Национальный стандарт РФ ГОСТ Р ИСО 9096-2006
"Выбросы стационарных источников. Определение массовой концентрации твердых частиц ручным гравиметрическим методом"
(утв. приказом Федерального агентства по техническому регулированию и метрологии от 15 ноября 2006 г. N 253-ст)
ISO 9096:2003. Stationary source emissions - Manual determination of mass concentration of particulate matter (IDT)
Дата введения - 1 апреля 2007 г.
Введен впервые
Введение
Настоящий стандарт является прямым применением международного стандарта ИСО 9096:2003, подготовленного в сотрудничестве ИСО/ТК 146/ПК 1 и МЭК/ТК 264. В настоящем стандарте сделан дополнительный акцент на использование методик отбора проб большого объема. Из отходящего пылегазового потока отбирают представительную объединенную пробу, при этом твердые частицы, увлекаемые пробой, отделяются с помощью фильтра. Предварительно взвешенный фильтр последовательно подвергают осушке и повторному взвешиванию. Относительное увеличение массы приписывают массе твердых частиц, уловленных фильтром.
Для выполнения технических требований настоящего стандарта проба твердых частиц должна быть взвешена с установленным уровнем точности. Этот уровень точности достигается путем:
a) строгого следования процедурам взвешивания, установленным в настоящем стандарте;
b) увеличения времени отбора проб при нормальных скоростях отбора проб;
c) отбора проб при высоких скоростях при нормальном времени отбора проб (отбор проб большого объема);
d) извлечения всей пыли выше по потоку от фильтра.
1 Область применения
Настоящий стандарт устанавливает референтный метод измерений массовой концентрации твердых частиц (пыли) в отходящих пылегазовых потоках в диапазоне от 20 до 1000 в нормальных условиях.
Настоящий стандарт применяют для калибровки*(1) автоматических систем мониторинга (АСМ). Если отходящий пылегазовый поток содержит неустойчивые, высокоактивные или среднелетучие вещества, измерение будет зависеть от температуры фильтрования. Для калибровки АСМ методы фильтрования внутри газохода могут быть более применимы по сравнению с методами фильтрования за его пределами.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ИСО 5725 (все части) Точность (правильность и прецизионность) методов и результатов измерений
ИСО 10780:1994 Выбросы стационарных источников. Измерение скорости и объемного расхода газовых потоков в трубопроводах
3 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1 твердые частицы - пыль (particulate matter - dust): Частицы любой формы, структуры и плотности, распределенные в газовой фазе в условиях отбора проб.
Примечания
1 В приведенном методе все соединения, которые могут быть собраны путем фильтрования в заданных условиях после представительного отбора проб анализируемого газа и которые остаются выше по потоку от фильтра и на нем после осушки в заданных условиях, рассматривают как пыль (или твердые частицы). Однако в некоторых национальных стандартах определение твердых частиц может быть расширено и охватывать конденсаты или продукты реакций, осаждающиеся на фильтре в заданных условиях (например, при температурах ниже температуры отходящего пылегазового потока).
2 В настоящем методе под твердыми частицами понимают то вещество, которое собрано в системе отбора проб на фильтре и перед ним в заданных температурных условиях. Процедуры определения вторичных твердых частиц (конденсирующихся веществ), образующихся и осаждающихся после фильтра, не входят в область применения настоящего стандарта.
3.2 температура фильтрования (filtration temperature): Температура отбираемого газа ниже по потоку от фильтра.
3.3 фильтрование внутри газохода (in-stack filtration): Фильтрование с помощью фильтра, укрепленного в фильтродержателе, находящемся в газоходе непосредственно ниже по потоку от насадки для отбора проб.
3.4 фильтрование за пределами газохода (out-stack filtration): Фильтрование с помощью фильтра, укрепленного в подогреваемом фильтродержателе, находящемся за пределами газохода ниже по потоку от насадки для отбора проб и всасывающего патрубка (зонда для отбора проб).
3.5 изокинетический отбор проб (isokinetic sampling): Отбор проб при расходе, обеспечивающем скорость () и направление пылегазового потока, поступающего на вход насадки отбора проб, такие же, как скорость (
) и направление потока в трубе в точках отбора проб (см. рисунок 1).
Примечание - Отношение скоростей , выраженное в процентах, характеризует отклонение от условия изокинетичности отбора проб.
3.6 гидравлический диаметр (hydraulic diameter) : Характеристический размер поперечного сечения газохода, вычисляемый по формуле
, (1)
где - площадь поперечного сечения плоскости отбора проб;
- периметр плоскости отбора проб.
3.7 плоскость отбора проб (sampling plane): Плоскость в месте отбора проб, перпендикулярная к оси газохода (см. рисунок 2).
3.8 линия отбора проб (sampling line): Линия в плоскости отбора проб, вдоль которой размещены точки отбора проб, ограниченная внутренней стенкой газохода (см. рисунок 2).
3.9 точка отбора проб (sampling point): Определенное место на линии отбора проб, в котором отбирается проба.
3.10 нормальные условия (standard conditions): Постоянные значения давления и температуры газа и условия, к которым должны приводиться расчетные объемы.
Примечание - В настоящем стандарте нормальные условия - давление 101,325 кПа (округленное до 101,3 кПа); температура 273,15 К (округленная до 273 К); сухой пылегазовый поток.
3.11 нулевая проба (overall blank): Контрольная проба, отобранная в том же месте и тем же способом, что и обычные пробы в сериях, за исключением того, что во время отбора контрольной пробы не поступает реальный пылегазовый поток.
Примечание - Полученное для нулевой пробы изменение массы фильтра дает оценку неопределенности. Значение массы, приписанное нулевой пробе, разделенное на средний объем пробы для серии измерений, позволяет оценить предел обнаружения (в ) всего процесса измерения, проведенного оператором. Нулевая проба включает возможно осевшую на фильтре и всех частях выше по потоку пыль.
