Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение 30
к распоряжению МПР России
от 5 июня 2007 г. N 37-р
Методические рекомендации
по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых (сурьмяных руд)
I. Общие сведения
1. Настоящие Методические рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых (сурьмяных руд) (далее - Методические рекомендации) разработаны в соответствии с Положением о Министерстве природных ресурсов Российской Федерации, утвержденным постановлением Правительства Российской Федерации от 22 июля 2004 г. N 370 (Собрание законодательства Российской Федерации, 2004, N 31, ст. 3260; 2004, N 32, ст. 3347, 2005, N 52 (3 ч.), ст. 5759; 2006, N 52 (3 ч.), ст. 5597), Положением о Федеральном агентстве по недропользованию, утвержденным постановлением Правительства Российской Федерации от 17 июня 2004 г. N 293 (Собрание законодательства Российской Федерации, 2004, N 26, ст. 2669; 2006, N 25, ст. 2723), Классификацией запасов месторождений и прогнозных ресурсов твердых полезных ископаемых, утвержденной приказом МПР России от 7 марта 1997 г. N 40, и содержат рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых.
2. Методические рекомендации направлены на оказание практической помощи Федеральному агентству по недропользованию и его территориальным органам и органам, находящимся в ведении Федерального агентства по недропользованию.
3. Сурьма - металл серебристо-белого цвета, хрупкий, геомагнитный, имеющий плотность 6,62 , температуру плавления 630,9°С.
Около половины производимой сурьмы используется в виде металла и сплавов для изготовления решеток аккумуляторных батарей, подшипников (баббит), типографского шрифта и др. В последние годы возрос выпуск ее оксидных соединений, главным образом для получения огнестойких покрытий. Важная область применения оксидных форм сурьмы - вулканизация резины, а сульфидных (крудум) - спичечное производство. Растет спрос и на сверхчистый металл, используемый для производства полупроводников. Использование сплавов сурьмы в связи с внедрением их заменителей в автомобильной промышленности и ростом потребления оксидов (особенно в производстве противопожарных материалов) с каждым годом сокращается. Однако в целом спрос на сурьму остается стабильным.
Структура потребления сурьмы (в %): защитные покрытия и пропитки - 60; изготовление аккумуляторных батарей и подшипников - 20; химическая продукция - 10; керамическое и стекольное производство, другие производства - 6.
4. Сурьма принадлежит к малораспространенным элементам. Кларк сурьмы для земной коры %. При магматической дифференциации сурьма накапливается в остаточном сульфидном расплаве ультрабазитового состава и в летучих фракциях гранитоидных очагов, однако основная часть имеет сквозьмагматическое происхождение. Она входит и в состав поствулканических газожидких эманации и вод термальных источников.
Собственно сурьмяных минералов известно около 340, ртутно-сурьмяных, сурьмусодержащих - 230, ртуть- и сурьмусодержащих - 38. Однако промышленное значение имеют только некоторые из них (табл. 1). Главным и в большинстве случаев практически единственным является антимонит, присутствующий почти во всех генетических типах сурьмяных месторождений.
Таблица 1
Основные промышленные минералы сурьмы
Минерал |
Химическая формула |
Содержание сурьмы, % |
Антимонит |
Sb2S3 |
71,38 |
Ливингстонит |
HgSb4S8 |
51,99 |
Цинкенит |
PbSb2S4 |
44,7 |
Гетчелит |
SbAsS3 |
41,57 |
Джемсонит |
Pb4FeSb6S14 |
35,39 |
Блеклые руды |
Cu12(As, Sb)4S13 |
До 29 |
Буланжерит |
Pb5Sb4Sn11 |
25,9 |
Сенармонтит |
Sb2O3 |
83,54 |
Стибиконит |
Sb3О6(OH) |
76,37 |
Надорит |
PbSbО2Cl |
30,71 |
В зоне окисления сурьмяные руды легко окисляются с образованием оксидов и гидроксидов. Оксидные минералы сурьмы в малых количествах присутствуют на очень многих сурьмяных месторождениях, но лишь в редких случаях образуются самостоятельные промышленные скопления.
