Руководство по безопасности РБ-011-2000
"Оценка безопасности приповерхностных хранилищ радиоактивных отходов"
(утв. постановлением Госатомнадзора РФ от 29 декабря 2000 г. N 19)
Настоящее Руководство фактически прекратило действие
Приказом Ростехнадзора от 28 декабря 2017 г. N 589 постановление Госатомнадзора России от 29 декабря 2000 г. N 19 признано не подлежащим применению
Введено в действие с 1 марта 2001 г.
Термины и определения
1. Барьер безопасности - несущий и (или) вмещающий хранилище радиоактивных отходов (РАО) грунт или элемент инженерного сооружения, препятствующий рассеиванию радионуклидов.
2. Барьер безопасности естественный - несущий и (или) вмещающий хранилище РАО грунт.
3. Барьер безопасности инженерный - элемент строительных конструкций хранилища РАО, контейнер, буферный материал, матричный материал, запечатывающий элемент.
4. Буферный материал - вещества, помещаемые в хранилище вокруг упаковок РАО и служащие дополнительным барьером безопасности.
5. Запечатывающие (хранилище РАО) элементы - элементы конструкции хранилища РАО, заполняющие при выводе его из эксплуатации инженерные и транспортные коммуникации, использованные при эксплуатации хранилища для транспортирования и размещения РАО.
6. Жизненный цикл хранилища РАО - совокупность этапов функционирования хранилища РАО как объекта, обеспечивающего изоляцию РАО от человека и окружающей среды: размещение, сооружение, эксплуатация, вывод из эксплуатации и последующее за этим функционирование хранилища РАО.
7. Приповерхностное захоронение РАО - захоронение РАО в хранилище на поверхности земли или на глубине нескольких десятков метров.
8. Сценарий эволюции хранилища РАО - одна из возможных в течение жизненного цикла хранилища РАО последовательностей логически связанных между собой событий, явлений и факторов природного и техногенного происхождения и физико-химических процессов, определяющих эволюцию хранилища РАО, характеристики миграции радионуклидов из него в окружающую среду, уровни облучения человека.
9. Эволюция хранилища РАО - логически обусловленная и упорядоченная во времени последовательность взаимосвязанных состояний хранилища, принимаемых им в течение его жизненного цикла в результате.
- внешних воздействий природного и техногенного происхождения, включая инициирующие развитие аварий в хранилище;
- действий персонала, обслуживающего хранилище, включая ошибки персонала;
- физико-химических процессов, протекающих в хранилище.
1. Назначение и область применения
1.1. Руководство по безопасности "Оценка безопасности приповерхностных хранилищ радиоактивных отходов" (далее - Руководство) конкретизирует основные положения ст. 48 Федерального закона "Об использовании атомной энергии" применительно к оценке безопасности приповерхностных хранилищ РАО, предназначенных для захоронения твердых и (или) отвержденных РАО (далее - хранилища РАО).
1.2. Настоящее Руководство содержит рекомендации Госатомнадзора России по методологии проведения оценки безопасности хранилищ РАО, а именно: по определению сценариев их эволюции, разработке концептуальных моделей хранилищ РАО, соответствующих этим сценариям (далее - концептуальные модели), разработке математических моделей хранилищ РАО, реализующих концептуальные (далее - математические модели), использованию математических моделей для количественной оценки безопасности хранилищ РАО, проведению анализа результатов математического моделирования.
1.3. Настоящее Руководство не содержит рекомендаций по проведению оценок надежности конструкций и сооружений хранилищ РАО.
1.4. Настоящее Руководство предназначено для проведения оценки безопасности хранилищ РАО при их проектировании, сооружении, эксплуатации и выводе из эксплуатации.
1.5. Настоящее Руководство распространяется на проектируемые, сооружаемые, эксплуатируемые и выводимые из эксплуатации хранилища РАО.
1.6. В случае, когда используется иная методология проведения оценки безопасности хранилищ РАО по сравнению с определенной настоящим Руководством, ее использование должно быть обосновано.
2. Основные положения
2.1. Оценка безопасности хранилищ РАО должна быть выполнена для всего периода потенциальной опасности РАО для человека и окружающей среды, так как при захоронении РАО должны быть обеспечены надежная изоляция РАО от окружающей среды и защита настоящего и будущих поколений и биологических ресурсов от радиационного воздействия сверх установленных нормами и правилами в области использования атомной энергии пределов. Поэтому оценка безопасности хранилищ РАО в отличие от иных радиационно опасных объектов проводится не только для периодов времени их эксплуатации и вывода из эксплуатации, но и для периода времени после вывода из эксплуатации хранилищ РАО.
2.2. Следует учитывать, что при обеспечении безопасности (изоляции РАО от человека и окружающей среды) при захоронении РАО существенная роль должна быть отведена естественным барьерам безопасности.
