Vibration. Measurement and evaluation of human exposure to hand-transmitted vibration. Part 2. Requirements for measurement at the workplace
Дата введения - 1 июля 2008 г.
Введен впервые
Введение
В процессе работы с ручными машинами любого типа с приводом любого вида (электрическим, пневматическим, гидравлическим, от двигателя внутреннего сгорания), на машинах с ручным управлением, при обработке на станках деталей, удерживаемых руками оператора, на его кисть и плечо может передаваться значительная вибрация. В зависимости от вида и места проводимых работ эта вибрация может воздействовать как на одну руку, так и на обе руки сразу, являясь источником дискомфорта и снижая производительность труда. Общие требования по измерению и оценке локальной вибрации установлены в ГОСТ 31192.1-2004. Цель разработки настоящего стандарта - установить требования к проведению измерений локальной вибрации в соответствии с ГОСТ 31192.1-2004 на рабочем месте оператора.
Выполнение требований настоящего стандарта должно обеспечивать получение реалистичной картины воздействия на оператора локальной вибрации за рабочую смену и оценки этого воздействия в пределах допустимой неопределенности.
Процедура оценки вибрационного воздействия состоит из нескольких этапов:
- выделения серии дискретных операций, составляющих рабочий день оператора;
- выбора операций, для которых должны быть проведены измерения;
- измерения среднеквадратичного значения виброускорения для каждой выбранной операции;
- оценки типичного времени воздействия для каждой выделенной операции в течение рабочего дня;
- расчета вибрационной экспозиции за смену.
Оценка вибрационного воздействия в соответствии с ГОСТ 31192.1-2004 основана исключительно на измерении вибрации на поверхностях, обхватываемых кистью руки оператора, и измерении времени этого воздействия. За область рассмотрения при этом выходят такие факторы, как силы нажатия и обхвата, прилагаемые оператором, и характер этих сил (локальные или распределенные), поза, принимаемая оператором, направление действия вибрации и внешние факторы. Поэтому в настоящем стандарте, развивающем общие требования ГОСТ 31192.1-2004, не дано руководство по оценке влияния этих дополнительных факторов. Однако установлено, что регистрация всех существенных факторов, сопутствующих работе оператора, важна с точки зрения разработки наиболее обоснованных методов оценки профессионального риска, обусловленного воздействием локальной вибрации.
По сравнению с примененным международным стандартом ИСО 5349-2:2001 в текст настоящего стандарта внесены следующие изменения:
- добавлена ссылка на ГОСТ 12.1.012-2004 в раздел 1, чтобы показать место стандарта в комплексе стандартов по вибрационной безопасности;
- ссылки на введенные международные стандарты заменены ссылками на соответствующие межгосударственные стандарты и для приведения в соответствие с требованиями ГОСТ 1.5-2001 изменен структурный элемент "Библиография".
1 Область применения
Настоящий стандарт устанавливает требования к проведению измерений и оценке воздействия локальной вибрации на рабочем месте в соответствии с основополагающими стандартами ГОСТ 12.1.012 и ГОСТ 31192.1.
Настоящий стандарт распространяется на все случаи воздействия локальной вибрации на рабочих местах независимо от ее источника: ручная машина, устройство ручного управления машиной (движущейся или стационарной) или обрабатываемая деталь.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:
ГОСТ 12.1.012-2004 Система стандартов безопасности труда. Вибрационная безопасность. Общие требования
ГОСТ ИСО 5348-2002 Вибрация и удар. Механическое крепление акселерометров (ИСО 5348:1998, IDT)
ГОСТ ИСО 8041-2006 Вибрация. Воздействие вибрации на человека. Средства измерений (ИСО 8041:2005 "Воздействие вибрации на человека. Средства измерений", IDT)
ГОСТ 24346-80 Вибрация. Термины и определения (ИСО 2041:1990, NEQ)
ГОСТ 30873.2-2006 (ИСО 8662-2:1992). Ручные машины. Измерения вибрации на рукоятке. Часть 2. Молотки рубильные и клепальные (ИСО 8662-2:1992, MOD)
Приказом Росстандарта от 22 ноября 2013 г. N 1662-ст применение на территории РФ ГОСТ 30873.2-2006 прекращено с 1 сентября 2014 г. в связи с введением в действие ГОСТ Р ИСО 28927-10-2013
ГОСТ 30873.3-2006 (ИСО 8662-3:1992). Ручные машины. Измерения вибрации на рукоятке. Часть 3. Перфораторы и молотки бурильные (ИСО 8662-3:1992, MOD)
Приказом Росстандарта от 22 ноября 2013 г. N 1662-ст применение на территории РФ ГОСТ 30873.3-2006 прекращено с 1 сентября 2014 г. в связи с введением в действие ГОСТ Р ИСО 28927-10-2013
ГОСТ 30873.4-2006 (ИСО 8662-4:1994). Ручные машины. Измерения вибрации на рукоятке. Часть 4. Машины шлифовальные (ИСО 8662-4:1994, MOD)
Приказом Росстандарта от 29 ноября 2012 г. N 1371-ст применение ГОСТ 30873.4-2006 прекращено с 1 декабря 2013 г. в связи с утверждением и введением в действие ГОСТ Р ИСО 28927-1-2012 для добровольного применения
ГОСТ 30873.5-2006 (ИСО 8662-5:1992). Ручные машины. Измерения вибрации на рукоятке. Часть 5. Бетоноломы и молотки для строительных работ (ИСО 8662-5:1992, MOD)
ГОСТ 30873.6-2006 (ИСО 8662-6:1994). Ручные машины. Измерения вибрации на рукоятке. Часть 6. Машины сверлильные ударно-вращательные (ИСО 8662-6:1994, MOD)
Приказом Росстандарта от 29 ноября 2012 г. N 1374-ст действие ГОСТ 30873.6-2006 прекращено с 1 декабря 2013 г. в связи с утверждением и введением в действие ГОСТ Р ИСО 28927-5-2012 "Вибрация. Определение параметров вибрационной характеристики ручных машин. Часть 5. Машины сверлильные ударные и безударные" с 1 декабря 2013 г.