5. Мировые запасы сурьмы оцениваются в 5,3 млн. т. Основная часть сурьмяных месторождений группируется в пределах Тихоокеанского и Средиземноморско-Азиатского рудных поясов. Первое место в мире по запасам сурьмы занимает КНР - более половины общемировых ресурсов; второе принадлежит Боливии (до 500 тыс. т сурьмы), третье - ЮАР (200-300 тыс. т). Остальные производящие сурьму страны характеризуются неустойчивой сырьевой базой. К ним относятся Мексика, Таиланд, Турция, Австрия, Франция, Испания, Португалия и др. Общемировая добыча сурьмы колеблется в пределах 60-110 тыс. т в том числе КНР - до 70 тыс. т. Среди других ее продуцентов Боливия, ЮАР, Турция, Канада, Гватемала, Мексика. В странах СНГ добычу сурьмы осуществляют в Таджикистане, Киргизии и России.
6. Сурьма в виде примеси встречается в эндогенных месторождениях практически всех генетических типов, однако промышленные скопления сурьмяных минералов образуются только при гидротермальных, в том числе поствулканогенных процессах, причем максимальные по запасам месторождения принадлежат к классу телетермальных (амагматогенных). Экзогенных и метаморфогенных месторождений сурьмы не установлено, если не считать мелких остаточных залежей оксидов и гидроксидов сурьмы в Алжире и россыпей конкреций вторичных минералов сурьмы в Китае, а также метаморфизованных палеороссыпей сурьмянистого рутила во Франции, доля которых в мировом балансе сурьмяных руд весьма незначительна. Основные промышленные типы сурьмяных месторождений приведены в табл. 2. Ведущие промышленные типы месторождений сурьмяных руд относятся к телетермальному и вулканогенному классам.
7. Телетермальные месторождения приурочены к областям завершенной складчатости. Выделяются два промышленных типа: субсогласный и секущий (жильный).
Месторождения субсогласного типа приурочиваются к сводовым частям антиклинальных складок, в строении которых принимают участие переслаивающиеся карбонатные и сланцевые толщи. Рудные залежи локализуются в горизонтах интенсивно окварцованных карбонатных пород (джаспероидов). в условиях экранирования, нередко усиленного надвигами. По структурно-морфологическому принципу среди них выделяются: относительно выдержанные вдоль осей складок плащеобразные залежи джаспероидов (Кадамджай, Киргизия; Сигуаньшань, КНР); менее выдержанные залежи джаспероидных брекчий (Хайдаркан, Киргизия); межформационные залежи и штокверкообразные тела в пределах пологих антиклиналей, разбитых на блоки; часть рудных тел в этом случае может быть связана с предрудными карстовыми полостями (Джижикрут); невыдержанные сложные залежи и столбы вдоль разломов (Джижикрут, Кадамджай, участок Кара-Арча в Хайдаркане).
Таблица 2
Основные промышленные типы сурьмяных, комплексных и сурьмусодержащих месторождений
Генетический класс |
Промышленный тип месторождений |
Геолого- тектоническая позиция и характер разреза |
Структуно-морфологический тип# |
Минеральный тип руд |
Масштаб месторождений по сурьме |
Промышленный (технологический) тип руд |
Примеры месторождений |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
Телетермальный |
Джаспер оидно- антимонитовый |
Стабильные массивы, геосинклинальные зоны; сланцы - известняки - сланцы |
Плащеобразные, межформационные залежи, контролируемые структурами экранирования |
Антимонитовый, антимонит-киноварь-флюо- рит-рельгар- аурипиг- ментный, иногда золотосодержащий |
Средний, крупный до уникального |
Металлургический сурьмяный (сортировочный, флотационно-гравитационный); ртутно-сурьмяный (сортировочный, флотационно-пирометаллургический) |
Сигуань- шань (КНР), Кадамджай, Хайдаркан (Киргизия), Джижикрут (Таджикистан) |
Кварц- золото- антимонитовый |
Стабильные массивы; однородные толщи терригенных пород |
Секущие жилы |
Антимонитовый, антимонит-золоторудный |
Средний, крупный |
Металлургический золото- сурьмяный (сортировочный, флотационно-гравитационный) |
Гравелотт (ЮАР), Сарылахское, Сентачанское (Россия) |
|
Вулкано- генный |
Полисульфидный сурьму- содержащий субвулканогенный |
Области завершенной вулканической деятельности |