3. Этапы оценки безопасности хранилища РАО
3.1. Разбиение хранилища РАО на подсистемы
Оценку безопасности хранилища РАО рекомендуется начать с определения основных исходных данных, необходимых для ее проведения. Для этого следует сгруппировать все исходные данные в отдельные блоки, каждый из которых относится к одной из подсистем, на которые может быть разбито хранилище РАО
Предлагается рассматривать хранилище РАО как совокупность следующих подсистем:
- Область хранилища РАО, являющаяся источником радионуклидов (далее - область источника радионуклидов) - упаковка РАО, включающая матрицу отходов, контейнер и другие элементы упаковки (если имеются).
- Здания, сооружения, системы и элементы хранилища РАО (далее - инженерная часть хранилища РАО) - инженерные барьеры безопасности хранилища РАО, включающие строительные конструкции хранилища РАО, буферные материалы и запечатывающие элементы, а для приповерхностных хранилищ РАО, сооружаемых открытым способом, - также покрывающий и подстилающий слои материалов.
- Ближняя зона хранилища РАО - контактирующая с сооружениями хранилища РАО часть вмещающих и (или) несущих грунтов, процессы в которой могут быть взаимосвязаны с процессами, протекающими в инженерной части хранилища РАО.
- Дальняя зона хранилища РАО - часть вмещающих и (или) несущих грунтов, контактирующая с ближней зоной хранилища РАО и с биосферой, состояние и характеристики которой влияют на миграцию радиоактивных веществ от границы ближней зоны хранилища РАО к границе биосферы и изменение состояния которой в связи с любыми возможными процессами и событиями как природного, так и техногенного происхождения может привести к изменению этих характеристик.
- Окружающая среда (биосфера) - в контексте настоящего Руководства совокупность всех элементов непосредственного окружения популяции человека, живущей в зоне, в которой она может подвергнуться радиационному воздействию хранилища РАО (далее - зона влияния хранилища РАО), и сама популяция.
Примечания.
1. В совокупность всех элементов рассматриваемой при оценке безопасности приповерхностного хранилища РАО окружающей среды (биосферы) должны быть включены все природные среды, загрязнение которых радионуклидами из хранилища РАО может влиять на радиационную безопасность популяции человека, живущей в зоне влияния хранилища РАО: нижний приповерхностный слой атмосферы, почва, приповерхностные подземные воды, поверхностные водоемы, включая донные отложения относительно мелких водоемов и исключая донные отложения крупных водоемов, а также биота - существующие во всех элементах биосферы сообщества живых организмов.
2. Для хранилищ РАО рассмотрение окружающей среды допускается ограничить оценкой или расчетом концентраций радионуклидов в воде и грунте в местах их возможного использования человеком.
3. Принятые при оценке безопасности хранилища РАО пространственные границы дальней зоны хранилища РАО должны быть такими, чтобы за их пределами при любых сценариях возможного нормального облучения популяции человека концентрации радионуклидов в элементах окружающей среды не могли бы превысить значения, при которых эффективные дозы облучения критической группы лиц из населения могут быть выше 10 мкЗв/год.
3.2. Определение исходных данных для оценки безопасности хранилища РАО
Рекомендуется рассмотрение следующих исходных данных:
- исходные данные, характеризующие область источника радионуклидов:
- тип РАО;
- физико-химические характеристики РАО (содержание свободной воды, выщелачиваемость, стабильность, газовыделение, горючесть, термическая стойкость, содержание биологически активных, гниющих, разлагающихся, ядовитых и взрывоопасных веществ и др.);
- радиационные характеристики РАО (в том числе данные о полной активности, удельной активности и радионуклидном составе);
- материал и конструкция контейнеров;
- исходные данные, характеризующие инженерную часть хранилища РАО:
- структура системы барьеров безопасности;
- геометрические характеристики барьеров безопасности;
- используемые материалы;
- защитные, прочностные и другие характеристики барьеров безопасности, в том числе относящиеся к их долговременной стабильности в данной геохимической обстановке, определяемой ближней зоной хранилища;
- исходные данные, характеризующие ближнюю зону хранилища РАО:
- минералогический и гранулометрический состав вмещающих и (или) несущих грунтов;
- структура вмещающих и (или) несущих грунтов;
- физико-химические свойства вмещающих и (или) несущих грунтов: плотность, прочность, пористость, коэффициент фильтрации, коэффициенты диффузии различных радионуклидов, коэффициенты межфазного распределения или эквивалентные им при данной пористости коэффициенты задерживания различных радионуклидов и т.д.;
- данные, характеризующие долговременную стабильность вмещающих и (или) несущих грунтов как барьеров безопасности по отношению к изменениям геохимической обстановки, возможным под влиянием инженерной части хранилища РАО;
- исходные данные, характеризующие дальнюю зону хранилища РАО:
- те же, что и для ближней зоны (за исключением данных, характеризующих долговременную стабильность грунтов как барьеров безопасности по отношению к изменениям геохимической обстановки, возможным под влиянием инженерной части хранилища РАО);
- геолого-тектонические, гидрогеологические, сейсмические и инженерно-геологические условия;
- исходные данные, характеризующие окружающую среду (включая популяцию человека):
- топографические условия;
- демографические условия;
- гидрометеорологические условия (климатические, метеорологические, гидрологические),
- аспекты, связанные с деятельностью и спецификой поведения человека;
- характеристики биоты.