3.12 процедуры контроля взвешивания (weighing control procedures): Процедуры контроля качества взвешивания, используемые для обнаружения/корректировки кажущихся изменений массы, обусловленных изменениями окружающих условий между сериями взвешиваний перед отбором проб и после него.
Примечание - В этих процедурах используют контрольные части (см. 7.2), идентичные тем, которые взвешивают с целью определения содержания пыли, и подготавливаемые в тех же самых условиях по влажности и температуре. Контрольные части хранят таким образом, чтобы избежать загрязнения пылью.
3.13 серия измерений (measurement series): Последовательные измерения, проводимые в одной и той же плоскости отбора проб и при одних и тех же условиях контролируемого процесса.
3.14 предельное значение (limit value): Концентрация пыли, которая разрешена органами власти для промышленного процесса (например, среднее предельное значение).
Примечание - При использовании не в целях контроля и надзора результат измерений сравнивают с установленным контрольным значением.
4 Требования к отбору проб
4.1 Основные положения
Анализируемый пылегазовый поток отбирают из основного потока в установленных точках отбора проб в течение измеряемого периода времени при контролируемом изокинетическом расходе. Измеряют объем отобранной пробы пылегазового потока, а предварительно взвешенный фильтр, который затем подвергается осушке и повторному взвешиванию, отделяет твердые частицы (пыль), увлекаемые пробой. Пыль, осевшую выше по потоку от фильтра в устройствах отбора проб, также извлекают и взвешивают. Увеличение массы фильтра и массу пыли, осевшей выше по потоку от фильтра, приписывают твердым частицам, находившимся в отобранной пробе. Отношение массы собранных твердых частиц к объему отобранной пробы позволяет рассчитать концентрацию твердых частиц в пылегазовом потоке.
Достоверные измерения могут быть достигнуты, если:
a) во время отбора проб собирается достаточное количество пыли, которое по крайней мере в пять раз превышает соответствующее значение для нулевой пробы;
b) пылегазовый поток в газоходе в месте отбора пробы имеет приблизительно постоянные и известные скорость, температуру, давление и однородный состав;
c) направление пылегазового потока параллельно оси насадки;
d) отбор проб проводят без возмущения пылегазового потока с использованием остроконечной насадки, обращенной навстречу потоку;
e) во время испытания поддерживают изокинетические условия отбора проб;
f) пробы отбирают в установленных точках (при заранее определенном их числе) в плоскости отбора проб, чтобы обеспечить получение представительной пробы при неравномерном распределении твердых частиц в газоходе или трубе;
g) система отбора проб сконструирована и работает без конденсации и утечек;
h) выполняют требования к калибровке;
i) выполняют требования к холостому отбору проб и проводят проверки утечек;
j) пыль, осевшую выше по потоку от фильтра, извлекают и/или учитывают;
k) процедуры отбора проб и взвешивания адаптированы в соответствии с ожидаемым количеством пыли, как установлено в настоящем стандарте.
4.2 Влияющие факторы
a) Положительные влияющие факторы
Некоторые газообразные вещества, присутствующие в пылегазовых потоках, могут вступать в реакции, приводящие к образованию твердых частиц в пределах системы отбора проб, что может привести к завышению результата измерения. Примерами могут быть возможные реакции диоксида серы (), приводящие к образованию нерастворимого сульфата в той части системы, где наблюдается высокая влажность. Например образование сульфата кальция (
) - при взаимодействии
с известняком в отходящем пылегазовом потоке после системы десульфуризации влажного отходящего пылегазового потока или сульфата аммония (
) - при взаимодействии с газообразным аммиаком (
) (см. 7.1а).
b) Отрицательные влияющие факторы
1) Некоторые газообразные кислоты могут разрушать материал фильтра, что приводит к занижению результата измерения. Примером может служить реакция фтористого водорода (HF) с компонентами, изготовленными из стекла в системе отбора проб (см. 6.2.5).
2) Летучие вещества, присутствующие в отходящем газе и находящиеся в твердом или жидком состоянии, могут испаряться после осаждения на фильтрующем материале системы отбора проб из-за непрерывного контакта с горячим потоком пробы во время отбора проб. Это также может привести к занижению результата измерения (массовой концентрации твердых частиц) (см. 8.1).
5 Плоскость и точки отбора проб
5.1 Общие положения
Представительный отбор проб возможен, если доступно подходящее место, в котором скорость потока в плоскости отбора проб достаточно однородна.
Отбор проб следует проводить при достаточном числе точек отбора проб, обычно расположенных на нескольких линиях отбора проб. Для проведения испытания должны быть предусмотрены удобные порты доступа и рабочие площадки.
5.2 Плоскость отбора проб
Плоскость отбора проб должна быть расположена на прямом участке газохода (предпочтительно вертикальном) с постоянной формой и площадью поперечного сечения. Плоскость отбора проб должна находиться как можно выше или ниже по потоку от каких-либо препятствий, которые могут вызывать возмущение или изменение направления потока (возмущения, вызванные, например, изгибами, вентиляторами или очистительным оборудованием).
5.3 Требования к точкам отбора проб
Предварительные измерения во всех точках отбора проб (см. 5.4 и приложение В) должны подтвердить, что пылегазовый поток в плоскости отбора проб соответствует следующим требованиям:
a) угол между направлением пылегазового потока и осью газохода составляет менее 15° (рекомендуемый метод оценки приведен в приложении С ИС0 10780);
b) отсутствует местный отрицательный поток;
c) минимальная скорость потока выше, чем предел обнаружения метода, используемого для измерения расхода (для трубок Пито перепад давлений больше 5 Па);
d) отношение максимальной скорости потока к минимальной в месте отбора пробы составляет менее 3:1.