ГОСТ 30873.7-2006 (ИСО 8662-7:1997). Ручные машины. Измерения вибрации на рукоятке. Часть 7. Гайковерты, шуруповерты и винтоверты ударные, импульсные и трещеточные (ИСО 8662-7:1997, MOD)
Приказом Росстандарта от 29 ноября 2012 г. N 1372-ст применение ГОСТ 30873.7-2006 прекращено на территории РФ с 1 декабря 2013 г. в связи с утверждением и введением в действие ГОСТ Р ИСО 28927-2-2012 "Вибрация. Определение параметров вибрационной характеристики ручных машин. Часть 2. Гайковерты ударные и безударные и шуруповерты"
ГОСТ 30873.8-2006 (ИСО 8662-8:1997). Ручные машины. Измерения вибрации на рукоятке. Часть 8. Машины полировальные, круглошлифовальные, орбитальные шлифовальные и орбитально-вращательные шлифовальные (ИСО 8662-8:1997, MOD)
Приказом Росстандарта от 29 ноября 2012 г. N 1373-ст применение ГОСТ 30873.8-2006 прекращено на территории РФ с 1 декабря 2013 г. в связи с утверждением и введением в действие ГОСТ Р ИСО 28927-3-2012 для добровольного применения
ГОСТ 30873.9-2006 (ИСО 8662-9:1996). Ручные машины. Измерения вибрации на рукоятке. Часть 9. Трамбовки (ИСО 8662-9:1996, MOD)
Приказом Росстандарта от 29 ноября 2012 г. N 1375-ст применение ГОСТ 30873.9-2006 прекращено на территории РФ с 1 декабря 2013 г. в связи с утверждением и введением в действие ГОСТ Р ИСО 28927-6-2012 "Вибрация. Определение параметров вибрационной характеристики ручных машин. Часть 6. Трамбовки"
ГОСТ 30873.10-2006 (ИСО 8662-10:1998). Ручные машины. Измерения вибрации на рукоятке. Часть 10. Ножницы вырубные и ножевые (ИСО 8662-10:1998, MOD)
Приказом Росстандарта от 29 ноября 2012 г. N 1376-ст применение ГОСТ 30873.10-2006 прекращено на территории РФ с 1 декабря 2013 г. в связи с утверждением и введением в действие ГОСТ Р ИСО 28927-7-2012 "Вибрация. Определение параметров вибрационной характеристики ручных машин. Часть 7. Ножницы вырубные и ножевые"
ГОСТ 30873.11-2006 (ИСО 8662-11:1999). Ручные машины. Измерения вибрации на рукоятке. Часть 11. Машины для забивания крепежных средств (ИСО 8662-11:1999, MOD)
ГОСТ 30873.12-2006 (ИСО 8662-12:1997). Ручные машины. Измерения вибрации на рукоятке. Часть 12. Пилы ножовочные, дисковые и маятниковые и напильники возвратно-поступательного действия (ИСО 8662-12:1997, MOD)
Приказом Росстандарта от 29 ноября 2012 г. N 1377-ст действие ГОСТ 30873.12-2006 прекращено с 1 декабря 2013 г. в связи с утверждением и введением в действие ГОСТ Р ИСО 28927-8-2012 "Вибрация. Определение параметров вибрационной характеристики ручных машин. Часть 8. Пилы ножовочные, дисковые и осциллирующие, напильники и полировальные машины возвратно-поступательного действия"
ГОСТ 30873.13-2006 (ИСО 8662-13:1997). Ручные машины . Измерения вибрации на рукоятке. Часть 13. Машины шлифовальные для обработки штампов (ИСО 8662-13:1997, MOD)
Приказом Росстандарта от 19 января 2015 г. N 8-ст взамен ГОСТ 30873.13-2006 (ИСО 8662-13:1997) с 1 ноября 2015 г. введен в действие ГОСТ ISO 28927-12-2014 "Вибрация. Определение параметров вибрационной характеристики ручных машин. Часть 12. Борфрезеры" для добровольного применения
ГОСТ 30873.14-2006 (ИСО 8662-14:1996). Ручные машины. Измерения вибрации на рукоятке. Часть 14. Инструменты для обработки камня и молотки зачистные пучковые (ИСО 8662-14:1996, MOD)
Приказом Росстандарта от 29 ноября 2012 г. N 1378-ст действие ГОСТ 30873.14-2006 прекращено с 1 декабря 2013 г. в связи с утверждением и введением в действие ГОСТ Р ИСО 28927-9-2012 "Вибрация. Определение параметров вибрационной характеристики ручных машин. Часть 9. Молотки зачистные зубильные и пучковые"
ГОСТ 31192.1-2004 (ИСО 2631-1:1997). Вибрация. Измерения локальной вибрации и оценка ее воздействия на человека. Часть 1. Общие требования (ИСО 5349-1:2001, MOD)
Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов на территории государства по соответствующему указателю стандартов, составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.
3 Термины, определения и обозначения
3.1 Термины и определения
В настоящем стандарте применены термины по ГОСТ 12.1.012, ГОСТ ИСО 8041 и ГОСТ 24346, а также следующие термины с соответствующими определениями:
3.1.1 станок с ручной подачей: Машина, к исполнительной части которой оператор подает обрабатываемую деталь, подвергаясь через нее воздействию локальной вибрации.
Пример - Ленточно-пильный станок, шлифовальный станок.
3.1.2 машина с ручным управлением: Машина, через органы управления которой (рукоятки, рычаги или рулевое колесо) вибрация воздействует на оператора.
Пример - Самоходная газонокосилка, автопогрузчик, качающаяся шлифовальная рама.
3.1.3 обрабатываемая деталь: Деталь, которая удерживается руками оператора и передает на них вибрацию, возникающую в процессе обработки.
Пример - Отливка, обрабатываемая на шлифовальном станке, деревянная заготовка, подаваемая в ленточнопильный станок.
Примечание - Локальная вибрация может воздействовать на оператора одновременно через обрабатываемую деталь и органы управления станком, на котором деталь обрабатывают.
3.1.4 ручная машина: Ручной механизированный инструмент, который в процессе работы удерживается руками оператора, полностью или частично воспринимающего вес инструмента.
Пример - Электрическая дрель, пневматическое зубило, цепная пила.
3.1.5 вставной инструмент: Сменное приспособление, которое крепят внутри или снаружи ручной машины.
Пример - Буровая головка, зубило, цепь цепной пилы, диск пилы, шлифовальный диск.
3.1.6 операция: Идентифицируемое рабочее задание, для которого проводят измерение представительной вибрации; данное измерение может быть выполнено при использовании одной ручной машины, одного типа обрабатываемой детали или для одной фазы задания.
Примечание - Операция может определяться использованием конкретной ручной машины или обрабатываемой детали конкретного типа или конкретной фазой рабочего задания.
3.1.7 оператор: Лицо, использующее в процессе работы станок с ручной подачей, машину с ручным управлением или ручную машину.
3.1.8 операция с использованием ручной машины: Любой период работы ручной машины, в течение которого оператор подвергается воздействию локальной вибрации.
3.1.9 объект обработки: Предмет или материал, обрабатываемый с помощью ручной машины.
3.2 Обозначения
В настоящем стандарте применены следующие условные обозначения.
* - среднеквадратичное значение корректированного виброускорения в одном направлении действия локальной вибрации при выполнении i-й операции, . Для указания направлений измерения используются дополнительные нижние индексы х, у или z (т.е. , , );
- значение полной вибрации при выполнении i-й операции (корень из суммы квадратов по всем трем направлениям измерения вибрации), ;
A(8) - вибрационная экспозиция за смену, ;
- составляющая i-й операции в значении вибрационной экспозиции за смену, ;
- базовое значение временного интервала, равное 8 ч (28800 с);
- общее время (в течение рабочего дня) воздействия вибрации при выполнении i-й операции.
4 Измеряемые величины
При выполнении каждой i-й операции для оценки воздействия вибрации определяют две основные величины по ГОСТ 31192.1:
- значение полной вибрации , ; это значение рассчитывают по результатам измерений среднеквадратичных значений корректированного виброускорения для каждого направления действия вибрации: , , ;
- время (в течение рабочего дня) воздействия вибрации при выполнении i-й операции.
Основным фиксируемым параметром является вибрационная экспозиция за смену А(8). Его рассчитывают на основе значений и для всех операций i (см. раздел 8).
5 Подготовка к проведению измерений
5.1 Общие положения
В течение рабочего дня оператор на рабочем месте выполняет серию операций, часть которых может неоднократно повторяться. При этом воздействующая на оператора вибрация может сильно различаться в зависимости от вида операции, используемой ручной машины (машин) и режима ее работы.
