Купить систему ГАРАНТ Получить демо-доступ Узнать стоимость Информационный банк Подобрать комплект Семинары

Приложение 1. Расчет радиационной защиты ускорителя

Приложение 1
к СП 2.6.1.2573-2010

 

Расчет радиационной защиты ускорителя

 

Расчет радиационной защиты ускорителя электронов включает три этапа:

- расчет мощностей доз в расчетных точках без радиационной защиты,

- определение необходимых кратностей ослабления полученных мощностей доз, с учетом категории помещений,

- выбор материалов и расчет толщин радиационной защиты, обеспечивающих необходимые кратности ослабления.

Набор необходимых исходных данных и формулы, используемые для расчета мощностей доз в заданных точках без радиационной защиты, различаются для различных видов ускорителей. При проведении расчетов радиационной защиты различают три вида ускорителей электронов:

- ускорители технологического и научного назначения, работающие в режиме непрерывного излучения (промышленные ускорители);

- ускорители, работающие в импульсном режиме (импульсные ускорители);

- ускорители для установок медицинского назначения (медицинские ускорители).

Для проведения расчета мощностей доз без радиационной защиты используются следующие исходные данные:

1) Для промышленных ускорителей:

- максимальная энергия ускоренных электронов , МэВ;

- максимальный ток пучка электронов , мА,

- материал защиты;

- материал мишени;

- форма и размеры пучка излучения, взаимодействующего с облучаемым объектом;

- доля пучка электронов, теряемая на разных узлах ускорителя, атомный номер материалов ускорителя;

- режим работы ускорителя (продолжительность облучения за смену, число рабочих смен в сутки, в год, средняя продолжительность облучения за год).

2) Для импульсных ускорителей:

- максимальная энергия ускоренных электронов , МэВ;

- длительность импульса и частота следования импульсов;

- максимальный средний ток электронов (заряд ускоренных электронов в секунду);

- материал защиты;

- материал мишени;

- форма и размеры пучка излучения, взаимодействующего с облучаемым объектом;

- доля пучка электронов, теряемая на разных узлах ускорителя, атомный номер материалов ускорителя;

- режим работы ускорителя (суммарный заряд ускоренных электронов за рабочую смену, за сутки, за год).

3) Для медицинских ускорителей:

- максимальная энергия электронов для режима облучения электронами и режима облучения тормозным излучением, , МэВ;

- мощность дозы тормозного излучения в изоцентре;

- мощность дозы тормозного излучения вне изоцентра;

- отношение мощности дозы нейтронов к мощности дозы тормозного излучения в изоцентре;

- размеры пучка излучения и возможные его направления;

- расстояние до изоцентра;

- режим работы ускорителя (рабочая нагрузка за неделю, равная произведению средней дозы за время облучения одного пациента на число пациентов в неделю, число смен в сутки, чисто рабочих дней в неделю, в год).

Для установок различных типов могут использоваться и другие исходные данные, приведенные в их технической документации или полученные в результате измерений, например: мощность дозы тормозного излучения от мишени, от разных частей ускорителя, в разных направления#, мощность дозы в смежных с ускорителем помещениях и т.п.

Необходимо учесть, что кроме мишени электроны при ускорении могут поглощаться в узлах ускорителя, создавая дополнительные источники тормозного излучения. Это тем более важно, что в промышленных облучательных установках ускоритель и рабочая камера с мишенью могут размещаться в разных помещениях.

Рассчитывается средняя за рабочую смену мощность эквивалентной дозы тормозного и нейтронного излучения (если оно есть).

Средняя мощность дозы тормозного излучения в расчетной точке определяется по формуле:

 

,                      (1)

 

где: - средняя мощность дозы на расстоянии 1 м от источника излучения в направлении на расчетную точку, ,

- угол между направлением пучка электронов и направлением на расчетную точку,

- расстояние от источника до расчетной точки, м.

Источниками излучения являются все места взаимодействия электронов с веществом.

Мощность дозы тормозного излучения на расстоянии 1 м от источника излучения принимается по техническим данным ускорителя, либо рассчитывается по формулам:

1) Для промышленных ускорителей:

 

,          (2)

где: - мощность дозы на расстоянии 1 м от источника излучения под углом к направлению пучка электронов при токе пучка 1 мА, ,

- ток пучка электронов, мА,

- продолжительность облучения за смену, ч,

- продолжительность смены, ч,

- кратность ослабления дозы излучения в конструкционной защите, входящей в состав ускорителя.