Если вышеуказанные требования не могут быть выполнены, то неопределенность будет выше установленной в настоящем стандарте, а расположение места отбора проб не будет соответствовать требованиям настоящего стандарта (см. 7.4.6).
Вышеуказанные требования обычно выполняют в секциях газохода, где длина прямолинейного участка выше по потоку от плоскости отбора проб составляет, по крайней мере, пять гидравлических диаметров, ниже по потоку от нее - два гидравлических диаметра (или пять гидравлических диаметров от верха трубы). Поэтому настоятельно рекомендуется, чтобы места отбора проб выбирались соответственно.
5.4 Минимальное число и размещение точек отбора проб
В соответствии с размерами плоскости отбора проб выбирают минимальное число точек отбора проб. Обычно это число возрастает с увеличением размеров газохода.
Минимальное число точек отбора проб для круглых и прямоугольных газоходов приведено в таблицах 1 и 2 соответственно. Точки отбора проб должны быть расположены в центрах равных площадей в плоскости отбора проб в соответствии с приложением В.
Точки отбора проб располагают от внутренней стенки газохода на расстоянии не менее 3% длины линии отбора проб, если d > 1,5 м, или 5 см, если d < 1,5 м. Выбирают внутреннюю границу области, если расчеты приводят к попаданию точек отбора проб внутрь этой области. Это может возникнуть при выборе большего числа точек отбора проб, чем минимальное число, приведенное в таблицах 1 и 2, например, в случаях необычной формы газохода.
Примечание - Когда требования к плоскости отбора проб (см. 5.2) не могут быть выполнены, представительный отбор проб может быть получен путем увеличения числа точек отбора проб по сравнению с указанными в таблицах 1 и 2. Процедуры предварительных измерений в точках отбора проб приведены в 7.3.2.
Таблица 1 - Минимальное число точек отбора проб для круглых газоходов
Диаметр газохода, м |
Минимальное число линий отбора проб (диаметров) |
Минимальное число точек отбора проб на линии |
Минимальное число точек отбора проб на плоскости |
||
с центральной точкой |
без центральной точки |
с центральной точкой |
без центральной точки |
||
До 0,35 |
- |
1(а) |
- |
1(а) |
- |
От 0,35 до 0,70 включ. |
2 |
3 |
2 |
5 |
4 |
Св. 0,70 до 1,00 включ. |
2 |
5 |
4 |
9 |
8 |
Св. 1,00 до 2,00 включ. |
2 |
7 |
6 |
13 |
12 |
Св. 2,00 |
2 |
9 |
8 |
17 |
16 |
(а) Использование только одной точки отбора проб может привести к появлению погрешностей, превышающих погрешности, установленные в настоящем стандарте. |
Таблица 2 - Минимальное число точек отбора проб для прямоугольных газоходов
Площадь плоскости отбора проб, м2 |
Минимальное число делений стороны газохода(a) |
Минимальное число точек отбора проб на плоскости |
До 0,09 |
- |
1(b) |
От 0,09 до 0,38 включ. |
2 |
4 |
Св. 0,38 до 1,50 включ. |
3 |
9 |
Св. 1,50 |
4 |
16 |
(а) Может быть, необходимо другое деление, например если длина большей стороны газохода более чем в два раза превышает длину его меньшей стороны. | ||
(b) Использование одной точки отбора проб может привести к появлению погрешностей, превышающих погрешности, установленные в настоящем стандарте. |
5.5 Порты доступа
Порты должны обеспечивать доступ к точкам отбора проб, выбранным в соответствии с приложением В.
Размеры порта должны обеспечивать пространство для подключения и удаления устройств для отбора проб, сопутствующих устройств и позволять при замене устройств отбора проб герметизировать порт. Рекомендуется минимальный диаметр порта 125 мм или площадь поверхности (100 х 250) мм, за исключением малых газоходов (диаметром менее 0,7 м), для которых размеры порта должны быть меньше (см. приложение F).
5.6 Время отбора проб
Полагая известной характеристику объемного расхода используемой системы отбора проб, может быть рассчитано время отбора проб, при котором на фильтре будет собрана ожидаемая или необходимая масса твердых частиц, если их приблизительная концентрация известна заранее.
Если ожидаемую концентрацию пыли предварительно определяют или полагают известной, а массу собираемых твердых частиц m задают или устанавливают, необходимый объем
, л, отбираемого отходящего пылегазового потока вычисляют по формуле
. (2)
Однако объем пробы равен произведению общего времени отбора проб t, мин, на объемный расход (газа) в насадке
, л/мин, в реальных условиях, т.е.
.
Общее время отбора проб в плоскости отбора проб вычисляют по формуле
или
. (3)
6 Аппаратура и материалы
6.1 Устройства для определения скорости, температуры, давления и состава пылегазового потока
Измерения скорости проводят с использованием стандартных трубок Пито или других приборов, например трубок Пито s-типа, которые откалиброваны по стандартизованным трубкам Пито в соответствии с ИСО10780.
Температура и давление в газоходе должны быть измерены для расчета действительной плотности пылегазового потока с погрешностью , в расчет следует принимать также компонентный состав потока.
При пересчете значений массовой концентрации пыли на сухой пылегазовый поток и/или, если значения должны быть приведены относительно референтного содержания или
, измерение влажности (содержание влаги) и/или содержания
проводят в непосредственной близости от плоскости отбора проб.
Требования к устройствам для определения скорости, температуры, давления и состава пылегазового потока приведены в таблице 3.