3.3. Определение сценариев эволюции хранилища РАО
3.3.1. Количество сценариев возможной эволюции хранилища РАО бесконечно, и проанализировать каждый из них невозможно. Для проведения оценки безопасности хранилища РАО рекомендуется определить конечный набор таких сценариев, которые в совокупности позволили бы учесть основные особенности возможной эволюции хранилища РАО, определяющие его радиационное воздействие на человека и окружающую среду.
3.3.2. Рекомендуется следующая схема определения такого набора сценариев.
3.3.2.1. Необходимо выбрать несколько сценариев эволюции хранилища РАО, принципиально отличных друг от друга по учитываемым в них событиям, явлениям и факторам природного и техногенного происхождения и физико-химическим процессам и по уровням возможного радиационного воздействия на человека и окружающую среду (базовых сценариев).
3.3.2.2. В качестве каждого базового сценария из множества сценариев возможной эволюции хранилища РАО, близких к друг другу по учитываемым в них событиям, явлениям, процессам и факторам (отличающихся лишь малозначимыми деталями), следует выбрать такой, который характеризуется наибольшим уровнем возможного радиационного воздействия на человека и окружающую среду. Затем следует принять вероятность реализации данного базового сценария, равной сумме вероятностей реализации всех близких сценариев (включая базовый), после чего исключить все близкие сценарии, кроме базового, из дальнейшего рассмотрения. Такое упрощающее допущение эквивалентно принятию всех близких сценариев идентичными базовому сценарию по уровню воздействия хранилища РАО на человека и окружающую среду и является консервативным.
3.3.2.3. После определения значений вероятностей реализации всех выбранных базовых сценариев следует проверить, равняется ли единице сумма полученных значений вероятностей этих сценариев для каждого момента времени жизненного цикла хранилища РАО.
3.3.2.3.1. Если эта сумма меньше единицы, это значит, что не был учтен ряд возможных сценариев эволюции хранилища РАО. Если эти неучтенные сценарии близки по учитываемым в них событиям, явлениям, процессам и факторам хотя бы к одному из выбранных базовых сценариев, следует скорректировать значение вероятности его реализации, повторив процедуру разработки набора сценариев, начиная с пп. 3.3.2.2. Если же эти неучтенные сценарии существенно отличаются от каждого из выбранных базовых сценариев, следует расширить набор базовых сценариев, повторив процедуру разработки набора сценариев, начиная с пп. 3.3.2.1.
3.3.2.3.2. Если полученная сумма значений вероятностей реализации всех выбранных базовых сценариев больше единицы, это значит, что допущена ошибка при определении вероятностей реализации базовых сценариев (т.е. некоторое количество сценариев было учтено неоднократно).
3.3.2.3.3. Если эта сумма равна единице, значит, определенный таким образом набор базовых сценариев можно считать полным. Он позволяет учесть основные особенности возможной эволюции хранилища РАО как при нормальном (наиболее вероятном) протекании природных процессов, так и при различных внешних воздействиях, реализующихся с вероятностью, существенно меньшей единицы, включая воздействия максимальной возможной интенсивности, существенно изменяющие ход эволюции хранилища РАО и приводящие к значительному радиационному воздействию хранилища РАО на человека и окружающую среду.
3.3.2.4. Сценарием нормальной эволюции хранилища РАО принято называть базовый сценарий эволюции хранилища РАО, описывающий нормальное (наиболее вероятное) протекание природных процессов. Значение вероятности его реализации должно быть близко к единице.
3.3.2.5. Вероятностными сценариями эволюции хранилища РАО принято называть базовые сценарии, описывающие особенности возможной эволюции хранилища РАО при различных внешних воздействиях, реализующихся с вероятностью, существенно меньшей единицы, включая воздействия максимальной возможной интенсивности.
3.3.3. При определении набора базовых сценариев эволюции хранилища РАО рекомендуется:
- рассмотреть все возможные значимые события, явления и факторы природного и техногенного происхождения и физико-химические процессы, существенно влияющие на эволюцию хранилища РАО;
- проанализировать причинно-следственные связи и экспериментально установленные корреляции между этими событиями, явлениями, процессами и факторами;
- определить возможные при данном сценарии эволюции хранилища РАО пути облучения человека и поступления радионуклидов в окружающую среду.
3.3.4. Для каждого проекта хранилища РАО необходимо создание своего перечня событий, явлений и факторов природного и техногенного происхождения и физико-химических процессов, так как этот перечень существенно зависит от конструктивных решений хранилищ РАО, характеристик размещенных в нем РАО, локальной геологической, геолого-ландшафтной и геохимической обстановки, конкретных климатических условий и т.д. Пример составления такого перечня приведен в приложении 1.