Для получения оценки вибрационной экспозиции за смену вначале устанавливают, при выполнении каких операций в течение рабочего дня вибрация, воздействующая на оператора, будет значительной (см. 5.2). После этого для каждой такой операции определяют один из четырех возможных способов измерения вибрации (см. 5.3). Выбранный способ будет зависеть от особенностей рабочего места оператора, распорядка рабочего дня и вида источника вибрации.
5.2 Выбор операций, для которых проводят измерения
Важно, чтобы измерения были проведены для всех ручных машин (объектов обработки), вибрация которых определяет существенную составляющую вибрационной экспозиции за смену. Для получения полной картины типичного (среднего) воздействия вибрации в течение рабочего дня необходимо идентифицировать:
a) все источники вибрационного воздействия (т.е. используемые машины и инструмент);
b) все операции, проводимые с ручной машиной (например, цепная пила может находиться в неработающем состоянии, работать под полной нагрузкой при распиловке ствола дерева и под малой нагрузкой при распиловке боковых ветвей, сверлильный инструмент может работать в ударном и безударном режимах и, кроме того, на разных скоростях вращения);
c) все изменения условий работы, которые могут оказать влияние на уровень воздействующей вибрации (например, бетонолом может сначала быть использован для разрушения твердого бетонного покрытия, а затем более мягкого грунтового слоя; шлифовальная машина может сначала быть использована с абразивной шкуркой, а затем с борфрезой);
d) все вставные инструменты, которые могут влиять на уровень воздействующей вибрации (например, шлифовальный станок может быть использован с набором наждачных бумаг разной степени зернистости - от грубой до чистовой обработки; каменщик может применять пневматическое зубило с широким набором различных зубил).
Кроме того, целесообразно также получить:
e) информацию от рабочих и контролирующих лиц о ситуациях, когда возможно появление максимальной вибрации;
f) оценки потенциальной вибрационной опасности каждой операции на основе данных о параметрах производимой вибрации, предоставляемых изготовителем ручной машины (см. приложение А), или использования (при их наличии) результатов выполненных ранее измерений для ручных машин того же вида.
5.3 Организация проведения измерений
5.3.1 Продолжительные измерения в процессе непрерывного выполнения операции
Если рабочая операция не прерывается длительный период времени, в течение которого оператор сохраняет контакт с вибрирующей поверхностью, то измерения вибрации могут быть проведены в течение всего этого периода. Допускается, чтобы данная операция сопровождалась изменениями уровня вибрации при условии, что эти изменения являются для нее характерными.
Для оценки вибрационной экспозиции за смену помимо информации об уровне вибрации необходима также оценка длительности воздействия вибрации в течение рабочего дня.
5.3.2 Продолжительные измерения в процессе выполнения операции с перерывами
Если рабочая операция, выполняемая в течение длительного периода времени, включает в себя короткие остановки, когда воздействие вибрации отсутствует, то измерения вибрации также могут быть проведены в течение всего этого периода при условии, что указанные остановки являются составной частью выполнения операции и оператор постоянно поддерживает контакт c ручной машиной или обрабатываемой деталью, существенно не изменяя положения своих рук.
Для оценки вибрационной экспозиции за смену помимо информации об уровне вибрации необходима также оценка длительности воздействия вибрации в течение рабочего дня. В данном случае оценка длительности воздействия включает в себя короткие перерывы в воздействии вибрации и, таким образом, превышает собственно время воздействия вибрации.
5.3.3 Кратковременные измерения в процессе выполнения операции с перерывами
Если в процессе работы оператор может часто отпускать (откладывать в сторону) ручную машину или обрабатываемую деталь, перемещать руки к другим частям машины или брать новые детали для обработки, а также если в ручную машину могут быть внесены какие-то изменения (например, вставлены другие шлифовальные ленты или сверла) или оператор берет другую ручную машину, то во всех этих случаях применимы только кратковременные измерения в течение каждой фазы рабочей операции.
Иногда получение надежных измерений во время обычного выполнения рабочей операции затруднительно или невозможно, поскольку с точки зрения процедуры измерения длительность действия вибрации может быть слишком коротка. В этом случае допускается проведение измерений в процессе имитации рабочей операции, когда периоды действия вибрации искусственно удлиняют, но рабочие условия при этом поддерживают максимально близкими к тем, что имеют место при обычном выполнении рабочей операции.
Для оценки вибрационной экспозиции за смену помимо информации об уровне вибрации необходима также оценка длительности воздействия вибрации для каждой рабочей фазы операции.
5.3.4 Измерения в течение фиксированного периода времени всплесков вибрации, одиночных или множественных ударов в процессе выполнения операции
Если при выполнении отдельных операций (например, с использованием клепальных молотков, гвоздезабивных машин и т.д.) наблюдают кратковременные всплески вибрации, которые могут носить характер одиночных или множественных ударов, или само воздействие вибрации может быть кратковременным (например, при использовании ударных гайковертов), то получение оценки реального времени воздействия может часто оказаться затруднительным, хотя общее число процессов импульсного типа в течение всего рабочего дня можно легко оценить. В этом случае рекомендуется проводить измерения в течение фиксированного интервала времени, включающего в себя время, затраченное на одну или несколько законченных операций с использованием ручной машины. Период измерений, по возможности, должен включать в себя минимальные интервалы до начала, после окончания и в перерыве между импульсными воздействиями.
Для оценки вибрационной экспозиции за смену помимо информации о числе импульсов вибрации в течение рабочего дня и их уровнях необходима также информация о длительности измерений и числе импульсов вибрации в каждый период измерений.
Примечания
1 В случае, когда рабочий подвергается воздействию множественных ударов или вибрации переходного вида (например, при использовании ручных машин для крепления деталей), метод, предложенный в ГОСТ 31192.1, может давать заниженную оценку степени жесткости вибрационного воздействия. За неимением лучшего, данный метод можно применять, но к интерпретации полученных результатов следует относиться с осторожностью, о чем необходимо сделать соответствующую запись в протоколе испытаний.
2 Измерения вибрации, выполняемые для последующего сравнения результатов (например, для сравнения виброактивности двух ручных машин или для оценки различий в вибрации вследствие использования различных вставных инструментов), важно проводить при непрерывной работе ручной машины, исключающей любые перерывы в воздействии вибрации.
5.4 Длительность проведения измерений
5.4.1 Измерения в режиме обычного выполнения рабочих операций
Результаты измерений получают усреднением по интервалу времени, представительному с точки зрения типичного использования ручной машины или типичного выполнения технологического процесса. По возможности измерения начинают в момент первого контакта рук рабочего с вибрирующей поверхностью и завершают в момент разрыва этого контакта. В данном интервале времени могут наблюдаться изменения уровня вибрации, включая даже периоды ее полного отсутствия.
По возможности выборочные измерения проводят в различные моменты рабочего дня с последующим усреднением, чтобы были учтены изменения в характере вибрации на протяжении рабочего дня.
Результаты серии из N измерений вибрации усредняют по формуле
, (1)
где
- результат j-го измерения;
- длительность j-го измерения;
.
Часто воздействие вибрации наблюдают в течение коротких периодов времени, многократно повторяющихся на протяжении рабочего дня. Хотя измерения могут быть усреднены по полному циклу операции (включая периоды, когда источник вибрации отключен), на практике обычно имеется возможность провести усреднение только по короткому периоду времени, когда рука находится в контакте с вибрирующей поверхностью.
Минимально допустимая длительность измерений зависит от типа вибрационного сигнала, средств измерений и выполняемой рабочим операции. Общее время измерения, представляющее собой сумму отдельных измерений, должно быть не менее 1 мин. Предпочтительно вместо одного большого периода измерений брать несколько (не менее трех для каждой операции) более коротких.
