при температуре (205)°С, %, не более

0,1

По ГОСТ 9812

5, 6, 7, 8, 10

(1) Показатели свойств измеряют при 20°С, если в НД не оговорены другие условия. При установлении дополнительных требований к стойкости защитных покрытий при температурных и механических воздействиях, оценка дополнительных показателей стойкости может быть осуществлена по приложениям С, Т, У, Ф.

(2) Прочность при разрыве комбинированных защитных покрытий, лент и защитных оберток (в МПа) относят только к толщине несущей полимерной основы без учета толщины мастичного или каучукового подслоя, при этом прочность при разрыве, отнесенная к общей толщине ленты, не менее 50 Н/см ширины, а защитной обертки - не менее 80 Н/см ширины.

(3) Предельно допустимое значение переходного электрического сопротивления защитного покрытия в процессе эксплуатации подземных трубопроводов составляет не менее 400 .

 

Таблица 3 - Требования к защитным покрытиям нормального типа

 

Наименование показателя(1)

Значение

Метод испытания

Номер защитного покрытия по таблице Ж.1 (приложение Ж)

1 Адгезия к стали при температуре 20°С:

 

В соответствии с приложением К

ГОСТ 15140

14 (для трубопроводов диаметром 820 мм и более)

Н/см, не менее

50,0

 

14 (для трубопроводов диаметром до 820 мм)

Балл, не более

35,0

 

15

МПа, не менее

20,0

 

17

 

1

В соответствии с приложением К

18

7,0

2 Адгезия в нахлесте при температуре 20°С,

 

 

 

 

В соответствии с приложением К

 

Н/см, не менее:

 

 

ленты к ленте

7,0

15

слоя экструдированного полиэтилена к ленте

15,0

15

3 Адгезия к стали после выдержки в воде в течение 1000 ч при температуре 20°С:

 

 

 

Н/см, не менее

50,0

В соответствии с приложением К

14 (для трубопроводов диаметром 820 мм и более)

 

35,0

 

14 (для трубопроводов диаметром до 820 мм)

МПа, не менее

15,0

5,0

В соответствии с приложением К

15

18

4 Прочность при ударе, не менее, при температуре:

2,0

Приложение Л

 

 

 

 

 

В соответствии с приложением Л

 

минус 15°С, Дж

6,0

17

 

2,0

16

20°С, Дж

6,0

17

16

 

40°С, Дж

 

3,0

В соответствии с приложением Л

18

2,0

 

17

6,0

В соответствии с приложением Л

16

 

 

 

14, 15 для трубопроводов диаметром, мм:

20°С, Дж/мм толщины защитного покрытия

4.25

 

В соответствии с приложением Л

до 159 включ.

5,0

св. 159 до 530 включ.

6,0

св. 530

5 Прочность при разрыве, МПа, не менее, при температуре 20°С(2)

12,0

По ГОСТ 11262

14

10,0

По ГОСТ 14236

15

6 Площадь отслаивания защитного покрытия при катодной поляризации, , не более, при температуре:

 

В соответствии с приложением М

 

20°С

 

 

40°С

4,0

18

5,0

14, 15, 16

8,0

14, 18

7 Стойкость к растрескиванию под напряжением при температуре

 

 

 

500

По ГОСТ 13518

Для защитных покрытий

с толщиной полиолефинового

слоя не менее 1 мм:

14,15

 

50°С, ч, не менее

8 Стойкость к воздействию светопогоды, ч, не менее

500

В соответствии с приложением Н

14, 15

9 Переходное электрическое сопротивление защитного покрытия в 3%-ном растворе при температуре (205)°С, , не менее:

 

В соответствии с приложением П

 

Исходное

14

 

 

 

 

через 100 сут выдержки

15, 16, 18

17

14

15, 16, 18

17

10 Переходное электрическое сопротивление защитного покрытия(3) на законченных строительством участках трубопровода (в шурфах) при температуре выше 0°С, , не менее

 

В соответствии с приложением П

 

 

14, 15, 17

18

16

11 Диэлектрическая сплошность (отсутствие пробоя при электрическом напряжении), кВ/мм

 

 

 

 

5,0

7, 14

14, 15

4,0

18

2,0

17

12. Водонасыщаемость за 24 ч, %, не более

0,1

По ГОСТ 9812

16

(1) Показатели свойств измеряют при 20°С, если в нормативных документах (НД) не оговорены другие условия.

(2) Прочность при разрыве комбинированного защитного покрытия, лент и защитных оберток относят только к толщине несущей полимерной основы без учета толщины мастичного или каучукового подслоя. При этом прочность при разрыве, отнесенная к общей толщине ленты, не менее 50 Н/см ширины, а защитной обертки - не менее 80 Н/см ширины.