3.4. Анализ сценариев облучения человека и определение соответствующих критических групп при различных сценариях эволюции хранилища РАО.
3.4.1. Конечным результатом количественной оценки уровня безопасности хранилища РАО на рассматриваемом этапе его жизненного цикла должны быть значения ожидаемых доз облучения критической группы лиц из населения. Критическая группа должна быть определена с учетом того, что формирование дозы облучения индивидуумов по всем возможным путям (внешнее и внутреннее облучение, в том числе доза при ингаляции, дозы, обусловленные пищевыми цепочками) зависит прежде всего от особенностей существования популяции человека в районе потенциального влияния хранилища РАО - от типичных для данной местности биоценозов, расположения населенных пунктов, половозрастной структуры населения, структуры природопользования и потребления продуктов питания местного производства, системы водопотребления и водоснабжения и т.д. Предположенная схема формирования дозы облучения индивидуумов представляет собой сценарий облучения человека.
3.4.2. При проведении оценки безопасности хранилища РАО должны быть рассмотрены несколько сценариев эволюции хранилища РАО. Каждому из них могут соответствовать различные критические группы, члены которых при этом сценарии эволюции хранилища РАО могут получить максимальную эффективную дозу облучения. Поскольку индивидуумов, входящих в эти группы, следует рассматривать как подвергающихся радиационному риску одновременно более чем в одном из возможных сценариев эволюции хранилища РАО, группой лиц, критической по сумме всех сценариев его эволюции (подвергающейся максимальному радиационному риску от данного хранилища РАО), в ряде случаев может оказаться группа лиц из населения, которая не является критической ни в одном из рассмотренных сценариев эволюции хранилища РАО. Поэтому при анализе каждого из сценариев эволюции хранилища РАО следует оценивать уровни облучения нескольких различных групп лиц из населения, а не только критической группы (в данном сценарии эволюции). Для определения группы лиц, являющейся критической по сумме всех сценариев эволюции, рекомендуется:
- для каждого из сценариев эволюции хранилища РАО определить соответствующие критические группы, а также группы лиц из населения, не являющиеся критическими, но наиболее близкие к ним по уровням радиационного воздействия хранилища РАО в рассматриваемый период времени;
- провести для всех определенных таким образом групп лиц суммирование всех без исключения относящихся к ней парциальных доз облучения по всем сценариям эволюции хранилища РАО.
Таким образом рекомендуется для каждого из сценариев эволюции хранилища РАО рассматривать несколько возможных сценариев облучения человека.
Рекомендации по определению критических групп на основе анализа нескольких различных сценариев облучения человека в каждом из сценариев эволюции хранилища РАО приведены в приложении 2.
3.4.3. При анализе сценариев облучения человека при реализации различных сценариев эволюции хранилища РАО рекомендуется сгруппировать сценарии эволюции хранилища РАО, характеризующиеся близкими типами возможных сценариев облучения популяции человека, следующим образом:
- сценарии, связанные с непреднамеренным проникновением человека в хранилище РАО;
- сценарии реализации маловероятных событий максимальной возможной интенсивности;
- сценарий нормальной эволюции хранилища РАО.
3.5. Разработка концептуальных моделей хранилища РАО
3.5.1. После разработки сценария эволюции хранилища РАО следует выбрать принципиальную схему для его количественного анализа. С этой целью для каждого из сценариев должен быть определен набор концептуальных предположений об особенностях эволюции хранилища РАО, происходящих в нем и вне его событиях, явлениях и факторах природного и техногенного происхождения и физико-химических процессах, влияющих на безопасность хранилища. Должен быть также определен и обоснован набор упрощающих предположений о начальных и граничных условиях, которые следует принять при проведении количественной оценки безопасности хранилища РАО, а также о размерности, достаточной для адекватного описания его геометрических характеристик, Указанные предположения составляют концептуальную модель хранилища РАО, соответствующую данному сценарию его эволюции.
3.5.2. Концептуальная модель хранилища РАО должна содержать описание:
- характеристик хранилища РАО как источника радионуклидов (полное содержание и концентрации радионуклидов, скорости их выхода из упаковок РАО, физико-химическая форма РАО);
- сред выхода - сред, с которыми радионуклиды выходят из упаковок РАО;
- механизмов выхода - физико-химических процессов, в результате которых происходит выход радионуклидов из источника;
- геосферных сред переноса - сред, с которыми радионуклиды мигрируют через геосферу;
- механизмов геосферного переноса - возможных процессов, определяющих миграцию радионуклидов через геосферу;
- биосферных сред переноса - сред, с которыми радионуклиды мигрируют через биосферу;
- механизмов биосферного переноса - возможных процессов, определяющих миграцию радионуклидов через биосферу;
- механизмов облучения - видов воздействия радионуклидов на человека и окружающую среду.