6.2 Аппаратура для отбора проб
Система отбора проб состоит главным образом из:
a) всасывающего патрубка (зонда для отбора проб) с входной насадкой;
b) корпуса фильтра, включающего фильтр и фильтродержатель, расположенного в газоходе (фильтрование внутри газохода или метод внутренней фильтрации) или за его пределами (фильтрование за пределами газохода или метод внешней фильтрации), при этом системы отбора проб будут несколько различаться. При наличии капель воды используют фильтрование за пределами газохода;
c) всасывающего устройства с газовым счетчиком.
6.2.1 Устройство для фильтрования
а) Устройства для фильтрования внутри газохода (см. рисунок 3): часть трубки между насадкой и фильтром должна быть очень короткой для сведения к минимуму осаждения пыли выше по потоку от фильтра. Трубка (всасывающий патрубок), расположенная после фильтра, должна иметь длину, достаточную для ее перемещения в установленные точки отбора проб. Поскольку температура фильтрования обычно одинаковая с температурой пылегазового потока в газоходе, может произойти закупорка фильтра, если пылегазовый поток содержит капли воды.
Для перемещения в газоходе используют герметичную, жесткую трубку (опорную трубку) достаточной длины, расположенную ниже по потоку от корпуса фильтра и служащую механической опорой для насадки и корпуса фильтра.
b) Устройства для фильтрования за пределами газохода (рисунок 4): часть трубки между насадкой и фильтром (всасывающий патрубок) должна иметь длину, достаточную для ее перемещения в установленные точки отбора проб. Температуру всасывающего патрубка и корпуса фильтра регулируют, чтобы обеспечить испарение капель воды и избежать трудностей, связанных с кислыми газами, имеющими высокие температуры точек росы.
В некоторых случаях в пылегазовом потоке присутствуют капли воды, например после системы понижения влажности. Низкая температура (ниже известной точки росы процесса) является требованием настоящего стандарта. Если есть сомнения относительно присутствия капель воды, используют фильтрование за пределами газохода.
Устройства системы отбора проб должны быть сделаны из коррозионно-стойкого и, при необходимости, термостойкого материала, например, нержавеющей стали, титана, кварца или стекла. Однако, если планируется последующий анализ собранной пыли (например на содержание тяжелых металлов), части, находящиеся в контакте с отобранным газом, не должны быть сделаны из нержавеющей стали.
Поверхности частей (системы) выше по потоку от фильтра должны быть гладкими и хорошо отполированными, а число соединений должно быть минимальным. Любые изменения диаметра отверстия должны быть коническими, а не ступенчатыми.
Конструкцией устройств отбора проб должно быть обеспечено проведение очистки их внутренних частей выше по потоку от фильтра.
Все части оборудования, которые могут находиться в контакте с пробой, должны быть защищены от загрязнения во время транспортировки и хранения.
6.2.2 Комплект входных насадок
Комплект входных насадок должен включать остроконечные насадки различных диаметров, имеющие обтекаемую форму, не вызывающую возмущения основного пылегазового потока.
Насадку присоединяют либо к всасывающему патрубку (зонду для отбора проб), либо к корпусу фильтра. Проверенные конструкции насадок приведены в приложении А. Допускается использование насадок других конструкций, если можно доказать, что их использование приводит к аналогичным результатам.
Для предотвращения возмущений газового потока в области кончика насадки выполняют следующие требования:
a) насадка должна иметь постоянный внутренний диаметр на протяжении длины, равной по крайней мере одному ее внутреннему диаметру или 10 мм от ее кончика, в зависимости от того, что больше. Расчет диаметра приведен в 7.3.3;
b) любое изменение внутреннего диаметра насадки должно быть постепенным с углом конуса менее 30°;
c) изгибы насадки должны находиться на расстоянии по крайней мере 30 мм от ее кончика;
d) любое изменение внешнего диаметра частей устройств отбора проб на расстоянии менее 50 мм от кончика насадки должно быть постепенным с углом конуса менее 30°;
e) препятствия, связанные с устройствами отбора проб, являются:
1) запрещенными выше по потоку от кончика насадки;
2) разрешенными около или ниже по потоку от кончика насадки, если они находятся на расстоянии, равном по крайней мере одному размеру препятствия или более 50 мм, в зависимости от того, что больше.
Поскольку по механическим причинам фаска насадки должна быть достаточной толщины, это приводит к неопределенности определения эффективной площади отбора пробы. Эта неопределенность должна составлять менее 10% для выполнения условий изокинетического отбора проб. Поэтому используют насадки с внутренним диаметром более 8 мм, и не рекомендуется использовать насадки диаметром менее 4 мм.
6.2.3 Всасывающий патрубок (зонд для отбора проб) для систем фильтрования за пределами газохода
Всасывающий патрубок должен иметь гладкую и хорошо отполированную внутреннюю поверхность и конструкцию, позволяющую легко проводить очистку с использованием щетки или других механических приспособлений, которая необходима перед началом отбора проб (см. 7.3.1).
Стенки всасывающего патрубка должны быть подогреты, и их температуру следует контролировать для уменьшения конденсации или образования побочных веществ (см. 7.3.4).
6.2.4 Корпус фильтра, в который устанавливается фильтр и фильтродержатель
Когда корпус фильтра находится за пределами газохода, он должен быть подогрет и температуру следует контролировать (см. 7.3.4) для предотвращения конденсации.
Конструкцией корпуса и фильтродержателя должно быть исключено завихрение газового потока в области уплотнений.
Для снижения перепада давлений на фильтре и улучшения распределения пыли на фильтре рекомендуется использовать сетчатый фильтродержатель.
6.2.5 Фильтры
Следует применять фильтры с эффективностью более 99,0%, полученной на контрольном аэрозоле со средним диаметром частиц 0,3 мкм при максимальном ожидаемом расходе.
Эффективность фильтра должна быть удостоверена производителем фильтра.