Сложно- ветвящиеся жилы, штокверки |
Антимонит- сульфосольный |
Мелкий, средний |
Металлургический свинцово- сурьмяный (сортировочный, флотационный) |
Байя-Маре (Румыния), Рудняны (Словакия) |
Травертиновый сурьмяный поствулканический |
Области молодой или современной вулканической деятельности |
Сложные залежи, штокверки, секущие зоны минерализации |
Оксидный, оксихлоридный |
Мелкий, средний |
Металлургический сурьмяный (сортировочный, флотационный |
Хаммимат, Хаммам Н'Байль (Алжир), Сенатор (Турция) |
|
Плутоно- генный |
Кварцзолото-антимонитовый, кварц-шеелит-антимонитовый, кварц-полисульфидный |
Стабильные массивы, геосинклинальные зоны; однородные толщи терригенных пород |
Секущие жилы, иногда сложные штоквер-кообразные зоны |
Антимонитовый, антимонит-шеелит-золоторудный, антимонит-полисульфидные |
Мелкий, средний |
|
Таоань, Воси (КНР) |
Месторождения секущего или жильного типа наиболее характерны для геосинклинальных областей и зон активизации древних массивов. Локализуются они практически только в однородных толщах осадочных пород (песчаников, сланцев) и гнейсов. Эти месторождения обычно представлены сериями жил (Сентачанское, Сарылахское, Россия; месторождения хр. Мэрчисон, ЮАР) и линейных зон дробления (Удерейское, Россия), оперяющих более крупные разрывные нарушения. По составу жилы кварц-антимонитовые, иногда с золотом, которое нередко приобретает самостоятельное промышленное значение.
8. Вулканогенные месторождения, среди которых промышленное значение имеет контактово-секущий тип, представлены контактовыми залежами, штокверками, радиально-кольцевыми жилами (Балканская рудная провинция, Турция), связанными с вулканическими структурами, и телами сложной трубчатой формы, обязанными своим происхождением поствулканической термальной деятельности (Хаммам Н'Байль, Хаммимат, Алжир). В первом случае руды представлены комплексными полисульфидными минеральными ассоциациями, часто с серебром и золотом. Для месторождений, связанных с термальными поствулканическими источниками, характерно преобладание оксидных (сенармонтит) и оксихлоридных (надорит) минеральных образований.
9. Плутоногенные месторождения характерны для срединных массивов и геосинклинальных зон, представлены в основном секущими жилами, реже штокверкоподобными зонами, залегающими, как правило, среди мощных толщ песчаников, аргиллитов.
10. Кроме традиционных для стран СНГ сульфидных (антимонитовых, антимонит- золото-бертьеритовых) сурьмяных руд определенный интерес представляет попутная сурьма колчеданно-полиметалических (Савоярды, Киргизия), свинцово-цинковых (Бугуу- тер, Киргизия) а также золотоносных руд (Олимпиадинское, Ключюс, Россия). Ее запасы в рудах этих месторождений сопоставимы с запасами средних и даже крупных по масштабу собственно сурьмяных месторождений. В то же время попутная ее добыча сурьмы значительно ниже потенциальных возможностей. Актуальна также проблема утилизации оксидных форм сурьмы, составляющих в отдельных месторождениях и блоках до 30% и более. Потери сурьмы при переработке таких смешанных сульфидно-оксидных руд достигают 20-30% от валовых запасов металла.
11. По величине запасов сурьмы (тыс. т) месторождения подразделяются на уникальные (более 300), крупные (100-300), средние (50-100), мелкие (до 50).
Более 95% сырьевого потенциала сурьмы связано с тремя промышленными формациями, в том числе: монометалльная антимонитовая и комплексная киноварно-флюорит-антимонитовая джаспероидная - 60%; монометалльная антимонитовая и золото-антимонит-бертьеритовая кварцево-жильная - 30%; монометалльная антимонитовая и комплексная аргиллитовая - 25%. Наибольшей концентрации сурьма достигает в первой формации. Из 50 месторождений, относимых к этой формации, 2 - уникальных, 10 - крупных, остальные - средние и мелкие. Во второй формации из 250 выявленных месторождений 2 - уникальных, 5 - крупных, около 50 средних, основная масса - мелкие. Третья формация включает около 1000 месторождений, из которых одно - крупное, несколько средних, остальные - мелкие.