Концептуальная модель хранилища РАО должна давать адекватное и полное качественное описание хранилища как радиационно опасного объекта, оказывающего радиационное воздействие на человека и окружающую среду в соответствии с данными сценариями эволюции хранилища и облучения человека. Поскольку на этапе разработки концептуальной модели, как правило, нет возможности количественно оценить уровень безопасности хранилища, а подход к оценке безопасности должен быть консервативным, то каждому сценарию эволюции хранилища РАО может соответствовать более чем одна его концептуальная модель. С другой стороны, на практике часто удается разработать концептуальную модель хранилища РАО, соответствующую нескольким, а иногда и всем сценариям эволюции хранилища РАО и облучения человека.
3.5.3. Концептуальная модель хранилища РАО должна быть как можно более простой, но достаточно детализированной для адекватного описания его эволюции.
3.5.4. При разработке концептуальной модели должны быть определены:
- перечень событий, явлений и факторов природного и техногенного происхождения и физико-химических процессов;
- набор взаимосвязей между элементами этого перечня;
- пределы применимости концептуальной модели в рассматриваемых пространственной области и временном диапазоне с учетом допущений, при которых она была разработана;
- начальные и граничные условия, которые следует предположить при проведении количественной оценки безопасности хранилища РАО, и размерность, которой достаточно для адекватного описания геометрических характеристик хранилища РАО.
3.5.5. Для разработки концептуальных моделей хранилища РАО могут быть рекомендованы разнообразные подходы. В приложении 3 в качестве примера приводятся некоторые из них.
3.6. Разработка математической модели хранилища РАО
3.6.1. После разработки концептуальной модели для проведения количественной оценки безопасности хранилища РАО следует сконструировать математическую модель, используя известные уравнения, описывающие процессы переноса радионуклидов из хранилища через его инженерную часть, ближнюю и дальнюю зоны в окружающую среду в соответствии со схемой, представленной в приложении 4.
С этой целью концептуальную модель для каждого сценария следует выразить в виде группы алгебраических или дифференциальных уравнений с соответствующими граничными и начальными условиями. Рассматриваемым концептуальным моделям может соответствовать более чем одно математическое уравнение, но все вместе эти уравнения представляют собой одну математическую модель.
3.6.2. Математические модели выбираются или разрабатываются, исходя из концептуальной модели. Математическое представление концептуальной модели зависит от степени детальности, с которой элементы перечня событий, явлений и факторов природного и техногенного происхождения и физико-химических процессов должны быть отражены при моделировании. С выбором преимущественного метода решения уравнений математической модели могут быть связаны дополнительные ограничения, такие, как исключение нелинейных соотношений. Эти или другие ограничения могут потенциально привести к пересмотру перечня, который должен быть включен в уточненную модель. Любое ограничение рекомендуется документировать и отмечать ожидаемое влияние новых элементов уточненного перечня на математическую модель.
3.6.3. Следует избегать двойного учета влияния определенных событий, явлений и факторов природного и техногенного происхождения и физико-химических процессов или, наоборот, неоправданного исключения потенциально значимых элементов из перечня.
3.6.4. В ходе разработки математической модели определяется перечень параметров, относящихся к расчету. Каждый из них и его конкретное значение рекомендуется документировать для создания необходимой базы данных.
3.7. Выбор программных средств и исходных параметров расчета
3.7.1. Численные расчеты в соответствии с разработанной математической моделью следует проводить с использованием аттестованных программных средств.
3.7.2. В зависимости от решаемой задачи могут использоваться как существующие, так и специально разрабатываемые (для решения специфических математических моделей) программные средства.
3.7.3. В некоторых случаях (например, на ранних этапах процесса оценки безопасности) достаточно разработать упрощенные математические модели, в которых могут быть использованы простые и доступные программные средства, такие, как, например, электронные таблицы. Для последующего уточнения результатов может потребоваться усовершенствование отдельных моделей, для реализации которых могут понадобиться более сложные программные средства. Модели, используемые на последних этапах, особенно для выполнения итогового варианта оценки безопасности, должны быть наиболее обобщающими и точными.
3.7.4 Для получения адекватного результата при использовании программных средств необходимо корректно определить исходные параметры расчета, обращая внимание на учет погрешностей значений этих параметров. В ряде случаев требуется определить не только средние значения исходных параметров и интегральные характеристики погрешностей этих значений, но и детальные распределения плотности вероятности значений исходных параметров.
4. Перенос радионуклидов из хранилища РАО в окружающую среду
4.1. Основные механизмы переноса радионуклидов из приповерхностных хранилищ РАО в окружающую среду
4.1.1. С целью корректного проведения оценки безопасности хранилищ РАО для длительных периодов времени и протяженных пространственных областей в первую очередь должны быть спрогнозированы значения характеристик процесса переноса радионуклидов.
4.1.2. Для приповерхностных хранилищ РАО наиболее значимыми в сценарии нормальной эволюции хранилища РАО механизмами переноса радионуклидов и физико-химическими процессами, влияющими на этот перенос, являются, как правило:
- сорбция;
- адвекция;
- диффузия;
- дисперсия;
- распад и накопление радионуклидов.