Материал фильтра не должен адсорбировать или вступать в реакции с газообразными соединениями, содержащимися в отобранной пробе, и должен быть термически устойчивым с учетом максимальной ожидаемой температуры (см. 7.3.3).
При выборе фильтра также учитывают следующее:
a) фильтры из стекловолокна могут реагировать с кислотными соединениями, такими как , что может привести к увеличению массы фильтра. Их использование не рекомендуется там, где это может произойти;
b) фильтры из кварцевых волокон зарекомендовали себя как эффективные в большинстве случаев, несмотря на малую механическую прочность;
c) фильтры из политетрафторэтилена (далее - ПТФЭ) являются эффективными, однако температура газа, проходящего через фильтр, не должна превышать температуру, указанную производителем фильтров;
d) размер фильтра выбирают в соответствии с максимальной допустимой массой твердых частиц, собираемых на фильтре. Это позволяет предотвратить потерю пыли из-за перегрузки материала фильтра. Максимальное количество пыли, которое может быть собрано на фильтре, должно быть указано производителем фильтра;
е) перепад давлений на фильтре и повышение давления из-за сбора твердых частиц во время отбора проб, зависящие от вида фильтра (например, ожидаемый перепад давлений при скорости фильтрования 0,5 м/с составляет от 3 до 10 кПа);
f) при использовании фильтров с органическим связующим веществом необходимо следить за тем, чтобы не было потерь массы фильтра из-за испарения органического вещества при нагревании;
g) значение нулевой пробы при измерении будет в некоторой степени зависеть от выбора фильтра (его механических свойств, совместимости с влажной средой и т.д.);
h) если планируется определять состав собранной пыли, то чистый фильтрующий материал должен быть испытан для определения присутствия и уровней содержания любых соответствующих анализируемых веществ;
i) при взвешивании некоторых видов фильтрующих материалов (например, ПТФЭ) следует избегать возникновения ошибок, связанных с электростатическими зарядами.
6.2.6 Комбинированные системы отбора проб твердых частиц/пылегазового потока (произвольной конструкции) для определения выбросов отходящих пылегазовых потоков
Когда газообразные соединения улавливаются ниже по потоку от фильтра, любые потери объема, изменения температуры или давления должны быть учтены для расчета скорости изокинетического отбора проб и объема отобранной пылегазовой пробы.
6.2.7 Всасывающее устройство и газомеры
Всасывающие устройства и газомеры (герметичные, коррозионно-стойкие и способные поддерживать вакуум) позволяют отбирать пробы отходящего пылегазового потока при рассчитанной скорости изокинетического отбора проб, соответствующей размеру насадки и параметрам отходящего пылегазового потока.
Система должна включать устройство регулировки расхода пробы, например, обходной клапан насоса или клапан для регулировки. Также в систему включают запорно-выпускное устройство для остановки пылегазового потока через систему отбора проб.
В зависимости от уровня влажности отбираемого пылегазового потока при компоновке устройств систем отбора проб используют три основные схемы. Допускается использование других схем, если доказано, что с их помощью получают такую же точность, как и с помощью компоновок, описанных ниже:
а) отбор проб сухого пылегазового потока с фильтром внутри газохода (см. рисунок 5) включает:
1) конденсор и/или осушительную колонну, обеспечивающие остаточную влажность менее 10 при максимальном расходе;
2) герметичный или струйный насос, действующий как всасывающее устройство;
3) расходомер, используемый для обеспечения регулировки расхода, откалиброванный по волюметру сухого газа или измерительной диафрагме;
b) отбор проб сухого пылегазового потока с фильтром за пределами газохода и конденсорной системой (см. рисунок 6) включает:
1) конденсор и/или осушительную колонну, обеспечивающие остаточную влажность менее чем 10 при максимальном расходе;
2) герметичный или струйный насос, действующий как всасывающее устройство;
3) волюметр сухого газа, имеющий погрешность в пределах % при ожидаемом расходе, если погрешность измерений соответствующих абсолютных давления и температуры составляет менее 1%;
с) отбор проб влажного газа с фильтром, расположенным за пределами газохода (см. рисунок 7), включает:
1) изолированную или подогреваемую гибкую трубку, используемую для предотвращения конденсации влаги выше по потоку;
2) герметичный или струйный насос, действующий как всасывающее устройство;
3) измерительную диафрагму, в которой не происходит конденсация, или эквивалентное устройство, служащее в качестве расходомера. Измерения температуры и давления (абсолютного и дифференциального) в измерительной диафрагме (расходомере) должны быть в пределах %, а измерительная диафрагма должна быть откалибрована с отклонением
% от ожидаемого расхода.
6.3 Материалы для извлечения твердых частиц
6.3.1 Очищенная вода, деионизированная и отфильтрованная.
6.3.2 Ацетон высокого качества с осадком менее 10 мг на литр.
6.3.3 Чистые сосуды соответствующего размера (например, 250 мл) для хранения и транспортировки промывного раствора.
6.3.4 Пробки для закупоривания всасывающего патрубка. Используемые пробки не должны быть источником загрязнения пробы.
6.4 Устройства для кондиционирования и взвешивания
6.4.1 Сосуды для взвешивания, используемые в процедуре выпаривания промывных растворов, массой, соответствующей используемым весам. Стекло и керамика признаны пригодными материалами для этих сосудов, полимерные материалы не рекомендуются.
6.4.2 Эксикаторы, находящиеся в помещении для взвешивания, с подходящим осушителем (силикагель, хлорид кальция и т. д.).
6.4.3 Сушильный шкаф классического лабораторного типа, с допускаемым отклонением от заданной температуры в пределах °С.