2) Для импульсных ускорителей:

 

,          (3)

где: - суммарный заряд ускоренных электронов за смену, Кл.

3) Для медицинских ускорителей:

 

.           (4)

где: - рабочая нагрузка, равная произведению средней дозы за 1 процедуру на число процедур облучения в неделю, Зв в неделю,

- расстояние от источника излучения до изоцентра, м,

- коэффициент выхода излучения из облучаемого объекта в направлении ,

- продолжительность работы всех смен персонала группы А в неделю, ч

 

       (5)

 

где: - значение из таблицы 2 для выбранных энергии электронов и материала мишени, .

 

Средняя за рабочую смену мощность дозы нейтронов на расстоянии 1 м от мишени определяется по формулам:

 

1) Для промышленных ускорителей:

 

,

 

где: - коэффициент выхода фотонейтронов на 1 электрон (определяется по табл. 6, либо по формуле: ),

- коэффициент перевода плотности потока нейтронов в мощность эквивалентной дозы (),

- кратность ослабления мощности дозы нейтронов в конструктивной защите ускорителя.

Подставляя вышеприведенные выражения для f и , окончательно получаем выражение:

 

,              (6)

 

2) Для импульсных ускорителей:

 

,           (7)

 

3) Для медицинских ускорителей:

 

,          (8)

 

где: - отношение мощности эквивалентной дозы нейтронов в изоцентре к мощности дозы тормозного излучения.

 

Необходимая кратность ослабления излучения в защите определяется по формуле:

 

,          (9)

 

где: - проектная мощность дозы, мкЗв/ч.

Значения проектной мощности дозы за радиационной защитой ускорителя рассчитываются исходя из пределов дозы (ПД) для соответствующих категорий облучаемых лиц и возможной продолжительности их пребывания в смежных помещениях или на прилегающих территориях с использованием соотношения:

 

,          (10)

 

где: - коэффициент перехода от мЗв к мкЗв,

- предел дозы, мЗв в год,

2 - коэффициент запаса,

- максимальная доля времени, проводимого людьми в данном помещении,

- коэффициент сменности, учитывающий возможность двухсменной работы ускорителя,

1700 - стандартизованная продолжительность работы персонала за год при односменной работе, часов в год.

 

В таблице 1 приведены рекомендуемые значения проектной мощности дозы для указанных условий.

Определив необходимую кратность ослабления мощности дозы излучения и эффективную энергию тормозного излучения (), выбирают материал защиты и, с помощью таблиц 3 - 5, находят необходимую толщину радиационной защиты для получения заданной кратности ослабления. Эффективную энергию тормозного излучения () в зависимости от энергии электронов () определяют следующим образом:

 

,

(11)                                        ,

 

,

 

.

 

Таблица 1.

 

Проектная мощность дозы () за стационарной защитой ускорителя электронов для помещений и территории различного назначения

 

Помещение, территория

Т

n

ПД

Р_g

отн. ед.

отн. ед.

мЗв/год

мкЗв/ч

Помещения постоянного пребывания персонала группы А (все помещения, входящие в состав отделений, кабинетов лучевой терапии, комната управления (пультовая)).

1

1

20

6,0

Помещения временного пребывания персонала группы А

0,5

1

20

12,0

Помещения, смежные по вертикали и горизонтали с рабочей камерой (процедурной) ускорителя в которых имеются постоянные рабочие места персонала группы Б.

1

1,2

5

1,2

Помещения, смежные по вертикали и горизонтали с рабочей камерой (процедурной) ускорителя, без постоянных рабочих мест (холл, гардероб, лестничная площадка, коридор, уборная, кладовая и др.).

0,25

1,2

5

5,0

Помещения эпизодического пребывания персонала группы Б (технический этаж, подвал, чердак и т.п.).

0,06

1,2

5

20

Палаты стационара (не радиологические), смежные по вертикали и горизонтали с отделениями, кабинетами лучевой терапии, помещения эпизодического пребывания лиц, не отнесенных к персоналу, смежные по вертикали и горизонтали с рабочей камерой (процедурной) ускорителя.

0,25

2

1

0,6

Помещения, в которых имеются постоянные рабочие места лиц, не отнесенных к персоналу.