(3) Предельно допустимое значение переходного электрического сопротивления защитного покрытия в процессе эксплуатации подземных трубопроводов должно составлять не менее 400 Ом. #.

7.5 Защитные покрытия усиленного типа, соответствующие требованиям таблицы 2, должны при меняться для:

- стальных трубопроводов, прокладываемых непосредственно в земле в пределах территорий городов, населенных пунктов и промышленных предприятий;

- газопроводов с давлением газа до 1,2 МПа (12 ), предназначенных для газоснабжения городов, населенных пунктов и промышленных предприятий, но прокладываемых вне их территорий;

- стальных резервуаров, установленных в грунт или обвалованных грунтом.

 

Примечание - Для трубопроводов, транспортирующих углеводороды с давлением среды свыше 1,2 МПа (категория 1а) рекомендуется применять защитные покрытия, соответствующие требованиям ГОСТ 25812.

7.6 Для стальных трубопроводов оросительных систем, систем сельскохозяйственного водоснабжения (групповых и межхозяйственных водопроводов и отводов от них) и обводнения применяют защитные покрытия нормального типа, соответствующие требованиям таблицы 3.

7.7 При проведении работ по строительству и ремонту подземных сооружений, как правило, должны применяться стальные конструкции, изолированные в заводских (базовых) условиях на механизированных линиях изоляции с использованием полиэтиленовых, полипропиленовых, полиуретановых, эпоксидных покрытий.

7.8 Работы по нанесению защитных покрытий в трассовых условиях (ручным и механизированным способом) осуществляют при защите от коррозии подземной части резервуаров, изоляции сварных стыков и фасонных частей, устранении повреждений покрытия (не более 10% площади трубы), возникших при транспортировании труб, а также при ремонте участков трубопроводов длиной не более 10 м.

7.9 При строительстве и ремонте сооружений места повреждения защитного покрытия ремонтируют в трассовых условиях с применением материалов, соответствующих основному защитному покрытию, ремонтными комплектами в соответствии с рекомендациями производителя защитных покрытий.

7.10 Толщину защитных покрытий контролируют методом неразрушающего контроля с применением толщиномеров и других измерительных приборов:

- на трубах в базовых и заводских условиях для двухслойных и трехслойных полимерных покрытий на основе экструдированного полиэтилена, полипропилена; комбинированного на основе полиэтиленовой ленты и экструдированного полиэтилена; ленточного полимерного и мастичного покрытий - на каждой десятой трубе одной партии не менее чем в четырех точках по окружности трубы и в местах, вызывающих сомнение;

- на трубах с применением мастичных покрытий в трассовых условиях - на 10% отремонтированной площади труб и сварных стыков, изолируемых вручную, в четырех точках по окружности трубы;

- на резервуарах, изолированных с применением мастичных покрытий - в одной точке на каждом квадратном метре поверхности, а в местах перегибов защитных покрытий - через 1 м по длине окружности.

7.11 Адгезию защитных покрытий к стали при строительстве и ремонте контролируют с применением адгезиметров:

- на трубах в базовых и заводских условиях - через каждые 100 м или на каждой десятой трубе в партии;

- на трубах в трассовых условиях - на 10% сварных стыков труб, изолированных вручную, на основном защитном покрытии трубы - на каждой десятой трубе, изолированной любым (механизированным, ручным) способом в трассовых условиях, и в местах, вызывающих сомнение;

- на резервуарах - не менее чем в двух точках по окружности.

7.12 Для мастичных покрытий допускается определять адгезию методом выреза равностороннего треугольника с длиной стороны не менее 3,0 см и не более 5,0 см с последующим отслаиванием покрытия от вершины угла надреза. Адгезия считается удовлетворительной, если вырезанный треугольник отслаивается только с приложением усилия, при этом наблюдается когезионный характер отслаивания по всей площади трубы под вырезанным треугольником. При отслаивании защитных покрытий не менее 50% площади отслаиваемой мастики должно оставаться на металле трубы. Поврежденное в процессе проверки адгезии защитное покрытие должно быть отремонтировано в соответствии с НД.

7.13 Сплошность защитных покрытий отдельных элементов (труб, соединительных деталей, емкостей) при нанесении в заводских (базовых) условиях контролируют после окончания процесса изоляции; при нанесении в трассовых условиях - после изоляции резервуаров и перед опусканием трубопровода в траншею.