6.4.4 Весы с разрешением от 0,01 до 0,1 мг и диапазоном, соответствующим массе взвешиваемых частей. В зависимости от расположения помещения для взвешивания особое внимание проявляют при предотвращении нестабильности показаний, связанной с вибрацией, тягой воздуха, изменениями температуры и влажности.
6.4.5 Термометр и влагомер, расположенные вблизи весов.
6.4.6 Барометр.
6.4.7 В зависимости от процедуры испарения колпак для экстракции и нагреваемая тарелка для испарения промывных растворов.
7 Процедуры отбора проб и взвешивания
7.1 Общие положения
Перед выполнением любых измерений необходимо ознакомить персонал завода с целью и процедурами отбора проб. Характер заводского процесса, например, стационарный или циклический, влияет на программу отбора проб. Если процесс может быть выполнен в стационарном состоянии, необходимо, чтобы оно поддерживалось во время отбора проб.
Даты, время начала, продолжительность наблюдения и периоды отбора проб, а также рабочий режим завода во время этих периодов должны быть согласованы с администрацией завода.
Должны быть проведены предварительные расчеты для определения соответствующего диаметра насадки и/или времени отбора проб. Для получения достаточно большой массы фильтра с пробой по сравнению с массой чистого фильтра может быть необходимо более длительное время отбора проб или отбор проб с использованием большей насадки и более высоких расходов пробы.
Учитывая цель измерений и характеристики пылегазового потока, пользователь (оператор) должен:
a) выбрать устройство для фильтрования внутри или за пределами газохода. Если отходящий пылегазовый поток насыщен водой или содержит заметные количества , рекомендуются устройства для фильтрования за пределами газохода;
b) выбрать подходящую температуру для кондиционирования и осушки фильтра до и после отбора проб.
При использовании устройства для фильтрования за пределами газохода устанавливают температуру фильтра в соответствии с нормативными документами или по техническим соображениям;
c) отбирать нулевую пробу после каждой серии измерений и, по крайней мере, после каждого дня отбора проб, следуя процедуре отбора проб, описанной в 7.3.5, либо без включения всасывающего устройства, либо с продолжительностью отбора проб менее 1 мин.
Это позволяет оценить дисперсию результатов измерений, относящуюся ко всей процедуре, проводимой операторами при определении концентрации пыли, близкой к нулю, и обусловленную загрязнением фильтров и промывочных растворов во время обработки на месте, транспортировки, хранения, обработки в лаборатории и процедур взвешивания и т.д.
Во время отбора проб необходим одновременный контроль скорости в плоскости отбора проб для проверки возможных изменений расхода в газоходе.
В месте отбора проб определяют температуру, давление, содержание влаги и среднюю молекулярную массу смеси газов отходящего пылегазового потока для расчета условий изокинетического отбора проб и приведения данных по выбросам от реальных к нормальным условиям. Если во время периода испытания изменение этих параметров в пространстве или времени превышает % по сравнению с изокинетическими условиями (см. 7.4.3), то эти параметры следует контролировать в каждой точке отбора проб.
При пересчете концентрации твердых частиц на сухой газ следует определять содержание влаги в отходящем пылегазовом потоке. Если концентрация твердых частиц должна быть выражена по отношению к установленному (избыточному) содержанию кислорода или диоксида углерода, следует также измерять концентрацию кислорода или диоксида углерода.
7.2 Процедура взвешивания
7.2.1 Взвешиваемые части
a) В зависимости от внутреннего устройства системы фильтрования взвешиваемыми частями до и после отбора проб могут быть:
1) только фильтр;
2) фильтр и фильтродержатель;
3) фильтр, фильтродержатель и входная часть корпуса фильтра, включая насадку (в зависимости от конструкции системы).
В первом и втором случаях осадок пыли в области от кончика насадки до фильтра должен быть извлечен и взвешен.
В третьем случае осадок пыли выше по потоку от фильтра учитывают при взвешивании, но при этом необходимо использовать весы, позволяющие взвешивать большие массы этих частей с заданным уровнем точности. Внешние поверхности частей должны быть очищены перед взвешиванием с использованием проверенной лабораторной методики;
b) В зависимости от вида используемого устройства отбора проб взвешиваемыми частями могут быть фильтр (с фильтродержателем или без него) или фильтр, включая все части выше по потоку от него. Варианты включают:
1) фильтр и твердые частицы, собранные выше по потоку от фильтра;
2) фильтр, его корпус и твердые частицы, собранные выше по потоку от корпуса;
3) насадку, фильтр и его корпус, а также любые части, соединяющие корпус с насадкой.
Для последних двух случаев все соответствующие части должны быть обработаны до и после взвешивания в соответствии с процедурой, приведенной в 8.3, и взвешены вместе без демонтажа;
c) В зависимости от используемой системы фильтрования растворы, полученные при промывке компонентов, могут быть испарены и взвешены в том же сосуде или перелиты в меньший сосуд для взвешивания, следуя проверенной лабораторной методике.
7.2.2 Обработка взвешиваемых частей перед отбором проб
Взвешиваемые части должны быть высушены в сушильном шкафу в течение по крайней мере 1 ч при температуре 160°С (см. также раздел 8 для специальных случаев).
После осушки фильтры и/или сосуды для взвешивания помещают в эксикатор, находящийся в помещении для взвешивания по крайней мере на 8 ч для обеспечения одинакового кондиционирования фильтра на всем протяжении его использования (включая подготовку и окончательное взвешивание). Для частей большего размера и сосудов для взвешивания может быть необходимо кондиционирование в течение времени до 12 ч.
7.2.3 Взвешивание
Взвешивают фильтр на электронных весах с погрешностью в пределах по крайней мере мг.