Особняком стоят поствулканогенные (связанные с термальными источниками, в том числе и ныне функционирующими) сурьмяные месторождения с рудами оксидного и оксихлоридного состава. Это грибообразные приповерхностные (в отдельных случаях до глубины первых сотен метров) залежи. Их запасы составляют несколько десятков (Сенатор в Турции), редко - первые сотни тысяч тонн (Хаммам Н'Байль в Алжире).
II. Группировка месторождений по сложности геологического строения для целей разведки
12. По размерам и форме рудных тел, изменчивости их мощности, внутреннего строения и особенностям распределения сурьмы месторождения сурьмяных руд соответствуют 2-й и 3-й группам Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых, утвержденной приказом Министерства природных ресурсов Российской Федерации от 7 марта 1997 г. N 40.
Ко 2-й группе относятся месторождения (участки) сложного геологического строения с рудными телами, представленными крупными жилами изменчивой мощности, с невыдержанным, но очень высоким содержанием сурьмы (Сарылахское), а также крупными и средними пласто- и плащеообразными залежами, жилами сложной морфологии с невыдержанной мощностью и неравномерным распределением сурьмы (верхние горизонты месторождения Кадамджай).
К 3-й группе относятся месторождения (участки) очень сложного геологического строения с рудными телами, представленными средними и мелкими залежами, жилами и линзами очень сложной морфологии, невыдержанной мощности и с весьма неравномерным распределением сурьмы (Удерейское, Джижикрут, Терексайское).
Месторождения (участки) сурьмяных руд 4-й группы Классификации, представленные мелкими жилами, залежами, линзами или телами с чрезвычайно сложным прерывистым, гнездообразным распределением рудных скоплений, самостоятельного промышленного значения не имеют и пригодны лишь для попутной отработки действующими предприятиями.
13. Принадлежность месторождения (участка) к той или иной группе устанавливается по степени сложности геологического строения основных рудных тел, заключающих не менее 70% общих запасов месторождения.
14. При отнесении месторождения к той или иной группе в ряде случаев могут использоваться количественные характеристики изменчивости основных свойств оруденения (см. приложение).
III. Изучение геологического строения месторождения и вещественного состава руд
15. По разведанному месторождению необходимо иметь топографическую основу, масштаб которой соответствовал бы его размерам, особенностям геологического строения и рельефу местности. Топографические карты и планы на месторождениях сурьмяных руд обычно составляются в масштабах 1:1000-1:5000. Все поисковые, оценочные, разведочные и эксплуатационные выработки (канавы, шурфы, штольни, шахты, скважины), профили детальных геофизических наблюдений, а также естественные обнажения рудных тел или зон должны быть инструментально привязаны. Подземные горные выработки и скважины наносятся на планы по данным маркшейдерской съемки. Маркшейдерские планы горизонтов горных работ обычно составляются в масштабах 1:200-1:500; сводные планы - в масштабе не мельче 1:1000. Для скважин должны быть вычислены координаты точек пересечения ими кровли и подошвы рудного горизонта или рудного тела и построены проложения их стволов на плоскости планов и разрезов.
16. Геологическое строение месторождения должно быть детально изучено и отображено на геологической карте масштаба 1:1000-1:5000 (в зависимости от размеров и сложности месторождения), геологических разрезах, планах, проекциях, а в необходимых случаях - на блок-диаграммах и моделях. Геологические и геофизические материалы по месторождению должны давать представление о положении рудовмещающих толщ и горизонтов в стратиграфическом разрезе и структурах, контролирующих размещение оруденения, о размерах и форме рудных тел, условиях их залегания, внутреннем строении и сплошности, характере выклинивания рудных тел, особенностях изменения вмещающих пород и взаимоотношениях рудных тел с вмещающими породами, складчатыми структурами и разрывными нарушениями в степени, необходимой и достаточной для обоснования подсчета запасов. Следует также обосновать геологические границы месторождения и поисковые критерии, определяющие местоположение перспективных участков, в пределах которых оценены прогнозные ресурсы категории *(1).