7.14 Контроль сплошности должен осуществляться по всей поверхности покрытия искровым дефектоскопом с рабочим электродом в виде щетки из проволоки или кольца из проволоки со спиральной навивкой. При проведении данных испытаний на поверхности покрытия не должно быть влаги, а прибор (искровой дефектоскоп) и металлическое сооружение (конструкция) с нанесенным покрытием должны быть заземлены. Прибор должен быть оснащен системами световой и звуковой сигнализации для обнаружения нарушения сплошности (электрического пробоя) покрытия. Напряжение на рабочем электроде при проверке покрытия должно соответствовать требованиям таблицы 2 для покрытий усиленного типа, и требованиям таблицы 3 для покрытий нормального типа. Величина напряжения при контроле покрытия не должна превышать 20 кВ. Скорость перемещения рабочего электрода по контролируемой поверхности покрытия не должна превышать 0,5 м/с.

7.15 Дефектные места, а также сквозные повреждения защитного покрытия, выявленные во время проверки его качества, ремонтируют до засыпки подземного сооружения. При ремонте дефектных участков обеспечивают однотипность, монолитность и сплошность защитного покрытия; после исправления отремонтированные места защитного покрытия подлежат повторной проверке искровым дефектоскопом.

7.16 После засыпки сооружения грунтом защитное покрытие проверяют на отсутствие сквозных повреждений с помощью методов и средств инструментального контроля состояния защитного покрытия. Указанные работы проводят на сооружении, находящемся в незамерзшем грунте, не ранее чем через 14 дней после засыпки его грунтом. В случае обнаружения дефектов, защитное покрытие должно быть отремонтировано.

8 Требования к электрохимической защите

 

8.1 Общие требования

8.1.1 Электрохимическая защита должна обеспечивать непрерывную по времени катодную поляризацию подземных сооружений, подлежащих защите в соответствии с 6.6, 6.8 - 6.11 настоящего стандарта, в течение всего срока их эксплуатации.

8.1.2 Дополнительные требования к электрохимической защите объектов магистральных трубопроводов определены в ГОСТ 25812.

 

Примечание - Для трубопроводов, транспортирующих углеводороды с давлением среды свыше 1,2 МПа (категория 1а) рекомендуется применять требования к электрохимической защите, соответствующие требованиям ГОСТ 25812.

 

8.1.3 Средства электрохимической защиты, предусмотренные проектом, вводят в действие в зонах опасного влияния блуждающих токов не позднее одного месяца, а в остальных случаях - не позднее трех месяцев после укладки сооружения в грунт. Если предусматриваются более поздние сроки окончания строительства и ввода в эксплуатацию средств электрохимической защиты, то необходимо предусмотреть временную электрохимическую защиту с указанными в настоящем пункте сроками ввода в эксплуатацию.

8.1.4 Сооружения, температура металла которых весь период эксплуатации ниже чем 268 К (минус 5°С), не подлежат электрохимической защите, при отсутствии опасного влияния блуждающих и индуцированных токов, вызванных сторонними источниками. Сбор исходных данных о коррозионной ситуации на проектируемом участке сооружения для принятия решения об отказе от применения электрохимической защиты сооружения должен осуществляться в период максимального растепления грунта и его естественного увлажнения.

8.1.5 Допускается не предусматривать электрохимическую защиту стальных вставок, стальных футляров (кожухов) в составе линейной части неметаллических трубопроводов, участков соединений неметаллических газопроводов со стальными вводами в дома (при наличии на вводе электроизолирующих вставок) с защитным покрытием усиленного типа, длиной не более 10 м. При этом засыпку траншеи в той ее части, где проложена стальная вставка, по всей глубине заменяют на песчаную.

8.1.6 Для контроля эффективности электрохимической защиты сооружения измеряют потенциалы на защищаемом сооружении в контрольно-измерительных пунктах, на вводах в здания и других элементах сооружения, доступных для проведения измерения.

8.1.7 Места размещения контрольно-измерительных пунктов магистральных трубопроводов определены в ГОСТ 25812. Для остальных сооружений контрольно-измерительные пункты устанавливают с интервалом не более 200 м в пределах поселения и не более 500 м - вне пределов поселения, в том числе:

- в пунктах подключения дренажного кабеля к сооружению;

- на границах зоны защиты установки катодной защиты и границах зон защиты смежных установок катодной защиты;

- в местах максимального сближения сооружения с анодным заземлителем;

- в местах пересечения с автомобильными дорогами и железнодорожными путями с контролем параметров электрохимической защиты по обе стороны от пересечения;

- в местах подземного расположения электроизолирующих вставок.

 

Примечание - Для трубопроводов, транспортирующих углеводороды с давлением среды свыше 1,2 МПа (категория 1а) рекомендуется места размещения контрольно-измерительных пунктов определять в соответствии с требованиями ГОСТ 25812.