Измерения очень короткой длительности (менее 8 с) ненадежны при оценке низкочастотной составляющей, поэтому их рекомендуется избегать. При необходимости, если время воздействия вибрации в процессе выполнения операции мало (например, для шлифовальных станков некоторых типов характерно очень короткое время контакта с вибрирующей поверхностью), увеличивают общее число измерений таким образом, чтобы общая длительность измерений для данной операции составила 1 мин и более.
Примечание - Требование к минимальной длительности измерений связано с условием обеспечения необходимой статистической точности получаемой оценки.
5.4.2 Измерения при имитации рабочих операций
Если проведение измерений при обычном выполнении операции невозможно или затруднено, допускается выполнять их при имитации рабочего процесса.
Основным назначением имитации рабочей операции является обеспечение проведения измерений в течение длительного периода времени, что невозможно реализовать в обычных условиях ее выполнения. Например, обработка небольшой по размеру отливки на шлифовальном станке может занимать всего несколько секунд. В этом случае вместо проведения большого числа кратковременных измерений для разных отливок целесообразно имитировать выполнение операции шлифования на небольшом числе бракованных отливок, используя каждую из них по несколько раз.
Процессы приложения ручной машины к объекту обработки и ее отнятия, а также замена ручной машины или обрабатываемого изделия - все это может повлиять на результат измерений. Для предотвращения этого рекомендуется проводить измерения при имитации рабочего процесса, специально организованного таким образом, чтобы избежать остановок в выполнении операций.
5.5 Оценка длительности воздействия вибрации в течение рабочего дня
Для каждого источника вибрации должно быть получено значение длительности воздействия вибрации в течение рабочего дня. Оценка типичного времени воздействия может быть основана:
- на измерении реального времени воздействия в процессе обычного выполнения рабочего задания (например, для полного рабочего цикла или на представительном 30-минутном интервале) и
- на информации о распределении рабочего времени в течение смены (например, числе рабочих циклов, приходящихся на одну смену, или длительности рабочей смены).
Вначале определяют, как долго и от какого источника оператор подвергается воздействию вибрации за заданный период времени. Для этого могут быть использованы следующие методы:
- измерение секундомером;
- применение специального регистратора данных, связанного с ручной машиной и активизирующегося во время ее работы;
- анализ видеозаписей;
- получение выборки из различных рабочих состояний.
Самым надежным источником информации о распределении деятельности в течение типичного рабочего дня являются записи в рабочем журнале. Однако необходимо убедиться в том, что получаемые таким образом сведения способны обеспечить точную оценку вибрационной экспозиции за смену. Например, записи в рабочем журнале могут дать очень точную информацию о числе полностью обработанных объектов к концу каждого рабочего дня, но в случае, если в работе участвовало более одного оператора или к концу рабочей смены остались необработанные объекты, данная информация может оказаться непригодной для непосредственного расчета вибрационной экспозиции за смену.
Независимо оттого, какой метод используют для измерений вибрации, необходимо знать полное время ее воздействия в течение рабочего дня. Если вибрацию усредняют по всему рабочему циклу, длительность воздействия определяют как время одного рабочего цикла, умноженное на число рабочих циклов за рабочий день. Если измерения проводят в течение времени, когда рука находится в контакте с вибрирующей поверхностью, оценивают полное время этого контакта в течение рабочего дня.
Внимание! Обычно в ответ на просьбу оценить время типичного использования ручной машины в течение рабочего дня операторы дают завышенные оценки, включая в него паузы в работе (например, промежуток между закручиванием двух гаек при использовании гайковерта или время для подготовки нового обрабатываемого изделия).
Примечание - ГОСТ 31192.1 устанавливает метод оценки вибрационной экспозиции за смену только в пределах одного рабочего дня. Однако в некоторых обстоятельствах может быть желательным получение оценок воздействия на основе информации о воздействии в течение большего периода времени. Для некоторых видов работ (например, в строительстве) время, затрачиваемое на работу с виброопасным инструментом в разные рабочие дни, может быть существенно различным; поэтому трудно, а то и невозможно использовать наблюдения или записи рабочего журнала для оценки типичного времени воздействия в течение рабочего дня. Примеры методов, применяемых для оценки вибрационного воздействия на интервале времени, превышающем один рабочий день, даны в приложении В.
6 Проведение измерений вибрации
6.1 Измерительная аппаратура
6.1.1 Общие положения
В качестве датчиков вибрации обычно используют акселерометры. Получение корректированного виброускорения возможно с использованием различной измерительной аппаратуры.
Одним из способов является измерение с помощью виброметра, выполняемого, как правило, в одном функциональном блоке и имеющего встроенные функции частотной коррекции и интегрирования. Такой прибор предназначен, в первую очередь, для экспресс-оценки вибрационного воздействия на рабочих местах и может быть применен в большинстве ситуаций, на которые распространяется настоящий стандарт. Однако с его помощью невозможно контролировать правильность проведения измерений.
Более сложные измерительные системы часто основаны на выполнении той или иной формы частотного анализа (например, в третьоктавных или узких полосах частот); для хранения информации в них может быть предусмотрено цифровое или аналоговое устройство записи данных, а для сбора и анализа информации использован компьютер. Такие системы дороже и сложнее в эксплуатации, чем простые виброметры, однако позволяют контролировать процесс проведения измерений.
Частотный анализ полезно проводить, если имеются какие-либо сомнения в отношении качества сигнала виброускорения (например, возможного наличия сдвига нулевого уровня, см. 6.2.4). Он позволит также получить информацию о доминирующих частотах и наличии гармоник в спектре сигнала, что может способствовать выработке мер по эффективному снижению вибрации.
В предельных случаях применимости ГОСТ 31192.1 (например, для повторяющихся ударов, для вибрации с доминирующими частотными составляющими в диапазоне свыше 1400 Гц) может оказаться полезной любая дополнительная информация, полученная с помощью более сложных измерительных систем.
Минимальные требования к измерительной аппаратуре (характеристики частотной коррекции, пределы допусков, динамический диапазон, коэффициент преобразования, линейность преобразования и индикация перегрузки и др.) для соответствующих средств измерений и анализа установлены в ГОСТ ИСО 8041.
6.1.2 Акселерометры
6.1.2.1 Общие положения
Выбор акселерометра определяется ожидаемым уровнем вибрации, диапазоном частот, физическими характеристиками вибрирующей поверхности и условиями, в которых он должен работать.
6.1.2.2 Уровень вибрации
Ручные машины могут производить вибрацию высокого уровня. Например, пневматические молотки способны создавать вибрацию с максимальным ускорением от 20000 до 50000 . Однако при этом большая часть вибрационной энергии лежит далеко за пределами частотного диапазона, рассматриваемого в настоящем стандарте. Поэтому выбирать для измерений следует такой акселерометр, который может сохранять способность функционировать при высоких значениях ускорения и, в то же время, обеспечивать измерения вибрации значительно более низкого уровня в диапазоне от 5,6 до 1400 Гц. Вибрацию на очень высоких частотах можно подавить с помощью механического фильтра (см. приложение С).