Так как массы проб определяют путем расчета разностей между данными, часто полученными с интервалом в одну или две недели, необходимо соблюдать особую осторожность, чтобы избежать погрешностей взвешивания, связанных с дрейфом весов, недостаточно равновесной температурой взвешиваемых частей и изменениями условий окружающей среды (см. примеры в приложении С). Поэтому перед выполнением любого взвешивания оператор должен проверять используемую им процедуру взвешивания.
Перед проведением каждой серии взвешиваний:
a) калибруют весы по эталонам массы;
b) проводят дополнительные проверки путем взвешивания контрольных частей, эквивалентных другим частям и подготовленных в тех же условиях, но хранящихся свободными от загрязнения;
c) регистрируют климатические условия в помещении (для взвешивания).
При взвешивании частей большого объема (например, мензурок) изменения температуры и барометрического давления могут привести к кажущемуся изменению массы. Это может быть обнаружено путем использования контрольных частей известной массы. В таких условиях при взвешивании вводят поправки. Поправки при взвешивании определяют на основе изменения кажущейся массы трех эквивалентных контрольных частей каждого типа (фильтра с фильтродержателем, сосуда и т.д.) (см. приложение С).
При взвешивании необходимо обращать внимание на следующие помехи:
- электростатические заряды, которые необходимо разрядить или нейтрализовать;
- характеристики гигроскопичности и летучести фильтрующего материала и/или пыли, которые могут привести к увеличению или уменьшению массы. По этой причине взвешивание выполняют быстро, в течение 1 мин после удаления из эксикатора. Регистрируют два дополнительных результата взвешивания с интервалами в 5 с после первого взвешивания. Если наблюдается существенное увеличение или уменьшение показаний с течением времени, обусловленное природой материала, могут быть необходимы специальные процедуры, такие как экстраполяция показаний к исходным условиям;
- небольшие различия в температуре взвешиваемой части и окружающей среды могут сбивать настройку весов.
7.2.4 Обработка взвешиваемых частей после отбора проб
Взвешенные части сушат в сушильном шкафу в течение по крайней мере 1 ч при температуре 160°С (см. раздел 8).
После осушки температура частей должна прийти в равновесие с температурой окружающей среды, как указано в 7.2.2.
Когда есть подозрение на присутствие летучих или реакционно-способных соединений, осушку выполняют при температуре отбора проб с использованием потока сухого азота.
7.2.5 Обработка промывных растворов после отбора проб
Все промывные растворы (вода и ацетон) от всех частей выше по потоку от фильтра (см. 7.3.5) отправляют в лабораторию для дальнейшей обработки. Необходимо следить за тем, чтобы не происходило их загрязнение.
Переливают количественно объемы растворов в высушенные и предварительно взвешенные сосуды. Во время испарения смесь растворителей не кипятят. Поскольку в процессе испарения объем раствора уменьшается, могут быть использованы сосуды меньшего объема.
Примечание - Были проверены два метода испарения: 1) испарение в сушильном шкафу при температуре 120°С при атмосферном давлении. Для разбавления паров ацетона до безопасного уровня необходима эффективная система продувки чистым воздухом или азотом; 2) испарение в закрытой системе (эксикаторе). Устанавливают начальную температуру 90°С, а давление понижают до 40 кПа (абсолютное). Периодически температуру и давление повышают. В течение последнего периода поддерживают температуру 140°С и давление 20 кПа (абсолютное).
После испарения взвешиваемые сосуды помещают в сушильный шкаф на 1 ч при температуре 160°С (см. раздел 8). Перемещают взвешиваемые сосуды в эксикатор. После наступления теплового равновесия в помещении для взвешивания взвешивают сосуды, включая осадок, оставшийся после испарения, как установлено в 7.2.1.
Из-за относительно большой массы и объема взвешиваемых сосудов по сравнению с исследуемым осадком на взвешивание могут влиять изменения барометрического давления. Поэтому в каждой серии взвешивают по крайней мере три пустых сосуда одинакового размера, чтобы любые изменения массы могли быть использованы для введения поправки.
Получают по крайней мере одно значение массы сосуда с использованием того же объема каждого чистого растворителя, что и при промывке.
7.3 Отбор проб
7.3.1 Подготовка
Устройства должны быть очищены щеткой и промыты, откалиброваны и проверены перед установкой в месте испытаний. Следят за тем, чтобы любая часть системы отбора проб, которая ранее использовалась для отбора проб пыли с высокой концентрацией, не использовалась повторно без предварительной разборки и тщательной очистки.
В зависимости от программы измерений фильтр и соответствующие взвешиваемые части должны быть подготовлены перед каждым отбором пробы. К ним относятся части, используемые для проведения холостых опытов и запасные части, необходимые для устранения нарушений нормальной работы процесса и устройств.
Выполняют процедуры взвешивания в соответствии с 7.2.3.
Все взвешиваемые части, включая всасывающий патрубок, другие части или устройства, которые будут вступать в контакт с пробой (и затем будут промыты), должны быть защищены от загрязнения во время транспортировки и хранения.
7.3.2 Предварительные измерения
Проверяют размеры газохода, в котором проводят отбор проб с использованием теодолита с вертикальным кругом или других средств. Выбирают число и расположение точек отбора проб в соответствии с 5.4 и приложением В. На трубке Пито и трубке для отбора проб отмечают расстояние от точек отбора проб до входной точки порта доступа.
Измеряют температуру и скорость пылегазового потока в выбранных точках газохода, а также проверяют возможные отклонения газового потока относительно оси газохода и выполнение требований, указанных в 5.3, в противном случае - см. 7.4.1.
Измеряют содержание влаги и молекулярную массу смеси газов отходящего потока.
Для непрерывного контроля скорости отходящего пылегазового потока во время периода отбора пробы в соответствующей фиксированной точке системы отбора проб устанавливают отдельную трубку Пито. Контроль температуры и/или концентрации в газоходе (или контроль других необходимых параметров) может также обеспечить получение информации о стабильности работы стационарного источника выбросов.