 

8.1.8 Измерение поляризационных потенциалов (потенциалов без омической составляющей) проводят следующими методами (см. приложение X):

- метод отключения тока поляризации датчика потенциала (вспомогательного электрода), имитирующего дефект в защитном покрытии;

- метод отключения тока защиты подземного сооружения;

- метод непосредственного измерения потенциала вспомогательного электрода через электролитический ключ, максимально приближенный к вспомогательному электроду.

 

Примечание - При использовании для измерения любых датчиков потенциала (вспомогательных электродов), рекомендуется определить соотношение размеров датчика (вспомогательного электрода) и среднего значения размеров дефектов защитного покрытия на контролируемом участке сооружения для учета при оценке результатов измерений согласно основным закономерностям теории электрического поля в грунте.

 

8.1.9 Катодную поляризацию сооружений осуществляют таким образом, чтобы защитные потенциалы металла относительно насыщенного медно-сульфатного электрода сравнения находились между минимальным и максимальным (по абсолютному значению) значениями в соответствии с таблицей 4. Допускается применение других неполяризующихся электродов сравнения с приведением результатов измерения к насыщенному медно-сульфатному электроду сравнения.

 

Таблица 4 - Защитные потенциалы металла сооружения относительно насыщенного медно-сульфатного электрода сравнения

 

Сооружения и условия их эксплуатации

Минимальный защитный

потенциал(1) относительно насыщенного

медно-сульфатного электрода сравнения(2), В

Максимальный защитный

потенциал(1) относительно насыщенного

медно-сульфатного электрода сравнения(2), В

Поляризационный

потенциал

(без омической

составляющей)

Суммарный

(с омической

составляющей)

Поляризационный

потенциал

(без омической

составляющей)

Суммарный

(с омической

составляющей)

Действующие стальные сооружения до их реконструкции(3):

С температурой поверхности (транспортируемого продукта) не выше 40°С

 

 

 

 

-0,85

-0,9

-1,15

-2,5

С температурой поверхности (транспортируемого продукта) свыше 40°С; сооружения при опасности биокоррозии

 

-0,95

 

-1,05

 

-1,15

 

-3,5

Вновь построенные и реконструированные сооружения:

С температурой поверхности (транспортируемого продукта) не выше 40°С

 

-0,85

 

- 0,95

 

-1,2

 

-3,5

С температурой поверхности (транспортируемого продукта) свыше 40°С, не имеющие теплоизоляции

 

-0,95

 

-1,05

 

- 1,1

 

-3,5

(1) Здесь и далее под минимальным и максимальным значениями потенциала подразумевают его значения по абсолютной величине.

(2) Электроды сравнения обеспечивают стабильность потенциала по отношению к образцовому электроду сравнения по ГОСТ 17792 в пределах 15 мВ.

(3) Показатели относятся к сооружениям, для которых проектными решениями не был предусмотрен контроль поляризационного потенциала. Допускается оценивать защищенность только по величине потенциала с омической составляющей, который для действующих стальных сооружений с температурой поверхности (транспортируемого продукта) не выше 40°С, с покрытием на основе битумной мастики не отрицательнее минус 2,5 В относительно насыщенного медно-сульфатного электрода сравнения.

 

8.1.10 Катодную поляризацию трубопроводов с теплоизоляцией, в том числе тепловых сетей и горячего водоснабжения бесканальной прокладки, а также канальной прокладки при расположении анодного заземления за пределами канала, проводят таким образом, чтобы потенциал с омической составляющей (суммарный потенциал) трубопровода был в пределах от минус 1,1 до минус 2,5 В по медно-сульфатному электроду сравнения. При отсутствии защитного изоляционного покрытия на наружной поверхности трубопровода, его потенциал с омической составляющей трубопровода должен находиться в пределах от минус 1,1 до минус 3,5 В по медно-сульфатному электроду сравнения.

8.1.11 Катодную поляризацию трубопроводов тепловых сетей и горячего водоснабжения канальной прокладки применяют при расположении анодных заземлений в канале или вне канала. При расположении анодных заземлений в канале потенциал трубопровода, измеренный относительно установленного у поверхности трубы вспомогательного стального электрода, поддерживают на 0,3 - 0,8 В отрицательнее потенциала трубы относительно этого электрода, измеренного при отсутствии катодной поляризации трубы. Измерение потенциала трубопровода при расположении анодного заземления в канале приведено в приложении Ш.

8.1.12 Катодную поляризацию подземных металлических сооружений осуществляют так, чтобы она не оказывала опасного влияния на смежные подземные металлические сооружения. Если при осуществлении катодной поляризации возникнет опасное влияние на смежные подземные металлические сооружения, то необходимо принять меры по его устранению или выполнить совместную защиту этих сооружений.