17. Выходы на поверхность и приповерхностные части рудных тел или минерализованных зон должны быть изучены горными выработками и неглубокими скважинами с применением геофизических и геохимических методов и опробованы с детальностью, позволяющей установить морфологию и условия залегания рудных тел, глубину развития и строение зоны окисления, степень окисленности руд, особенности изменения вещественного состава, технологических свойств и содержаний сурьмы и провести подсчет запасов окисленных и смешанных руд раздельно по промышленным (технологическим) типам.
18. Разведка месторождений сурьмяных руд на глубину проводится скважинами в сочетании с горными выработками (месторождений очень сложного строения с рудными телами небольшой мощности и с весьма неравномерным распределением сурьмы - горными выработками) с использованием геофизических методов исследований - наземных, в скважинах и горных выработках.
Методика изучения - соотношение объемов горных работ и бурения, виды горных выработок и способы бурения, геометрия и плотность разведочной сети, методы и способы опробования - должна обеспечить возможность подсчета запасов на разведанном месторождении по категориям, соответствующим группе месторождений по сложности его геологического строения. Она определяется исходя из геологических особенностей рудных тел с учетом возможностей горных, буровых и геофизических средств разведки, а также опыта разведки и разработки месторождений аналогичного типа.
При выборе оптимального варианта разведки следует учитывать степень изменчивости содержаний сурьмы, характер пространственного распределения сурьмяных минералов, текстурно-структурные особенности руд, а также возможное избирательное истирание керна при бурении и выкрашивание рудных или породообразующих минералов при опробовании в горных выработках. Следует учитывать также сравнительные технико-экономические показатели и сроки выполнения работ по различным вариантам разведки.
19. По скважинам колонкового бурения должен быть получен максимальный выход керна хорошей сохранности в объеме, обеспечивающем выяснение с необходимой полнотой особенностей залегания рудных тел и вмещающих пород, их мощности, внутреннего строения рудных тел, характера околорудных изменений, распределения природных разновидностей руд, их текстур и структур, а также представительность материала для опробования. Практикой геологоразведочных работ установлено, что выход керна для этих целей должен быть не менее 70% по каждому рейсу бурения. Достоверность определения линейного выхода керна необходимо систематически контролировать весовым или объемным способом.
Величина представительного выхода керна для определения содержаний сурьмы и мощностей рудных интервалов должна быть подтверждена исследованиями возможности его избирательного истирания. Для этого необходимо по основным типам руд сопоставить результаты опробования керна и шлама (по интервалам с их различным выходом) с данными опробования горных выработок, скважин ударного, пневмоударного и шарошечного бурения, а также колонковых скважин, пробуренных с применением съемных керноприемников. При низком выходе керна или избирательном его истирании, существенно искажающем результаты опробования, следует применять другие технические средства разведки или обосновать величину поправочного коэффициента к результатам кернового опробования на основе данных контрольных выработок.
Для повышения достоверности и информативности бурения необходимо использовать методы геофизических исследований в скважинах, рациональный комплекс которых определяется исходя из поставленных задач, конкретных геолого-геофизических условий месторождения и современных возможностей геофизических методов. Комплекс каротажа, эффективный для выделения рудных интервалов и установления их параметров, должен выполняться во всех скважинах, пробуренных на месторождении.
В вертикальных скважинах глубиной более 100 м и во всех наклонных, включая подземные, не более чем через каждые 20 м должны быть определены и подтверждены контрольными замерами азимутальные и зенитные углы их стволов. Результаты этих измерений необходимо учитывать при построении геологических разрезов, погоризонтных планов и расчете мощностей рудных интервалов. При наличии подсечений стволов скважин горными выработками результаты замеров проверяются данными маркшейдерской привязки. Для скважин необходимо обеспечить пересечение ими рудных тел под углами не менее 30°.
Для пересечения крутопадающих рудных тел под большими углами целесообразно применять искусственное искривление скважин. С целью повышения эффективности разведки следует осуществлять бурение многозабойных скважин, а при наличии горизонтов горных работ - вееров подземных скважин. Бурение по руде целесообразно производить одним диаметром.