Принимая во внимание предварительный расчет времени отбора проб и измеренные скорости, выбирают подходящую насадку в соответствии с требованиями, указанными в 6.2.2 и 7.3.3.
7.3.3 Расчет диаметра насадки
7.3.3.1 Описание насадки
Для обеспечения условия изокинетичности отбора проб из пылегазовых потоков в широком диапазоне скоростей устройства для отбора проб должны включать комплект насадок различных диаметров.
Диаметр насадки оценивают как на основе характеристик объемного расхода для конкретной используемой системы отбора проб, так и на основе начального предположения, полученного на основе оценки процесса или предварительного отбора проб, относительно ожидаемой массы собранных твердых частиц.
7.3.3.2 Расчет диаметра насадки на основе характеристик расхода в системе отбора проб
На основе предварительно определенной скорости потока () в каждой точке отбора проб и при условии
площадь насадки
вычисляют по формуле
, (4)
где - скорость потока в насадке;
- диаметр насадки.
Если диаметр насадки является неподходящим, необходим другой объемный расход (или другая система отбора проб).
7.3.3.3 Расчет диаметра насадки при фиксированном времени отбора проб
В некоторых случаях время отбора проб точно устанавливается. При таком требовании может быть необходимо увеличить объемный расход для сбора массы твердых частиц, достаточной для взвешивания. Объемный расход может быть увеличен путем увеличения размера насадки, при этом могут понадобиться изменения в конструкции системы отбора проб для соответствия требованиям увеличенного потока.
Объемный расход в насадке вычисляют по формуле
,
где - площадь насадки.
В изокинетических условиях равна скорости потока
, т.е.
.
Следовательно, в насадке в условиях изокинетического отбора проб с учетом раздела 6 вычисляют по формулам:
, (5)
где
(6)
или
; (7)
- ожидаемая концентрация пыли;
m - масса твердых частиц;
t - время;
- скорость потока в газоходе;
- объем потока, прошедшего через насадку.
7.3.4 Нулевая проба
Берут нулевую пробу после каждой серии измерений или по крайней мере один раз в день, следуя процедуре отбора проб, указанной в 7.3.5, без запуска всасывающего устройства, удерживая насадку в газоходе под углом 180° к направлению потока в течение 15 мин. Это позволяет оценить дисперсию результатов измерений, относящуюся ко всей процедуре, проводимой операторами при определении концентрации пыли, близкой к нулю, и обусловленную загрязнением фильтров и промывочных растворов во время обработки на месте, транспортировки, хранения, обработки в лаборатории и взвешивания. Все значения для нулевых проб должны быть зарегистрированы отдельно.
Значение нулевой пробы представляют в миллиграммах на кубический метр и рассчитывают с использованием среднего времени отбора пробы в серии измерений.
7.3.5 Процедура отбора проб
Отбор проб выполняют в следующем порядке:
a) собирают устройство для отбора проб и проверяют на возможные утечки путем закупорки насадки и запуска всасывающего устройства. Расход при утечке (измеренный, например, путем изменения давления) после вакуумирования системы отбора проб при максимальном давлении, достигаемом во время отбора проб, должен составлять менее 2% нормального расхода. Во время отбора проб допускается осуществлять непрерывный контроль утечек путем непрерывного измерения концентрации соответствующего компонента пылегазового потока (,
и т.д.) напрямую в газоходе и ниже по потоку от линии отбора проб. Любая обнаруженная разность этих концентраций указывает на утечку в частях устройства для отбора проб, расположенных за пределами газохода. Эта утечка должна быть обнаружена и устранена;
b) предварительно нагревают соответствующие части системы отбора проб до выбранной температуры фильтрования, например температуры газохода или рекомендуемой температуры, равной ()°С. Помещают систему отбора проб в газоход, располагая вход насадки, если возможно по направлению потока, исключая контакт c любыми частями газохода.
Герметизируют отверстие порта доступа для сведения к минимуму просачивания воздуха или предотвращения воздействия ядовитых газов на операторов;
c) поворачивают зонд для отбора проб до тех пор, пока вход насадки не повернется навстречу потоку в пределах °, открывают запорно-выпускной клапан, запускают всасывающее устройство и регулируют расход для получения изокинетического отбора проб в пределах
%;
d) время отбора проб в каждой выбранной точке должно быть одинаковым;
e) общее время отбора проб должно быть не менее 30 мин;
f) во время отбора проб каждые 5 мин проверяют и регулируют расход для поддержания изокинетических условий отбора проб в пределах %. Непрерывно контролируют или
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Национальный стандарт РФ ГОСТ Р ИСО 9096-2006 "Выбросы стационарных источников. Определение массовой концентрации твердых частиц ручным гравиметрическим методом" (утв. приказом Федерального агентства по техническому регулированию и метрологии от 15 ноября 2006 г. N 253-ст)
Текст ГОСТа приводится по официальному изданию. Москва, Стандартинформ, 2006 г.
Дата введения - 1 апреля 2007 г.
1 Подготовлен Открытым акционерным обществом "Научно-исследовательский центр контроля и диагностики технических систем" (ОАО "НИЦ КД") на основе собственного аутентичного перевода стандарта, указанного в пункте 4
2 Внесен Техническим комитетом по стандартизации ТК 457 "Качество воздуха"
3 Утвержден и введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 15 ноября 2006 г. N 253-ст
4 Настоящий стандарт идентичен международному стандарту ИСО 9096:2003 "Выбросы стационарных источников. Определение массовой концентрации твердых частиц ручным методом" (ISO 9096:2003 "Stationary source emissions - Manual determination of mass concentration of particulate matter").
Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2004 (подраздел 3.5).
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении G.
5 Введен впервые