 

Примечание - Опасным влиянием катодной поляризации защищаемого сооружения на соседние металлические сооружения в соответствии с 5.11 считают:

- уменьшение по абсолютной величине минимального или увеличение по абсолютной величине максимального защитного потенциала на соседних металлических сооружениях, имеющих электрохимическую защиту;

- появление опасности коррозии на соседних подземных металлических сооружениях, ранее не требовавших защиты от нее.

 

8.1.13 Для повышения эффективности электрохимической защиты и ограничения опасного влияния на соседние металлические сооружения, а также электрического секционирования трубопроводов, проходящих в зонах воздействия блуждающих токов, необходимо предусматривать электроизолирующие вставки (фланцы, муфты и т.п.) в соответствии с нормативной документацией. Места их установки определяются проектом.

8.1.14 Контроль работы установок электрохимической защиты в эксплуатационных условиях заключается в периодическом осмотре, оценке технического состояния и проверке эффективности их работы. При значительных изменениях, связанных с развитием сети подземных металлических сооружений и источников блуждающих и индуцированных токов, проводят дополнительный контроль.

8.1.15 Контроль непрерывности работы (перерывов в работе) установок катодной защиты должен быть обеспечен с учетом времени на производство плановых регламентных и ремонтных работ в процессе эксплуатации. Перерывы в работе установок катодной защиты допускаются только для проведения плановых работ. Работу по внеплановому ремонту вышедших из строя установок электрохимической защиты классифицируют как аварийную.

8.1.16 Если в зоне действия вышедшей из строя установки электрохимической защиты защитный потенциал трубопровода обеспечивается соседними (смежными) установками защиты (перекрывание зон защиты), то срок устранения неисправности определяется техническим руководителем эксплуатационной организации.

8.1.17 Стальные трубопроводы, реконструируемые методом санирования (облицовки внутренней поверхности трубы) с помощью полимерных материалов, как правило, подлежат защите в соответствии с 8.1.9. Стальные трубопроводы, реконструируемые методом протяжки неметаллических труб, подлежат защите на тех участках, где стальная труба необходима как защитный футляр (под автомобильными, железными дорогами и др.) с учетом 8.1.5.

8.1.18 Стальные футляры (кожухи) трубопроводов под автомобильными дорогами, железнодорожными и трамвайными путями при бестраншейной прокладке (прокол, продавливание и другие технологии, разрешенные к применению), как правило, защищают защитными покрытиями и средствами электрохимической защиты в соответствии с 6.6 и 8.1.9.

8.1.19 В качестве футляров (кожухов) рекомендуется использовать трубы с внутренним защитным покрытием.

8.1.20 Если обеспечение защитных потенциалов по 8.1.9 на действующих трубопроводах, транспортирующих среды температурой не выше 40°С и длительное время находившихся в эксплуатации в коррозионно-опасных условиях, экономически нецелесообразно, по согласованию с проектной и обследующей организациями допускается применять в качестве минимального поляризационного защитного потенциала трубопровода его значение на 100 мВ отрицательнее стационарного потенциала. Стационарный потенциал трубопровода определяют по датчику потенциала (вспомогательному электроду) (см. приложение Щ).

 

Примечание - Минимальный защитный поляризационный потенциал - более отрицательный, чем минус 0,65 В.

8.2 Требования к электрохимической защите при наличии опасного влияния блуждающих токов и индуцированных переменных токов

8.2.1 Защиту стальных подземных трубопроводов от коррозии, вызываемой блуждающими постоянными токами от электрифицированного транспорта, а также переменными токами, в том числе индуцированными от высоковольтных линий электропередач, обеспечивают в опасных зонах, независимо от коррозионной агрессивности грунтов, средствами электрохимической защиты.

8.2.2 Защиту сооружений от опасного влияния блуждающих постоянных токов осуществляют так, чтобы исключить образование на сооружении знакопеременных или стационарных анодных зон.

Допускается кратковременное анодное смещение потенциала сооружения относительно стационарного потенциала, суммарной продолжительностью не более 4 мин в сутки.

8.2.3 Определение смещений потенциала (разность между измеренным потенциалом сооружения и стационарным потенциалом) проводят в соответствии с приложением Д.

 

Примечание - При отсутствии данных о стационарном потенциале его значение для стали принимают равным минус 0,70 В.

 

8.2.4 В условиях опасного влияния блуждающих постоянных токов при защите стальных трубопроводов и резервуаров с температурой транспортируемого (хранимого) продукта не выше 40°С в грунтах высокой коррозионной агрессивности, трубопроводов оросительных систем и систем обводнения в грунтах средней коррозионной агрессивности, трубопроводов сельскохозяйственного водоснабжения и резервуаров траншейного типа, независимо от коррозионной агрессивности грунтов, средние значения поляризационных и суммарных потенциалов должны быть в пределах, указанных в 8.1.9.