1

1,2

1

0,25

Территория, прилегающая к наружным стенам здания ускорителя.

0,12

2

1

1,2

Таблица 2

 

Мощность поглощенной дозы тормозного излучения в воздухе,

 

тета*, град

Е_0, МэВ

0,2

0,3

0,5

0,7

Материал мишени

Аl

Fe

Sn

Au

Аl

Fe

Sn

Au

Аl

Fe

Sn

Au

Аl

Fe

Sn

Au

0

0,8

1,3

1,75

3,3

1,95

3,50

4,4

7

6,3

8,6

15

23

15,1

21,6

35

45,8

10

0,7

1,2

1,66

2,9

1,67

3,16

4,0

6,15

5,55

8,1

13,2

20

12,7

19,2

34,3

40,2

20

0,7

1,1

1,50

2,45

1,67

2,80

3,7

5,3

5,1

7,4

11,7

16,7

10,8

17,2

28,2

34,6

30

0,62

1,0

1,40

2,1

1,60

2,46

3,5

4,6

4,3

6,7

10,6

14,0

9,3

15,4

24,6

29

40

0,55

0,97

1,23

1,85

1,50

2,20

3,16

4,12

3,6

5,8

8,8

12,3

7,9

12,6

20,6

24,6

50

0,49

0,53

1,15

1,58

1,40

1,93

2,8

3,96

2,7

5,0

7,9

10,5

6,3

10,4

17,2

21

60

0,53

0,7

1,0

1,40

1,32

1,75

2,46

3,34

2,1

4,0

6,85

9,7

5,3

8,16

14

17,5

70

0,35

0,61

0,88

1,28

1,23

1,60

2,1

3,10

1,67

3,5

5,65

7,65

3,86

6,5

11,4

15,3

80

0,32

0,54

0,80

1,15

1,0

1,40

1,76

3,10

1,05

2,3

4,4

6,85

3,0

4,7

9,15

13

90

0,26

0,47

0,70

1,0

0,88

1,32

1,40

2,55

0,61

1,0

3,5

6,85

2,16

3,1

7

11,5

100

0,24

0,44

0,61

0,98

0,70

1,15

1,23

2,46

0,7

1,4

3,1

6,85

-

-

6,5

11,2

110

0,21

0,46

0,53

1,0

0,53

1,0

1,05

2,46

0,98

2,2

3,16

7,65

-

-

7,0

12,7

120

0,2

0,53

0,53

1,0

0,42

1,0

1,23

2,46

1,23

2,46

3,7

7,9

-

-

7,8

15

130

0,17

0,49

0,61

1,14

0,35

0,97

1,5

2,71

1,23

2,64

4,4

7,9

-

-

8,25

15,5

140

0,16

0,47

0,80

1,30

0,35

0,88

1,76

2,71

1,05

2,48

5,2

7,9

-

-

8,6

15,7

150

0,16

0,44

0,88

1,20

0,26

0,88

1,94

2,71

0,97

2,2

5,3

7,9

-

-

8,8

15,8

160

0,15

0,40

0,88

1,20

0,26

0,79

1,94

2,71

-

-

5,2

7,9

-

-

8,8

15,8

170

0,13

0,37

0,84

1,14

0,26

0,70

1,85

2,46

-

-

4,84

7,9

-

-

8,8

15,8

180

0,11

0,35

0,80

0,80

0,26

0,70

1,76

2,64

-

-

4,5

7,9

-

-

8,8

15,8

Таблица 2. (Продолжение)

 