6.1.2.3 Диапазон частот
На выбор акселерометра оказывает влияние также такая его характеристика, как основная частота резонансных колебаний. Информацию об основной частоте резонансных колебаний акселерометра предоставляет его изготовитель. В соответствии с требованиями ГОСТ ИСО 5348 основная частота резонансных колебаний должна более чем в пять раз превышать верхнюю границу диапазона частот измерений (в случае локальной вибрации это будет составлять 7000 Гц). Для акселерометров пьезоэлектрического типа частота резонансных колебаний должна быть еще много выше указанной, - в идеале более 30 кГц, - чтобы минимизировать вероятность искажений вследствие сдвига нулевого уровня (см. 6.2.4).
Примечание - Не следует путать основную частоту резонансных колебаний акселерометра с резонансной частотой акселерометра после его установки на обрабатываемую деталь или ручную машину - последняя характеристика определяется свойствами системы крепления акселерометра. На практике резонанс такого установленного акселерометра будет лежать существенно ниже основной резонансной частоты (см. 6.1.4).
6.1.2.4 Влияние массы акселерометра
После крепления акселерометра на вибрирующую поверхность характеристики вибрации этой поверхности претерпевают изменения. Чем меньше масса акселерометра, тем меньше будет его влияние на вибрацию (см. 6.1.5).
6.1.2.5 Внешние факторы
При выборе акселерометра, предназначенного для работы в особых условиях окружающей среды, необходимо принимать во внимание чувствительность коэффициента преобразования акселерометра к температуре, влажности и другим внешним факторам (см. ГОСТ ИСО 8041).
6.1.3 Места установки акселерометров
Согласно ГОСТ 31192.1 измерения вибрации следует проводить в непосредственной близости от того места на ладони (ладонях), которое соприкасается с вибрирующей поверхностью. Рекомендуется устанавливать акселерометр в центре зоны обхвата, если это не мешает нормальному обхвату ручной машины (органа управления, обрабатываемой детали) рукой оператора.
Проведение измерений непосредственно под ладонью обычно возможно только при использовании специального адаптера (см. приложение D). Такой адаптер следует крепить под ладонью или между пальцами. На практике в большинстве случаев акселерометр крепят либо в стороне от ладони, либо с нижней стороны рукоятки в том месте, которое соответствует середине ладони. Если адаптер зажимают между пальцами руки, акселерометр должен находиться как можно ближе к поверхности рукоятки ручной машины, чтобы свести к минимуму усиление угловой составляющей вибрации. Адаптер не должен иметь собственных резонансов, способных оказать влияние на результат измерений вибрации.
Результаты измерений в разных точках вибрирующей поверхности на расстоянии, меньшем, чем ширина ладони, могут существенно отличаться друг от друга. В частности, это характерно для ручных машин с боковыми рукоятками (часто встречающимися, например, у угловых шлифовальных машин), особенно когда жесткость их крепления к корпусу ручной машины мала. В этих случаях рекомендуется устанавливать акселерометр в двух точках (по обеим сторонам ладони), чтобы потом для получения оценки вибрационного воздействия усреднить результаты двух измерений.
Для ручных машин многих видов точки и направления измерения локальной вибрации, используемые в процессе испытаний для заявления вибрационной характеристики машины, могут быть определены в соответствующих испытательных кодах по вибрации (см., например, ГОСТ 30873.2 - ГОСТ 30873.14, [1] и приложение А). Точки измерения в испытательных кодах устанавливают исходя из конкретных целей измерений (часто в направлении только одной оси), поэтому они не всегда будут удовлетворять целям оценки вибрационной экспозиции за смену. Однако при выборе точек и направлений измерения вибрации на рабочем месте полезно сравнить их с теми, что были использованы в процессе испытаний для заявления вибрационных характеристик ручных машин.
6.1.4 Крепление акселерометров
6.1.4.1 Общие положения
Акселерометр на вибрирующую поверхность следует устанавливать жестко. Более подробные сведения о некоторых способах крепления даны в приложении D. Из возможных способов крепления следует выбирать тот, который обеспечивает надежную фиксацию акселерометра на вибрирующей поверхности, не мешает работе ручной машины и не оказывает влияния на измеряемую вибрацию. Каждый способ крепления имеет свои достоинства и недостатки, поэтому его выбирают в зависимости от конкретной ситуации.
Система крепления не должна ухудшать линейность частотной характеристики измерительного тракта, т.е. она не должна ослаблять или усиливать отдельные составляющие вибрации и не должна вносить резонансы по всему диапазону частот измерений. Надежность фиксации датчиков следует тщательно проверять как до, так и после проведения измерений.
Акселерометр, установленный на ручную машину или на обрабатываемую деталь, в той или иной степени будет мешать оператору выполнять его работу. Поэтому крепление следует выполнять таким образом, чтобы неудобства, причиняемые оператору, были минимальны. Для этого рекомендуется перед измерениями провести наблюдения за тем, как именно оператор держит ручную машину или обрабатываемую деталь, чтобы выбрать наиболее подходящие точки установки и направления ориентации акселерометров. Эти точки и направления измерения должны быть зафиксированы.
Очень важно, чтобы установка акселерометра не привела к ухудшению контроля со стороны оператора за работой ручной машины и нарушениям условий безопасности его работы. Нередко наилучшее место для измерений совпадает с положением выключателя ручной машины. Следует убедиться, что датчики вибрации, системы их крепления и соединительные кабели не препятствуют управлению ручной машиной в процессе ее работы.
6.1.4.2 Крепление на поверхность с упругим покрытием
Если рукоятки ручной машины покрыты мягким материалом, вибропередаточные свойства этого покрытия будут зависеть от силы, действующей на него со стороны системы крепления датчика вибрации (далее - датчик). Поэтому необходимо убедиться, что результаты измерения вибрации не будут зависеть от упругих свойств материала. Если известно, что материал покрытия не вызовет ослабления воздействия вибрации, то при установке датчика:
- следует удалить часть покрытия в той области, где должен быть установлен датчик, или
- закрепить датчик таким образом, чтобы упругий материал был полностью сжат под действием силы со стороны крепления.
Обычно такие действия оправданы, поскольку упругие покрытия на рукоятках ручных машин, как правило, предназначены не для снижения вибрации, а только для улучшения условий контакта руки с рукояткой**.
Если же упругое покрытие в той или иной степени ослабляет воздействие вибрации (например, толщина покрытия достаточно велика), тогда датчик следует устанавливать с помощью адаптера [см. D.2 (приложение D)], удерживаемого на вибрирующей поверхности рукой оператора. Для сохранения неизменного положения адаптера в процессе измерений рекомендуется фиксировать его с помощью изоляционной ленты, намотанной без натяжения вокруг адаптера и рукоятки ручной машины. Данный способ крепления более сложен, но он обеспечивает получение более точных измерений реально действующей вибрации.
6.1.4.3 Крепление к рукояткам или зонам обхвата, изготовленным из легких упругих материалов
Если рукоятки или зоны обхвата ручной машины изготовлены из легких упругих материалов (пример - пластиковые боковые рукоятки шлифовальных машин некоторых моделей), установка на них датчиков может быть осуществлена с помощью клея.
6.1.5 Масса акселерометра
Установка акселерометра на вибрирующую поверхность влияет на характер вибрации. Чем больше присоединенная масса датчика, тем более существенны изменения. Если общая масса акселерометра (акселерометров) и системы крепления составляет менее 5% массы объекта (рукоятки ручной машины или обрабатываемой детали), к которому он прикреплен, данный эффект можно не принимать во внимание.
Примечание - На практике можно добиться того, чтобы масса всей системы для измерений трехкомпонентной вибрации не превышала 30 г.