8.2.5 Применение дренажной защиты должно обеспечивать выполнение требований 8.1.9. Если применение поляризованных дренажей неэффективно, то используют катодную защиту, защиту усиленными дренажами или катодную защиту совместно с поляризованным дренажом; электрическое секционирование трубопроводов с применением электроизолирующих вставок.

8.2.6 Подключение дренажных устройств к рельсовым путям производится в соответствии с требованиями НД. Не допускается непосредственно присоединять установки дренажной защиты к отрицательным шинам и к сборке отрицательных линий тяговых подстанций электрифицированного транспорта.

8.3 Требования к протекторной защите

8.3.1 Защиту с использованием протекторов (гальванических анодов) рекомендуется применять при обеспечении токоотдачи единичного протектора не менее 50 мА:

- для отдельных участков трубопроводов небольшой протяженности (не имеющих электрических контактов с другими сооружениями) при отсутствии или при наличии опасности блуждающих постоянных токов, если вызываемое ими среднее смещение потенциала от стационарного не превышает плюс 0,3 В;

- для участков трубопроводов, электрически отсоединенных от других коммуникаций электроизолирующими вставками;

- при относительно малых расчетных значениях токов (менее или равных 1 А);

- как дополнительное средство защиты, когда действующие (предусмотренные проектом) средства электрохимической защиты не обеспечивают защиту отдельных участков трубопроводов;

- для защиты от опасного влияния переменного тока.

8.3.2 Протекторную защиту трубопроводов тепловых сетей и горячего водоснабжения применяют только при их прокладке в каналах с размещением протекторов (гальванических анодов) в канале или непосредственно на поверхности трубопроводов.

9 Требования по ограничению токов утечки на источниках блуждающих токов

 

9.1 Ввод в эксплуатацию объектов, являющихся источниками блуждающих токов, не допускается до проведения всех предусмотренных проектом мероприятий по ограничению этих токов.

9.2 На объектах электрифицированного рельсового транспорта, являющихся источниками блуждающих токов, мероприятиями по ограничению блуждающих токов являются:

- обеспечение электропроводности стыков, межрельсовых и междупутных перемычек;

- изоляция рельсовых путей электрифицированного рельсового транспорта по отношению к земле, в соответствии с требованиями НД;

 

Примечание - На линиях рельсового транспорта, электрифицированных по системе переменного тока, специальные меры по ограничению утечки тяговых токов на рельсовых путях и устройствах электроснабжения в части защиты от коррозии не предусматривают.

 

- электрическое отделение электрифицированных путей от неэлектрифицированных изолирующими стыками;

- отвод поверхностных и почвенно-грунтовых вод от основания пути.

9.3 Продольное сопротивление рельсовой сети за счет сборных стыков не должно увеличиваться более чем на 20% проектного значения.

9.4 Для ограничения отекания тяговых токов главные пути наземных линий укладывают на щебеночном, гравийном или равноценном им по изоляционным свойствам балласте.

9.5 Деревянные шпалы, укладываемые в путь, пропитывают неэлектропроводными антисептиками. Железобетонные шпалы или железобетонные блочные основания изолируют от рельсов. Не допускается металлическая связь арматуры железобетона непосредственно с рельсами или деталями рельсовых скреплений.

9.6 Конструкцию путей электрифицированного рельсового транспорта выполняют так, чтобы обеспечить переходное сопротивление рельсов (сопротивление изоляции) по отношению к земле не менее значений, приведенных в таблице 5.

 

Таблица 5 - Требования к изоляции рельсового пути для электрифицированного транспорта

 

Вид транспорта

Переходное сопротивление рельс - земля(1) (две нити в параллель), , не менее

Железнодорожный магистральный

0,25

Метрополитен:

 

- в тоннелях и закрытых наземных участках, на участках, смежных с метромостами (до 200 м по обе стороны)

1,5(2)

- на эстакадах, метромостах, в здании электродепо

3,0

- на открытых наземных линиях и парковых путях электродепо

0,5

Трамвай

0,02

(1) Для железнодорожного промышленного и карьерного видов транспорта показатель не нормируется. Для тоннелей нормируется переходное сопротивление "рельс - тоннельная обделка".

(2) В начальный период эксплуатации метрополитена (не более 6 месяцев со дня ввода в эксплуатацию) допускается снижение переходного сопротивления рельсов в тоннеле до 0,5 .

9.7 Все неэлектрифицированные пути в месте их примыкания к электрифицированным путям отделяют изолирующими стыками, устанавливаемыми в каждую рельсовую нить.