тета*, град

Е_0, МэВ

1,0

1,25

1,5

Материал мишени

Аl

Fe

Au

Sn

Al

Cu

Au

Al

Cu

Au

0

39,6

58

81,6

79

49,3

72

133,5

84,5

128

216,3

10

36,0

51

75,5

65

43

70,3

128

74

121.4

210,5

20

28,2

42,2

65,

54,5

30,6

52

103

47,5

92,5

186

30

19,4

31,8

55,4

44,8

24,6

36

97,5

92,6

67

154

40

14,1

29,8

49,2

37,5

20,6

32,5

82,4

26,4

51

134

50

12,3

23

45

30,8

16,4

29

72,4

22,8

45,7

124

60

9,7

19,4

33,5

27,2

14,4

20,6

61,5

20,2

38,8

114

70

8,1

15

29

22,8

12,3

19,6

59,8

16,7

36

103

80

4,76

11,4

22

19,7

10,3

18,5

57

13,2

30,8

92,5

90

2,0

4,5

17

16,7

6,15

17,5

56,4

7,91

28,2

82,9

100

2,65

6,5

32,5

15,4

5,6

16,4

54,5

7,22

24

85

110

3,18

8,3

37

14,0

5,1

16

52,7

6,7

23

79,4

120

3,1

9,7

39,5

15,0

4,56

15,4

51,8

6,15

18,5

77,5

130

3,1

9,7

39

15,4

4,14

14,9

51,1

5,64

17,6

76,7

140

3.1

9,7

39

16,7

3,6

14,4

49,2

5,1

16,7

75,7

150

3,1

7,8

37,8

17,6

3,0

14,0

58,5

4,65

15

74

160

3,0

7,0

37,8

17,6

2,5

13,9

-

4,1

-

-

170

3,0

7,0

37,8

17,7

2,5

13,8

-

3,1

-

-

180

2,9

6,15

37,8

17,6

2,5

13,8

-

2,55

-

-

 

Таблица 2. (Продолжение)

 

тета*, град

Е_0, МэВ

1,75

2

2,8

4

8

Материал мишени

Аl

Cu

Au

Al

Fe

Au

Al

Fe

Au

Sn

Sn

0

129

206

340

256

358

457

817

964

1070

2750

16100

10

103

164

266

194

274

408

520

670

856

1895

4720

20

68

126

237

125

203

312

285

437

625

1119

3330

30

53

103

203

85,5

138

245

170

306

484

875

2740

40

47,5

67

189

67

105

189

138

238

382

735

2180

50

41,5

56

165

59

85

157

85

171

300

620

1580

60

32,6

51

155

33

67

119

68

121

252

525

1190

70

25,6

41,4

144

19,4

53

86

51

86

202

429

880

80

19,4

34,4

134

16,7

32

60

34

51

118

314

590

90

16,9

28,2

128,4

11,4

29

49

26

31

110

273

440

100

13,5

25,5

119

13,2

31

119

31

33

134

392

660

110

11,4

22,8

108

13,2

25

103

35

53

168

318

540

120

10,6

20,3

103

12,5

25,5

113

35

70,5

 

 

 

130

9,7

18,5

98

8,3

25

108

17,6

70,5

202

234

415

140

8,3

17,7

93

7,3

23

103

17,6

53

202

205

375

150

7,2

16,7

28

7,2

18,5

-

17,6

53

185

182

345

160

6,15

 

 

 

 

 

 

 

 

169

325

170

5,7

 

 

 

 

 

 

 

 

145

307

180

5,2

 

 

 

 

 

 

 

 

133

295

 

Таблица 2. (Продолжение)

 

тета*, град

Е_0, МэВ

10

30

60

100

Материал мишени

W

W

W

W

0

4,77 х 10(4)

1 х 10(6)

6,82 х 10(6)

1,19 х 107

10

1,68 х 10(4)

1,86 х 10(5)

5,05 х 10(5)

8,75 х 10(5)

20

8,12 х 10(3)

8,05 х 10(4)

1,8 х 10(5)

2,35 х 10(5)

30

5,26 х 10(3)

3,9 х 10(4)

6,27 х 10(4)

8,74 х 10(4)

40

3,34 х 10(3)

2,18 х 10(4)

2,92 х 10(4)

5,95 х 10(4)

50

2,2 х 10(3)

1.38 х 10(4)

1,64 х 10(4)

4,2 х 10(4)

60

1,28 х 10(3)

9,4 х 10(3)

8,7 х 10(3)

3,5 х 10(4)

70

 

5,57 х 10(3)

5,87 х 10(3)

3,14 х 10(4)

80

 

2,34 х 10(3)

2,34 х 10(3)

2,96 х 10(4)

90

 

1,0 х 10(3)

1,45 х 10(3)

2,76 х 10(4)

100

 

1,49 х 10(3)

9,0 х 10(2)

2,58 х 10(4)

110

 

1,75 х 10(3)

1,22 х 10(3)

2,16 х 10(4)

120

 

1,75 х 10(3)

1,19 х 10(3)

1,85 х 10(4)

130

 

1,75 х 10(3)

1,15 х 10(3)

1,5 х 10(4)

140

 

1,62 х 10(3)

1,13 х 10(3)