При наличии сомнений в том, оказывает ли масса датчика влияние на вибрацию, следует провести такую проверку:
- прикрепить акселерометр (акселерометры) к рукоятке ручной машины (к обрабатываемой детали) и провести измерение вибрации;
- установить на ручную машину (обрабатываемую деталь) вблизи акселерометра дополнительную массу, близкую к массе акселерометра, и повторить измерения;
- если полученную разницу в результатах измерений нельзя отнести только к статистическим погрешностям, для проведения измерений необходимо выбрать акселерометр (систему крепления) меньшей массы.
6.1.6 Измерения трехкомпонентной вибрации
При измерениях трехкомпонентной вибрации желательно использовать базицентрическую систему координат, как определено в ГОСТ 31192.1. Однако в некоторых ситуациях измерение трех составляющих вибрации невозможно или не является необходимым. В таких случаях ГОСТ 31192.1 предусматривает применение соответствующего коэффициента, позволяющего результаты измерений одно- или двухкомпонентной вибрации пересчитать в оценку полной вибрации.
Значение коэффициента должно находиться в интервале от 1,0 (если направление действия вибрации, в котором было проведено измерение, является доминирующим) до 1,7 (если все направления действия вибрации равноправны). Направление действия вибрации можно считать доминирующим, когда вибрация по каждому из двух других направлений не будет превышать 30% вибрации в этом направлении. Измерять вибрацию только в одном направлении допускается лишь тогда, когда это направление является доминирующим.
Примеры
1 Если при обработке изделия его положение в руках оператора непрерывно изменяется (например, при обработке небольших деталей на шлифовальном станке), для получения представительной оценки вибрационного воздействия может оказаться достаточным проведение измерений вибрации в одном направлении.
Тогда оценку полной вибрации получают на основе измерений однокомпонентной вибрации , которую считают представительной для всех трех направлений базицентрической системы координат, т.е.
.
Поэтому для оценки полной вибрации следует использовать коэффициент 1,73 (приближенно 1,7). Таким образом, оценка полной вибрации будет получена умножением измеренного значения однокомпонентной вибрации на коэффициент 1,7.
2 Предварительные измерения для бетонолома показывают, что наибольшей является вибрация в вертикальном направлении, в то время как вибрация по другим направлениям не превышает 30% этого значения. В данном случае оценка полной вибрации будет получена из выражения
.
В данном случае значение коэффициента будет составлять 1,086 (приближенно 1,1). Таким образом, оценка полной вибрации будет получена умножением измеренного значения вибрации в доминирующем направлении на коэффициент 1,1.
6.1.7 Одновременные и последовательные измерения
Предпочтительно проводить измерения вибрации по всем трем направлениям (осям х, у и z) сразу. Однако ручные машины некоторых моделей позволяют проводить измерения только в одном направлении. Кроме того, одновременные измерения только в одном направлении рекомендуется проводить для очень легких объектов, поскольку это позволит соблюсти условие малости общей массы акселерометров и системы крепления по сравнению с массой объекта (рукоятки, обрабатываемой детали).
Если измерения проводят последовательно, необходимо, чтобы для каждого измерения вибрации (по осям х, у и z) все рабочие условия были неизменными.
6.1.8 Частотная коррекция
Частотная коррекция для локальной вибрации - по ГОСТ 31192.1 и ГОСТ ИСО 8041. Частотная коррекция может быть реализована посредством:
- аналоговых фильтров;
- цифровой фильтрации временного сигнала;
- использования весовых коэффициентов для спектральных составляющих в третьоктавных или узких полосах частот.
При применении цифровых методов обработки сигнала, таких как цифровая фильтрация, анализ с использованием быстрого преобразования Фурье (БПФ-анализ) и др., важно, чтобы выбранные параметры обработки обеспечивали получение точных результатов во всем диапазоне частот от 5,6 до 1400 Гц. Для получения хорошего разрешения по частоте в низкочастотной области диапазона длительность измерения должна быть не ниже 20 с, а для получения точных оценок составляющих на высоких частотах необходимо, чтобы частота выборки была не ниже 3600 Гц.
При применении БПФ-анализа необходимо использовать соответствующие временные окна. В случае непрерывно работающих машин вращательного или ударно-вращательного действия в качестве временного окна рекомендуется хэннинг (окно Хана). Для ручных машин ударного действия, где частота ударов (число ударов в секунду) меньше десятикратного разрешения по частоте (при анализе в узких полосах частот), следует рассмотреть возможность использования окон другого типа. Для ручных машин с очень низкой частотой ударов, например, меньшей или равной разрешению по частоте, рекомендуется анализ с использованием экспоненциального окна со следящим запуском.
6.1.9 Использование устройств записи данных
Обычно рекомендуется осуществлять запись сигналов вибрации - это позволяет проводить обработку одних и тех же данных разными способами.
Запись данных может быть реализована либо в аналоговом, либо в цифровом виде. В любом случае необходимо обеспечить достаточный динамический диапазон записи, чтобы сохранить данные без потерь во всем диапазоне частот. Для аналоговых устройств записи характерен динамический диапазон от 40 до 50 дБ, при котором низкочастотные составляющие сигнала виброускорения обычно теряются в шуме магнитной ленты. Цифровые системы обеспечивают лучшие характеристики по динамическому диапазону, но необходимо этот диапазон использовать оптимальным образом.
Некоторые аналоговые и некоторые цифровые системы записи используют метод сжатия данных для уменьшения места, занимаемого ими на носителе. Применять такие системы можно только в том случае, если доказано, что это не приводит к существенным потерям информации.
Измерительная аппаратура, в состав которой входит устройство записи данных, должна удовлетворять требованиям ГОСТ ИСО 8041.
6.1.10 Диапазон измерений
Большинство измерительных инструментов позволяют пользователю выбирать диапазон измерений ускорения. Этот выбор следует осуществлять в процессе выполнения пробных измерений. Для получения оптимальной характеристики по соотношению сигнал/шум выбирают наименьший из возможных диапазонов измерений, не допуская при этом появления перегрузок.
6.1.11 Время усреднения
Для получения среднеквадратичного значения корректированного виброускорения вибрацию усредняют на периоде нормального использования ручной машины или на периоде контакта оператора с обрабатываемой деталью с использованием операции линейного интегрирования.
Экспоненциальное интегрирование (см. ГОСТ 31192.1 и ГОСТ ИСО 8041) допускается использовать только в случае, если сигнал вибрации является существенно стационарным.
6.2 Возможные источники ошибок при проведении измерений
6.2.1 Соединения кабеля
На практике большинство проблем при измерении локальной вибрации связано с качеством соединения акселерометра с сигнальным кабелем. Необходимо убедиться, что все кабельные соединения выполнены надежно, а сам кабель не имеет каких-либо повреждений. В частности, необходимо убедиться, что в процессе работы ручной машины (в процессе обработки детали) в месте соединения кабеля с акселерометром не наблюдаются чрезмерные механические напряжения.
Плохое соединение может приводить к отсутствию сигнала, что, в свою очередь, может быть интерпретировано как отсутствие вибрации. А кратковременные потери контакта будут проявляться как сдвиги нулевого уровня, в промежутках между которыми сигнал выглядит нормально.