9.8 Электрифицированные пути от неэлектрифицированных отделяют двумя изолирующими стыками в каждой нити в следующих случаях:

- на подъездных путях тяговых подстанций, промышленных объектов, нефтебаз и складов с горючими и взрывоопасными веществами;

- на соединительных линиях между разными видами рельсового транспорта;

- на примыкающих строящихся линиях электрифицированного рельсового транспорта.

Стыки устанавливают таким образом, чтобы они не перекрывались одновременно подвижным составом, подаваемым на неэлектрифицированные пути.

9.9 Для ограничения утечки тяговых токов с локальных участков пути (тоннель, депо, станционные парки) рекомендуется применять технические средства, препятствующие отеканию тягового тока, в соответствии с требованиями НД.

9.10 Наличие прямых течей поверхностных и почвенно-грунтовых вод на путь в тоннелях не до пускается.

9.11 При наличии в трамвайной тяговой рельсовой сети нескольких пунктов присоединения отрицательных питающих линий для одной тяговой подстанции применяют статические вольтодобавочные устройства или добавочные сопротивления для уравнивания потенциалов отсасывающих пунктов, разность которых в период интенсивного графика движения не должна превышать 0,5 В при вольтодобавочных устройствах и 1,0 В - при реостатах. Для контроля потенциалов предусматривают систему контрольных проводов.

9.12 Использование отрицательных линий и пути трамвая в качестве проводника тока троллейбусных нагрузок не допускается.

9.13 В пунктах присоединения отрицательных линий трамвая применяют разъемное электрическое соединение отрицательных линий с проводниками, идущими непосредственно к рельсовым нитям. Сопротивление контакта в месте присоединения каждого из указанных проводников к рельсовой нити не должно превышать 0,0015 Ом.

9.14 Кабели, используемые для прокладки отрицательных линий трамвая, оборудуют контрольными шинами для измерения потенциалов пунктов присоединения отрицательных кабелей к рельсам.

9.15 Для контроля разности потенциалов между пунктами присоединения отрицательных кабелей трамвая смежные параллельно работающие подстанции оборудуют системой контрольных проводов.

9.16 Для контроля потенциалов рельсовой сети метрополитена оборудуют систему контрольно-измерительных пунктов в соответствии с НД.

9.17 При проектировании рабочих заземлений линий передач энергии постоянного тока системы "провод-земля" предусматривают мероприятия, исключающие их опасное влияние на подземные сооружения.

9.18 Источники блуждающих токов промышленных объектов (шинопроводы постоянного тока, электролизеры, металлические трубопроводы, присоединенные к электролизерам) электрически изолируют от строительных конструкций, с применением в качестве изоляторов изделий из базальта, фарфора, диабаза, стекла, пластмассы и других материалов с удельным объемным сопротивлением не менее .

9.19 Для ограничения тока утечки предусматривают секционирование с помощью электроизолирующих швов железобетонных перекрытий, железобетонных площадок для обслуживания электролизеров в подземных железобетонных конструкциях. Перекрытие, на котором устанавливают электролизеры, отделяют от примыкающих к нему железобетонных стен, колонн, перекрытий других отделений электроизолирующим швом в виде воздушных зазоров из мастичных или рулонных материалов с удельным электрическим сопротивлением .

9.20 В отделениях электролиза водных растворов для ограничения токов утечки применяют полимербетон для конструкций, примыкающих к электронесущему оборудованию (опоры, балки, фундаменты под электролизеры, опорные столбы под шинопроводы, опорные балки и фундаменты под оборудование, соединенное с электролизерами).

9.21 Трубопроводы, транспортирующие электролит и продукты электролиза, выполняют из неэлектропроводных материалов (фаолит, стекло, полиэтилен и др.) с целью ограничения токов утечки с них.

9.22 Эксплуатационный контроль выполнения требований по ограничению токов утечки с рельсовой сети проводят подразделения (службы) транспорта конкретного вида. Перечень контролируемых параметров, сроки и методы их выполнения определены в соответствующих НД.

9.23 Выполнение требований по ограничению токов утечки при строительстве линий электрифицированного рельсового транспорта контролирует строительная организация совместно с организацией, эксплуатирующей стальные подземные коммуникации, на которые может быть оказано опасное влияние блуждающего тока строящегося объекта. Результаты контроля предъявляют при приемке линий в эксплуатацию.

9.24 Соответствие подключения средств активной защиты (поляризованных и усиленных дренажей) к рельсовой сети источника блуждающих токов требованиям настоящего стандарта проверяют представители рельсового транспорта и заинтересованной организации при первом опытном включении защиты, а в дальнейшем - организация, в ведении которой она находится.