4.2. Уравнения переноса радионуклидов
4.2.1. Основное уравнение переноса радионуклидов с жидкостью в сплошных средах может быть получено из уравнения баланса радионуклидов в твердой и жидкой фазах в предположениях о неподвижности твердой фазы и о химическом равновесии концентраций радионуклидов в жидкой и твердой фазах. Для описания переноса взвешенной твердой фазы или газообразной фазы, содержащихся в жидкостях-носителях и содержащих радионуклиды, как правило, требуется дополнительное уравнение баланса массы.
4.2.2. При прогнозировании процесса переноса радионуклидов следует учитывать относительную значимость переноса радионуклидов грунтовыми водами через неоднородности в среде (например, трещины).
4.3. Механизмы переноса радионуклидов в сценариях их возможного выноса с газами
4.3.1. В хранилищах РАО приповерхностного типа генерируется газ различного химического состава при коррозии металлических элементов конструкций и сооружений, бактериальном разложении (биологической деградации) органических веществ и ощелачивании целлюлозы (радиолиз поровой жидкости в таких хранилищах несущественен). При оценке безопасности хранилищ РАО следует хотя бы качественно оценить роль различных механизмов выноса радионуклидов с газами, образующимися и накапливающимися в сооружениях хранилища.
4.3.2. По мере накопления газов в хранилище начинается их миграция через пористые среды барьеров безопасности, которая двояко влияет на радиационную безопасность хранилища. С одной стороны, миграция газов обеспечивает механизм непрерывного стравливания накапливающихся газов и снижение давления газов на барьеры безопасности хранилища, уменьшая вероятность их механического разрушения, что положительно влияет на уровень безопасности хранилища. С другой стороны, миграция газов может способствовать выносу радионуклидов из хранилища, снижая его безопасность.
4.3.3. К механизмам выноса радионуклидов из хранилища РАО с образующимися и накапливающимися в нем газами относятся, в частности:
- вертикальная миграция радионуклидов с газовыми пузырьками как в двухфазной (газ, жидкость), так и в трехфазной (газ, жидкость, минеральный скелет) средах;
- горизонтальная миграция радионуклидов, растворенных в поровой жидкости, за счет уменьшения вязкости жидкости и соответствующего увеличения скорости ее миграции через пористые среды при увеличении содержания растворенных в ней газов;
- залповый вынос радионуклидов из хранилища РАО при нарушении целостности инженерных барьеров хранилища РАО за счет повышенного давления газов в хранилище (образовании трещин, выдавливании или сдвиге запечатывающих хранилище РАО элементов и т.д.).
4.3.4. Моделирование миграции газов из хранилища РАО должно быть направлено в основном на выяснение возможности выхода газов за пределы сооружений хранилища РАО и прохождения их через ближнюю и дальнюю зоны хранилища, т.е. на решение следующих задач:
- оценку значения избыточного давления в элементах и сооружениях хранилища РАО;
- оценку возможного ускорения миграции жидкой фазы, содержащей радионуклиды, за счет миграции газов;
- определение, не может ли движение газа привести к выносу на дневную поверхность значительного количества радиоактивных веществ, таких, например, как радон.
4.3.5. Следует определить преимущественный механизм выноса газа из геосферы в биосферу. Результаты его моделирования с помощью аналитических или численных методов могут быть приняты за основу количественной оценки влияния генерации газов на безопасность хранилища РАО.
4.3.6. Основные процессы и факторы переноса жидкости и газов через пористые среды и их влияние на различные аспекты безопасности хранилища РАО рассмотрены в приложении 5.
5. Рекомендации по проведению количественных оценок безопасности хранилища РАО
5.1. Использование упрощенных моделей для предварительной оценки безопасности
5.1.1. На начальном этапе проведения количественной оценки безопасности хранилища РАО (далее - этап предварительной оценки) важно правильно определить основные направления, по которым впоследствии должны уточняться концептуальная и математическая модели хранилища, расширяться набор и уточняться значения исходных параметров для моделирования, повышаться точность результатов моделирования. Точность выполненного на этапе предварительной оценки моделирования, как правило, играет второстепенную роль.
5.1.2. Одним из подходов к проведению предварительной оценки является упрощение составных частей концептуальной модели.
5.1.2.1. На этапе предварительной оценки даже при наличии данных, указывающих на пространственную неоднородность соответствующих характеристик водоносного горизонта, достаточно оценить поток грунтовых вод и перенос радионуклидов, приняв средние значения соответствующих характеристик гомогенизированных грунтов.
5.1.2.2. Точное описание функции источника - пространственных и временных характеристик скоростей поступления радионуклидов из области источника в ближнюю зону хранилища РАО - одна из наиболее трудных задач при моделировании. Поэтому рекомендуется для предварительной оценки принятие в концептуальной модели простейших начальных предположений о функции источника. По мере получения дополнительных данных о площадке хранилища РАО, позволяющих уточнить моделирование переноса радионуклидов в ближней и дальней зонах хранилища РАО, следует моделировать более точно и характеристики функции источника.