Повреждение экранирующей оплетки кабеля может вызывать появление электрических наводок, что будет причиной высокого уровня составляющих на частоте сети. Для электрических ручных машин, у которых доминирующие составляющие вибрации обычно лежат на частоте напряжения сети или ее гармониках, обнаружить данный вид повреждения будет особенно трудно. Для пьезоэлектрических акселерометров, требующих использования согласующего усилителя с высоким входным импедансом, потеря контакта в цепи заземления кабеля может вызвать очень высокие наводки на частоте питания электрической сети.
6.2.2 Влияние электромагнитных полей
Электрические, магнитные и электромагнитные поля не должны оказывать влияния на результат измерений. При наличии емкостной или индуктивной связи между сигналами влияние неизбежных электромагнитных помех может быть уменьшено применением следующих мер:
- экранированием кабелей;
- использованием витых кабелей;
- заземлением экранирования сигнального кабеля только с одного конца, обычно со стороны усилителя;
- использованием датчика с выходами, симметричными относительно земли, и дифференциального усилителя;
- недопущением прокладывания сигнального кабеля параллельно кабелям системы питания;
- обеспечением электрической изоляции между акселерометром и вибрирующей поверхностью.
6.2.3 Трибоэлектрические явления
Кабели измерительной системы не должны подвергаться воздействию вибрационных напряжений высокой амплитуды, особенно для систем с большим внутренним сопротивлением, таких как пьезоакселерометр, поскольку подобные деформации приводят к появлению паразитных электрических сигналов. Поэтому кабели должны быть надежно закреплены на вибрирующей поверхности в точке, находящейся поблизости от акселерометра (например, с помощью изоляционной ленты). Для пневматических ручных машин обычно хороший эффект дает фиксация кабеля через равные расстояния вдоль линии подачи сжатого воздуха.
6.2.4 Сдвиг нулевого уровня
Воздействие на пьезоэлектрический датчик высоких ускорений на высоких частотах, например при работе ручной машины ударного действия без системы демпфирования, может вызвать появление сдвига нулевого уровня, искажающего сигнал вибрации таким образом, как будто в нем появилась дополнительная низкочастотная составляющая. Это искажение происходит внутри датчика вследствие механической перегрузки его пьезоэлектрического элемента. Чтобы избежать появления сдвига нулевого уровня, можно использовать механический фильтр (см. приложение С).
Наличие сдвига нулевого уровня в первую очередь наблюдается в низкочастотном диапазоне ниже частоты ударов ручной машины, и его легко обнаружить при частотном анализе вибрационного сигнала по характерному виду спектра в области нижних частот (участку, напоминающему по форме лыжный склон или спектр фликкер-шума с нереалистично большим значением энергии низкочастотной вибрации). Преобразуя среднеквадратичное значение некорректированного виброускорения а в перемещение d по формуле , где f - центральная частота полосы анализа, получают признак, по которому можно судить о наличии сдвига. Если рассчитанное по приведенной формуле перемещение очевидно превышает наблюдаемое движение датчика (например, более чем в два раза), это свидетельствует о том, что с большой долей вероятности имеет место сдвиг нулевого уровня.
Хотя наличие сдвига нулевого уровня можно обнаружить из анализа низкочастотных составляющих вибрационного сигнала, он оказывает влияние на весь спектр вибрации в целом. Поэтому любые измерения, для которых наблюдается данный эффект, должны быть признаны непригодными. Не следует пытаться использовать результаты измерений, в которых явно виден признак сдвига нулевого уровня, удаляя или каким-либо образом корректируя низкочастотную область спектра.
6.3 Проверка и подтверждение характеристик измерительного тракта
6.3.1 Регулярные проверки работоспособности
Как до, так и после проведения последовательности измерений весь измерительный тракт должен быть проверен с помощью вибрационного калибратора (эталонного источника вибрации), воспроизводящего синусоидальную вибрацию с известным ускорением на известной частоте.
Примечание - На практике коэффициент преобразования акселерометра редко изменяется в процессе измерений, однако сам акселерометр может получить механические повреждения. Регулярные проверки позволяют выявить мнимые изменения коэффициента преобразования и при необходимости исключить некоторые измерения.
6.3.2 Проведение плановых испытаний для подтверждения характеристик измерительного тракта
Характеристики измерительного тракта следует периодически (например, каждые два года) подтверждать. В процессе испытаний должно быть подтверждено, что измерительный тракт работает в пределах допусков, установленных ГОСТ ИСО 8041.
Помимо периодических поверок испытания на подтверждение характеристик измерительной системы следует проводить всякий раз после того, как какая-либо ответственная часть измерительной системы была подвергнута грубому обращению. Результаты испытаний должны быть зафиксированы.
7 Неопределенность оценки вибрационной экспозиции за смену
7.1 Неопределенность в измерении ускорения
Неопределенность результатов измерений вибрации, воздействующей на оператора, зависит от действующих для каждого конкретного измерения факторов, таких как:
- неопределенность, приписываемая средствам измерений;
- неопределенность калибровки;
- наличие электрических помех;
- влияние крепления акселерометров;
- влияние массы акселерометров;
- влияние расположения акселерометров;
- отклонения режима работы ручной машины от нормального, изменения в позе рук и прилагаемых силах, связанных с процессом измерения (т.е. креплением акселерометров и подсоединением кабелей);
- изменения в способе работы оператора (бессознательно проявляющихся под влиянием того, что он является субъектом измерений).
Кроме этого, на неопределенность общей оценки воздействия вибрации влияют изменения, наблюдаемые в течение рабочего дня, такие как:
- изменения состояния ручной машины и вставного инструмента (например, износ шлифовального диска может резко изменить вибрацию, воздействующую на оператора);
- изменения в позе и прилагаемых силах;
- изменения в характеристиках объекта обработки (обрабатываемого материала).
Примечания
1 Неопределенность, связанная с измерительным инструментом и калибровкой, электрическими помехами, креплением и массой акселерометра, обычно мала по сравнению с неопределенностью, обусловленной выбором точек измерения и изменчивостью рабочих условий.
2 При накоплении данных о воздействии вибрации на конкретное лицо желательно, по возможности, проводить измерения для машин и вставных инструментов разных поколений и в разном техническом состоянии.
3 Если целью измерений является оценка воздействия вибрации, связанной с выполнением конкретной задачи, источником неопределенности может быть также разница между операторами (их квалификацией, телосложением и т.д.) (см. 7.3).
7.2 Неопределенность в измерении времени воздействия
Неопределенность оценки времени воздействия зависит от неопределенности:
- измерений длительности воздействия;
- оценок числа рабочих циклов в день;
- оценок времени воздействия, сделанных самими операторами (см. приложение В); данный вид неопределенности может быть следствием неправильного понимания поставленного вопроса (путаницей между временем использования ручной машины и временем реального воздействия вибрации), а также неточных оценок периодов времени, в течение которых имело место воздействие вибрации (см. 5.5).
7.3 Оценка неопределенности
Источники неопределенности зависят от операции, для которой проводят измерения. Исследователю необходимо выявить основные источники вибрации (например, дисбаланс диска шлифовальной машины), после чего провести ряд измерений для установления размера неопределенности и расчета стандартного отклонения, связанного с основными источниками неопределенности (например, для шлифовальных машин может оказаться полезным проведение измерений для дисков с разными дисбалансами).
При получении оценки вибрационной экспозиции за смену неопределенность этой оценки должна быть ограничена в зависимости от преимущественного вида вибрации: 20% для стационарной вибрации и 40% для вибрации в форме импульсов (переходных процессов).