9.25 Сведения об изменении режимов работы сооружений - источников блуждающих токов, способных привести к увеличению опасности коррозии находящихся в зоне их воздействия сторонних подземных сооружений, сообщают в организации, осуществляющие координацию и контроль противокоррозионной защиты подземных сооружений, не позднее, чем за один месяц до перехода на новый режим работы.

10 Требования по безопасному выполнению работ по противокоррозионной защите подземных сооружений

 

10.1 Все работы по защите сооружений от коррозии выполняют в соответствии с действующими правилами эксплуатации конкретных видов защищаемых сооружений, утвержденными в установленном порядке. Работы должны осуществляться опытным и квалифицированным персоналом.

10.2 К выполнению работ по защите сооружений от коррозии допускаются лица не моложе 18 лет, прошедшие медицинское освидетельствование, обучение и инструктаж по ГОСТ 12.0.004. При допуске к работе каждого рабочего инструктируют на рабочем месте с соответствующей записью в журнале по проведению инструктажа.

10.3 Работы по защите от коррозии выполняют с учетом требований ГОСТ 12.3.016, ГОСТ 12.2.004. Запрещается проведение работ по обслуживанию электроустановок электрохимической защиты и выполнение электрометрических работ на протяженных подземных сооружениях при грозе.

10.4 При электрохимической защите трубопроводов тепловых сетей с расположением анодных заземлений непосредственно в каналах напряжение постоянного тока на выходе преобразователя катодной защиты ограничивают 30 В. На участках размещения анодных заземлений в каналах, под крышками люков тепловых камер устанавливают указатели с надписью "Внимание! В каналах действует катодная защита".

10.5 При выполнении работ по защите сооружений от коррозии работающий персонал должен быть обеспечен средствами индивидуальной защиты в соответствии с требованиями нормативных документов.

10.6 При проведении работ предусматривают предупредительные знаки, уровень шума должен соответствовать ГОСТ 12.1.003, содержание вредных веществ в воздухе рабочей зоны - не более предельно допустимых концентраций, установленных ГОСТ 12.1.005.

10.7 При проведении на сооружениях работ, связанных с электрическими измерениями, монтажом, ремонтом и наладкой оборудования электрохимической защиты, соблюдают правила, обеспечивающие безопасность их выполнения.

10.8 Работы в пределах проезжей части улиц и дорог для автотранспорта, на рельсовых путях железных дорог, трамвая, источниках электропитания оборудования электрохимической защиты выполняет бригада в составе не менее двух человек, а при проведении работ в колодцах, туннелях или глубоких траншеях (глубиной более 2 м) - бригада в составе не менее трех человек.

10.9 Измерения в контрольных пунктах, расположенных на проезжей части дорог, на рельсах трамвая или электрифицированной железной дороги, проводят два человека, один из которых следит за работой и ведет наблюдение за движением транспорта.

10.11 При проведении работ на участках протяженных подземных коммуникаций, проходящих на участках параллельного следования или пересечения с высоковольтными линиями электропередачи переменного тока напряжением свыше 35 кВ, должны быть обеспечены организационные и технические мероприятия, обеспечивающие защиту персонала от воздействия индуцированного напряжения переменного тока. В качестве средств защиты от воздействия электрического поля рекомендуется применять экранирующие комплекты по ГОСТ 12.4.172, а от воздействия магнитного поля - переносные магнитные экраны.

10.12 Работы с применением ручного электрифицированного инструмента необходимо проводить в соответствии с требованиями действующих нормативных документов о защите от поражения электрическим током.

Библиография

 

[1]

ISO 8044:1999

Коррозия металлов и сплавов. Общие термины и определения (Corrosion of metals and alloys. Basic terms and definitions)

[2]

ISO 25589-1:2003

Промышленность нефтяная и газовая. Катодная защита систем транспортирования по трубопроводам. Часть 1: Наземные трубопроводы

(Petroleum and natural gas industries - Cathodlc protection of pipeline transportation systems - Part 1: On-land pipelines)

[3]

ISO 4892-2:2013

Пластмассы. Методы экспонирования под лабораторными источниками света. Часть 2. Лампы с ксеноновой дугой

(Plastics - Methods of exposure to laboratory light sources - Part 2: Xenon-arc lamps)

Откройте актуальную версию документа прямо сейчас или получите полный доступ к системе ГАРАНТ на 3 дня бесплатно!

Получить доступ к системе ГАРАНТ

Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.


Межгосударственный стандарт ГОСТ 9.602-2016 "Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии" (введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 7 октября 2016 г. N 1327-ст)


Текст ГОСТа приводится по официальному изданию Стандартинформ, Москва, 2016 г.


Дата введения - 1 июня 2017 г.