5.1.3. При проведении предварительной оценки рекомендуется использовать упрощенную математическую модель (см. п. 3.7.3) с последующим ее усложнением по мере получения новых данных о площадке размещения хранилища РАО.
При моделировании переноса радионуклидов грунтовыми водами на этапе предварительной оценки обычно:
- ограничивают круг рассматриваемых процессов наиболее значимыми;
- принимают минимальную размерность при описании геометрических характеристик хранилища и вмещающих и (или) несущих грунтов;
- предполагают постоянство условий переноса;
- принимают упрощенные граничные и начальные условия;
- используют упрощенные модели процессов переноса радионуклидов;
- предполагают гомогенность всех сред, в которых происходит перенос радионуклидов.
5.2. Рекомендации по определению периода времени, для которого следует проводить количественную оценку безопасности
5.2.1. В соответствии с требованиями нормативных документов безопасность хранилищ РАО должна быть обоснована для всего периода времени после вывода хранилища из эксплуатации пока полные и удельные активности РАО, элементов хранилищ РАО, несущих и (или) вмещающих их грунтов не снизятся до значений, при которых возможное радиационное воздействие РАО на человека и окружающую среду не может превзойти пределы, установленные нормами и правилами в области использования атомной энергии (пример оценки безопасности реального приповерхностного хранилища низкоактивных РАО приведен в приложении 6). Это время даже для приповерхностных хранилищ РАО может достигать сотен тысяч и миллионов лет из-за того, что в захороненных РАО может содержаться ограниченное количество долгоживущих альфа-излучающих радионуклидов.
Период времени, для которого необходимо выполнять количественную оценку безопасности, может быть существенно меньше, чем различать период времени, для которого должна быть обоснована безопасность хранилища РАО, если удается доказать достаточность численных результатов, полученных на этом диапазоне, для обоснования безопасности хранилища в течение всего времени его потенциальной опасности.
5.2.2. Период времени, для которого необходимо выполнять количественную оценку безопасности хранилища РАО, можно ограничить моментом времени, начиная с которого уровень радиационной опасности хранилища уже не может возрастать (приложение 7). Для доказательства этого достаточно показать, что результаты оценки одновременно удовлетворяют следующим условиям:
- в количественной оценке учтены все физико-химические процессы, существенно или заметно влияющие на динамику переноса радионуклидов из хранилища РАО в биосферу;
- в пределах диапазона времени проведения количественной оценки равновесное состояние установилось для всех указанных процессов;
- период времени проведения количественной оценки превосходит время установления равновесия как минимум в 2 раза;
- в течение этого периода времени достигнуты максимальные значения концентраций в биосфере всех радиологически значимых радионуклидов, содержащихся в хранилище РАО, после чего значения этих концентраций и соответствующих им индивидуальных доз и (или) радиационных рисков со временем убывают.
В случае получения этих доказательств отпадает необходимость в распространении количественной оценки безопасности на более удаленные в будущее периоды времени.
5.3. Рекомендации по оценке погрешности полученных результатов
5.3.1. Для подтверждения надежности полученных результатов следует провести оценку погрешностей их определения.
5.3.2. Полная погрешность результатов расчетных прогнозов определяется двумя составляющими - методической и константной (параметрической).
Источники методической составляющей погрешности - упрощающие допущения, принятые в концептуальных и математических моделях, определяющих и количественно описывающих физические процессы переноса радионуклидов от источника к объекту воздействия.
Источники константной (параметрической) составляющей погрешности - погрешности значений исходных данных (физических и химических величин или констант) или параметров расчета, связанные с неполнотой или неточностью первичной информации, получаемой либо экспериментальным путем, либо в результате использования других расчетных моделей, характеризующихся, в свою очередь, присущими им методической и константной составляющими погрешности
5.3.3. Оценку погрешностей рекомендуется проводить, учитывая, что при моделировании последовательного ряда процессов результаты расчетов характеристик предыдущего процесса являются исходными данными для расчета характеристик последующего. В этом случае обе составляющие погрешности расчетных характеристик радиационного воздействия хранилища РАО на человека увеличиваются тем существеннее, чем большее количество процессов вовлечено в моделирование.
5.3.4. При проведении оценки погрешностей рекомендуется принимать во внимание последовательное, по мере удаления рассматриваемого промежутка времени в будущее, возрастание погрешности результата оценки безопасности хранилища РАО Основная причина этого - невозможность корректно оценить параметры цепочки передачи радиационного воздействия от хранилища РАО к популяции человека через различные элементы окружающей среды из-за изменчивости их свойств в течение значительных интервалов времени.
5.3.5. Для оценки уровня изменения характеристик радиологической опасности хранилища РАО для человека и окружающей среды при небольших отклонениях исходных данных от значений, принятых в проекте, рекомендуется проведение анализа чувствительности результатов оценки безопасности хранилища РАО к изменениям исходных данных.