Если целью измерений является не оценка вибрационного воздействия на конкретного рабочего, а оценка воздействия при выполнении конкретной задачи, то для получения такой оценки следует, по возможности, провести измерения с участием, как минимум, трех операторов. Результат, который вносят в протокол испытаний, должен быть получен путем арифметического усреднения, при этом следует указать также значение стандартного отклонения измерений.
8 Расчет вибрационной экспозиции за смену
Зачастую воздействие вибрации на рабочего в течение рабочего дня складывается из нескольких операций. Для каждой такой операции i следует измерить полное значение вибрации и время воздействия . Вибрационную экспозицию за смену Д(8), , рассчитывают по формуле
. (2)
где
- базовое значение временного интервала за 8 ч (28800 с),
- число операций.
Чтобы облегчить сравнение между различными операциями и оценить долю каждой операции в значении вибрационной экспозиции за смену А(8), рекомендуется проводить расчет составляющих, вносимых отдельными операциями в вибрационную экспозицию за смену, по формуле
. (3)
Тогда значение вибрационной экспозиции за смену можно получить по формуле
. (4)
Для каждой руки оператора значение A(8) должно быть рассчитано отдельно. Неопределенность оценки А(8) часто весьма высока (типичные значения - от 20% до 40%). Поэтому при представлении полученного значения достаточно указывать две значащие цифры.
Практическое применение расчетов вибрационной экспозиции за смену рассмотрено в приложении Е.
9 Протокол испытаний
В протоколе испытаний должна быть ссылка на настоящий стандарт и указана, в зависимости от ситуации, следующая информация:
a) информация общего характера:
- наименование компании (заказчика);
- цель проведения измерений (например, оценка воздействия вибрации на конкретных рабочих, на группы рабочих, оценка управленческих решений, эпидемиологические исследования);
- дата проведения измерений и оценки;
- лицо или лица, для которых была проведена оценка воздействия;
- лицо, проводившее измерения и оценку;
b) условия окружающей среды на рабочем месте:
- место, где были проведены измерения (внутри помещения, вне помещения, на производственной территории);
- температура;
- влажность;
- шум;
c) информация, обусловившая выбор операций, для которых проведены измерения (см. 5.2);
d) фотография рабочего дня для каждой исследуемой операции:
- описание операций;
- используемые машины и вставной инструмент;
- используемые материалы или обрабатываемые детали;
- характер воздействия (например, часы работы, периоды перерывов);
- информация, необходимая для определения времени воздействия вибрации в течение рабочего дня (например, выработка или число рабочих циклов или обработанных деталей в день, длительность воздействия вибрации на одном цикле или для одной детали);
e) сведения об источниках вибрации:
- техническое описание ручной машины;
- вид и модель ручной машины;
- срок службы и техническое состояние ручной машины;
- масса ручной машины или обрабатываемой детали;
- средства снижения вибрации, примененные на данной ручной машине, если такие имеются;
- способ удерживания ручной машины в руках оператора;
- мощность ручной машины;
- частота вращения или частота нанесения ударов;
- типы и модели вставного инструмента;
- любая дополнительная информация (например, дисбаланс вставного инструмента);
f) средства измерений:
- состав измерительной системы;
- порядок проведения калибровок элементов измерительной системы;
- дата последних поверочных испытаний;
- результаты теста на контроль функциональности;
- результаты испытаний на воздействие внешних факторов;
g) условия измерения виброускорения:
- расположение и ориентация акселерометров (с приложением схемы и указанием размеров);
- способы крепления акселерометров;
- масса акселерометров и системы крепления;
- рабочие условия;
- поза и положение рук оператора (с указанием, является оператор правшой или левшой);
- любая дополнительная информация (например, значения сил нажатия и обхвата);
h) результаты измерений:
- среднеквадратичные значения корректированного виброускорения в направлениях х, у и z для каждой операции (т.е. , и , соответственно);
- длительности измерений;
- спектр некоррелированной вибрации (в случае проведения частотного анализа);
- значение коэффициента, используемого для получения оценки полной вибрации, с обоснованием его выбора, а также с обоснованием выбора направления (направлений) измерения (в случае проведения измерений только в одном или двух направлениях);
i) результаты оценки вибрационной экспозиции за смену:
- значение полной вибрации для каждой операции;
- длительность воздействия вибрации для каждой операции;
- доля каждой операции в значении вибрационной экспозиции за смену (если такой расчет был проведен);
- вибрационная экспозиция за смену A(8);
- оценка неопределенности определения вибрационной экспозиции за смену.
______________________________
* Здесь и далее нижний индекс h (от английского hand - рука) показывает, что данный параметр относится к локальной вибрации.
** Известно, что в некоторых случаях плохо подобранное покрытие способно даже усиливать передаваемую вибрацию на определенных частотах.
Библиография
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Межгосударственный стандарт ГОСТ 31192.2-2005 (ИСО 5349-2:2001) "Вибрация. Измерение локальной вибрации и оценка ее воздействия на человека. Часть 2. Требования к проведению измерений на рабочих местах" (введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 12 декабря 2007 г. N 364-ст)
Текст ГОСТа приводится по официальному изданию Федерального агентства по техническому регулированию и метрологии, Москва, Стандартинформ, 2008 г.
Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-97 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Порядок разработки, принятия, применения, обновления и отмены"
1 Подготовлен Открытым акционерным обществом "Научно-исследовательский центр контроля и диагностики технических систем" на основе собственного аутентичного перевода стандарта, указанного в пункте 4
2 Внесен Федеральным агентством по техническому регулированию и метрологии
3 Принят Межгосударственным советом по стандартизации, метрологии и сертификации (протокол N 27 от 22 июня 2005 г.)
За принятие проголосовали:
+-----------------------+----------------+------------------------------+
| Краткое наименование |Код страны по МК| Сокращенное наименование |
|страны по МК (ИСО 3166)| (ИСО 3166) | национального органа по |
| 004-97 | 004-97 | стандартизации |
+-----------------------+----------------+------------------------------+
|Азербайджан | AZ |Азстандарт |
| | | |
|Армения | AM |Армстандарт |
| | | |
|Беларусь | BY |Госстандарт Республики |
| | |Беларусь |
| | | |
|Казахстан | KZ |Госстандарт Республики |
| | |Казахстан |
| | | |
|Кыргызстан | KG |Кыргызстандарт |
| | | |
|Молдова | MD |Молдова-Стандарт |
| | | |
|Российская Федерация | RU |Федеральное агентство по |
| | |техническому регулированию и |
| | |метрологии |
| | | |
|Таджикистан | TJ |Таджикстандарт |
| | | |
|Туркменистан | TM |Главгосслужба |
| | |"Туркменстандартлары" |
| | | |
|Узбекистан | UZ |Узстандарт |
| | | |
|Украина | UA |Госпотребстандарт Украины |
+-----------------------+----------------+------------------------------+
4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 5349-2:2001 "Вибрация. Измерение локальной вибрации и оценка ее воздействия на человека. Часть 2. Практическое руководство по проведению измерений на рабочих местах" (ISO 5349-2:2001 "Mechanical vibration - Measurement and evaluation of human exposure to hand-transmitted vibration - Part 2: Practical guidance for measurement at the workplace") путем внесения технических отклонений, объяснение которых приведено во введении к настоящему стандарту.
Степень соответствия - модифицированная (MOD)
5 Приказом Федерального агентства по техническому регулированию и метрологии от 12 декабря 2007 г. N 364-ст межгосударственный стандарт ГОСТ 31192.2-2005 (ИСО 5349-2:2001) введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2008 г.
6 Введен впервые