1,39 х 10(4)

150

 

1,45 х 10(3)

1,11 х 10(3)

1,22 х 10(4)

160

 

 

 

1,18 х 10(4)

170

 

 

 

1,0 х 10(4)

180

 

 

 

9,7 х 10(4)

 

______________________________

- угол между направлениями пучка электронов и направлением выхода тормозного излучения из мишени

 

Расчет ослабления нейтронов в защите может проводиться методом длин релаксации. Для бетона длина релаксации нейтронов () равна 16 см. Кратность ослабление мощности эквивалентной дозы фотонейтронов в защите из бетона можно оценить с использованием соотношения:

 

,                   (12)

 

где: - кратность ослабления мощности дозы фотонейтронов,

- толщина радиационной защиты из бетона, см,

- длина релаксации фотонейтронов в бетоне, см.

 

Толщину радиационной защиты выбирают так, чтобы полученная кратность ослабления мощности эквивалентной дозы была не меньше величины, рассчитанной с использованием выражения (9).

Таблица 3.

 

Толщина защиты из бетона (см) для различных кратностей ослабления К

 

K

Е_эф, МэВ

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,5

2,0

3,0

4,0

6,0

10

7,2

13,5

19,0

22,5

25,8

26,8

27,6

28,4

29,1

29,9

34,0

37,6

43,4

47,5

51,6

20

8,2

15,3

21,4

25,8

29,9

31,9

33,6

35,0

36,2

37,0

42,5

47,5

54,0

58,7

64,6

50

9,9

18,8

25,1

30,8

35,0

37,6

39,4

41,2

42,8

44,6

51,0

58,1

66,9

72,8

81,6

100

11,2

21,1

28,9

35,2

39,9

43,0

45,3

47,2

48,8

50,5

58,3

65,7

77,5

84,5

95,1

5 х 10(2)

13,8

26,0

36,0

43,9

50,5

54,5

57,3

59,8

62,5

64,6

74,8

84,5

101

110

124

10(3)

15,5

28,2

39,2

48,1

55,2

59,2

52,5

65,3

67,3

70,4

81,7

87,6

110

121

138

5 х 10(3)

18,8

33,1

45,6

56,4

65,2

70,0

74,0

77,0

80,2

82,8

97

111

133

147

167

10(4)

20,1

35,2

48,5

60,3

69,3

74,5

79,1

82,9

86,2

89,2

104

119

143

157

179

5 х 10(4)

23,3

42,3

56,4

68,6

79,0

84,7

88,7

93,4

97,9

102

120

136

165

181

207

10(5)

30,5

50,5

64,6

75,1

82,8

89,0

93,5

98,1

102

107

127

144

174

191

218

5 х 10(5)

44,8

61,5

73,7

83,7

92,5

99,3

104

110

115

122

142

162

196

215

247

10(6)

49,3

66,4

79,8

89,8

97,0

104

114

114

120

124

150

171

205

225

261

5 х 10(5)

59,4

79,7

91,6

101

107

114

120

126

132

137

166

189

227

250

288

10(7)

64,0

84,9

95,7

106

111

119

125

130

136

142

173

197

236

259

299

 

Таблица 4.

Толщина защиты из железа (см) для различных кратностей ослабления К

 

K

Е_эф, МэВ

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,5

2,0

3,0

4,0

5,0

10

2,1

3,4

4,5

5,4

6,2

6,8

7,3

7,8

8,2

8,5

10,0

11,0

12,2

12,5

12,7

20

2,6

4,3

5,5

6,6

7,5

8,3

8,9

9,5

10,0

10,5

12,2

13,7

15,3

16,0

16,4

50

3,1

5,1

6,9

8,2

9,3

10,2

11,2

12,0

12,7

13,4

15,5

17,1

19,3

20,2

21,2

100

3,8

5,9

7,5

9,0

10,2

11,2

12,2

13,1

14,0

14,7

17,6

19,7

22,3

23,4

24,6

5 х 10(2)

4,6

7,4

9,6

11,6

13,4

14,7

15,8

16,9

17,7

18,6

22,5

25,4

29,1

30,7

32,3

10(3)

5,0

8,0

10,5

12,7

14,7

16,2

17,5

18,6

19,5

20,4

24,6

28,0

31,9

33,7

35,6

5 х 10(3)