Список
использованной литературы
1. Safety Assessment for Near Surface Disposal of Radioactive Waste. - Safety Standarts Series N WS-G-1.1, - Vienna, IAEA, 1999.-31 p.
2. Safety Indicators in Different Time Frames for the Safety Assessement of Underground Radioactive Waste Repositories. - IAEA-Techdoc-767, ISSN 1011-4289 October 1994, IAEA, Vienna, 1994.
3. Строганов A.A., Шарафутдинов Р.Б. Отчет "Модели распространения радионуклидов через барьеры", инв. N 700-07-14/33-97 и N 700-07-15/32-97 НТЦ ЯРБ Госатомнадзора России, 1997.
4. Материалы рабочей группы МАГАТЭ по проекту ISAM "Улучшение методологий оценки безопасности приповерхностных хранилищ радиоактивных отходов", Австрия, Вена, 1-5 февраля 1999 г.
5. Savage, D. (editor). The scientific and regulatory basis for the geological disposal of radioactive waste, John Wiley & Sons, Chichester, 1995.
6. Строганов А.А., Шарафутдинов Р.Б., Цветков С.В., Левин А.Г. Сводный отчет по результатам рассмотрения рабочего проекта пункта захоронения твердых нефтепромысловых отходов, загрязненных радионуклидами на Осинском нефтяном месторождении. ДНП-5-04-98 НТЦ ЯРБ Госатомнадзора России, 1997.
7. Avila Moreno R., Jensen M., Sitnikov S.A., Sorlie A., Stroganov A.A., Charafoutdinov R.B., Neretine V.A. Safety Analysis of a Repository for Radioactive Waste from the Oil Industry in the Russian Federation. In Proc. of the Int. Conference "HLW, LLW, Mixed Wastes and Environmental Restoration-Working Towards A Cleaner Environment'', 1-5 March, 1998, Tucson, Arizona, USA.
8. Preparation of Safety Analysis Reports (SARs) for Near Surface Radioactive Waste Disposal Facilities. - IAEA-TECDOC-789, IAEA, Vienna, 1995.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Руководство по безопасности РБ-011-2000 "Оценка безопасности приповерхностных хранилищ радиоактивных отходов" содержит рекомендации Госатомнадзора России по методологии проведения оценки безопасности приповерхностных хранилищ радиоактивных отходов, а именно: по определению сценариев их эволюции, разработке и использованию концептуальных и математических моделей приповерхностных хранилищ радиоактивных отходов и проведению анализа результатов математического моделирования. В случае, если используется иная методология проведения оценки безопасности хранилищ РАО по сравнению с определенной Руководством, ее использование должно быть обосновано.
Руководство не содержит рекомендаций по проведению оценок надежности конструкций и сооружений хранилищ РАО.
Руководство предназначено для проведения оценки безопасности хранилищ РАО при их проектировании, сооружении, эксплуатации и выводе из эксплуатации. Оно не распространяется на проектируемые, сооружаемые, эксплуатируемые и выводимые из эксплуатации хранилища РАО.
Руководство по безопасности вводится в действие с 1 марта 2001 года.
Руководство по безопасности РБ-011-2000 "Оценка безопасности приповерхностных хранилищ радиоактивных отходов" (утв. постановлением Госатомнадзора РФ от 29 декабря 2000 г. N 19)
Текст документа опубликован в "Вестнике Госатомнадзора России", 2002 г., N 3-4
Введено в действие с 1 марта 2001 г.
Настоящее руководство по безопасности содержит рекомендации Госатомнадзора России по методологии проведения оценки безопасности приповерхностных хранилищ радиоактивных отходов, а именно: по определению сценариев их эволюции, разработке и использованию концептуальных и математических моделей приповерхностных хранилищ радиоактивных отходов и проведению анализа результатов математического моделирования
Выпускается впервые
Настоящее руководство разработано Научно-техническим центром по ядерной и радиационной безопасности Госатомнадзора России при участии Калиберды И.В., Кудрявцевой А.В., Неретина В.А., Строганова А.А., Шарафутдинова Р.Б.
В процессе разработки рассмотрены и учтены замечания: Управления по надзору за ядерной и радиационной безопасностью предприятий топливного цикла и Управления по надзору за радиационной безопасностью в народном хозяйстве Госатомнадзора России, Центрального, Северо-Европейского, Уральского, Сибирского, Волжского межрегиональных территориальных округов Госатомнадзора России, Всероссийского научно-исследовательского института неорганических материалов им. А.А. Бочвара, Горно-химического комбината, ПО "Маяк", Машиностроительного завода, ГНЦ "Институт биофизики", МосНПО "Радон"
Настоящее Руководство фактически прекратило действие
Приказом Ростехнадзора от 28 декабря 2017 г. N 589 постановление Госатомнадзора России от 29 декабря 2000 г. N 19 признано не подлежащим применению