6,7

10,2

13,0

15,5

17,6

19,2

20,7

22,1

23,3

24,4

29,4

33,4

38,2

40,3

43,2

10(4)

7,4

11,1

14,0

16,6

18,8

20,7

22,2

23,6

24,9

26,2

31,4

35,8

41,0

43,2

46,5

5 х 10(4)

8,3

12,6

16,0

19,0

21,6

23,5

25,5

27,5

28,5

30,0

36,3

41,2

47,2

49,9

53,9

10(5)

8,5

13,1

16,9

20,0

22,7

25,0

26,9

28,6

30,3

31,8

38,2

43,5

50,0

53,0

57,8

5 х 10(5)

9,3

14,3

18,5

22,1

25,5

27,9

30,1

32,0

33,8

35,5

42,6

48,8

56,1

60,0

64,4

10(6)

9,9

15,4

19,9

23,6

26,7

29,2

31,5

33,5

35,4

37,1

44,6

51,0

58,8

63,0

67,5

5 х 10(5)

10,9

16,8

21,8

25,9

29,4

32,4

34,8

37,0

39,0

40,8

49,1

56,3

65,1

70,0

76,2

10(7)

11,6

17,7

22,8

27,0

30,5

33,5

36,1

38,4

40,5

42,4

51,1

58,6

67,8

72,8

78,0

 

Таблица 5

 

Толщина защиты из свинца (см) для различных кратностей ослабления К

 

K

Е_эф, МэВ

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,5

2,0

3,0

4,0

6,0

10

0,3

0,6

0,9

1,3

1,6

2,1

2,6

3,1

3,5

3,8

5,1

5,9

6,5

6,4

5,5

20

0,3

0,6

1,1

1,5

2,0

2,6

3,3

3,9

4,4

4,9

6,6

7,6

8,3

8,2

7,1

50

0,4

0,9

1,4

1,95

2,6

3,3

4,0

4,6

5,3

6,0

8,2

9,6

10,6

10,5

9,2

100

0,5

1,0

1,6

2,3

3,0

3,9

4,7

5,5

6,3

7,0

9,7

11,3

12,2

12,1

10,9

5 х 10(2)

0,7

1,4

2,2

3,1

4,0

5,1

6,1

7,2

8,2

9,2

12,9

15,0

16,3

16,1

14,9

10(3)

0,7

1,5

2,4

3,3

4,4

5,7

7,0

8,1

9,2

10,2

14,1

16,5

18,0

17,8

16,5

5 х 10(3)

0,9

1,9

3,0

4,2

5,5

7,0

8,5

9,9

11,2

12,4

17,0

19,8

21,9

21,7

20,3

10(4)

1,1

2,1

3,3

4,6

5,9

7,5

9,1

10,6

12,0

13,3

18,3

21,3

23,5

23,4

22,0

5 х 10(4)

1,2

2,4

3,7

5,2

6,9

8,7

10,5

12,3

14,0

15,6

21,4

24,7

27,3

27,2

25,8

10(5)

1,2

2,4

3,8

5,4

7,2

9,2

11,1

13,0

14,8

16,5

22,7

26,2

28,9

28,9

27,5

5 х 10(5)

1,4

2,8

4,4

6,1

8,2

10,2

12,3

14,4

16,5

18,5

25,5

29,5

32,7

32,7

31,4

10(6)

1,5

3,0

4,7

6,5

8,7

10,9

13,1

15,3

17,5

19,9

26,8

31,0

34,3

34,4

33,0

5 х 10(5)

1,6

3,3

5,3

7,3

9,6

12,1

14,7

17,2

19,5

21,6

29,7

34,3

38,1

38,3

36,8

10(7)

1,7

3,4

5,4

7,6

10,1

12,6

15,2

17,8

20,3

22,5

31,2

35,8

29,7

39,9

38,4

Таблица 6

 

Выход фотонейтронов из различных мишеней в зависимости от энергии электронов

 

Е_0, МэВ

N x 10(-4) фотонейтрон/электрон

Cu (50 г/см2)

Cu (12,7 г/см2)

Ta (12,5 г/см2)

Pb (23 г/см2)

11

-

-

-

1.5

12

-

-

0,6

-

15

0,8

0.4

3,5

-

19

-

-

-

22

20

6

3

13

-

28

21

8

-

46

30

-

-

40

 

34

33

13

-

79

35

-

14

-

-

100

-

-

100

-