20. Горные выработки являются основным средством детального изучения условий залегания, морфологии и внутреннего строения рудных тел, их сплошности, вещественного состава руд, а также контроля данных бурения, геофизических исследований и отбора технологических проб.
Сплошность рудных тел и изменчивость оруденения по их простиранию и падению должны быть изучены в достаточном объеме на представительных участках: по маломощным рудным телам - непрерывным прослеживанием расчистками на поверхности, штреками и восстающими на глубоких горизонтах; по мощным рудным телам - пересечением канавами, ортами, квершлагами, подземными горизонтальными скважинами.
Одно из важнейших назначений горных выработок - установление степени избирательного выкрашивания рудных или породообразующих минералов при отборе бороздовых проб и избирательного истирания керна при бурении скважин с целью выяснения возможности использования данных бороздового и скважинного опробования и результатов геофизических исследований для геологических построений и подсчета запасов. Горные выработки следует проходить на участках детализации, а также на горизонтах месторождения, намеченных к первоочередной отработке.
21. Расположение разведочных выработок и расстояния между ними должны быть определены для каждого структурно-морфологического типа рудных тел, при этом следует учитывать возможное столбообразное размещение обогащенных участков (рудных столбов).
Приведенные в табл. 3 обобщенные сведения о плотности сетей, применявшихся при разведке месторождений сурьмяных руд в странах СНГ, могут учитываться при проектировании геологоразведочных работ, но их нельзя рассматривать как обязательные. Для каждого месторождения на основании изучения участков детализации и тщательного анализа всех имеющихся геологических, геофизических и эксплуатационных материалов по данному или аналогичным месторождениям обосновываются наиболее рациональные геометрия и плотность сети разведочных выработок.
22. Для подтверждения достоверности запасов, подсчитанных на разведанных месторождениях, отдельные их участки должны быть разведаны более детально. Число и размеры участков детализации определяются недропользователем и обосновываются в ТЭО разведочных кондиций. Эти участки следует изучать и опробовать по более плотной разведочной сети, по сравнению с принятой на остальной части месторождения. Запасы на таких участках и горизонтах месторождений 2-й группы должны быть разведаны по категории В. На месторождениях 3-й группы сеть разведочных выработок на участках детализации целесообразно сгустить не менее чем в 2 раза по сравнению с принятой для категории .
Для сурьмяных руд полноценный участок детализации возможно создать только при использовании горных выработок путем проходки штольневого или шахтного горизонта, восстающих выработок и опробования рудных пересечений на полную мощность через 10-25 и 10-15 м соответственно.
Таблица 3
Сведения о плотности сети разведочных выработок, применявшихся к разведке месторождений сурьмяных руд в странах СНГ
Группа месторождений |
Характеристика рудных тел |
Виды выработок |
Расстояние между пересечениями рудных тел (в м) для категории запасов |
|||
В |
C_1 |
|||||
по падению |
по простиранию |
по падению |
по простиранию |
|||
2-я |
Крупные жильные тела изменчивой мощности с неравномерным и высоким содержанием сурьмы |
Канавы |
- |
10-20 |
- |
20-40 |
Штольни, штреки |
40-60 |
Непрерывное прослеживание |
- |
Непрерывное прослеживание |
||
Орты, рассечки |
- |
10-20 |
- |
- |
||
Восстающие |
Непрерывное прослеживание |
80-120 |
- |
- |
||
Скважины |
- |
- |
30-60 |
40-60 |
||
Крупные и средние пласто- и плащеобразные залежи, жильные тела сложной морфологии с невыдержанной мощностью и неравномерным распределением сурьмы |
Канавы |
- |
10-20 |
- |
40-60 |
|
Штольни, штреки |
40-60 |
- |
- |
- |
||
Орты, рассечки |
- |
10-20 |
- |
- |
||
Восстающие |
- |
40-80 |
- |
- |
||
Скважины |
- |
- |
40-80 |
40-80 |
||
3-я |
Средние и мелкие залежи, жилы и линзы очень сложной морфологии, невыдержанной мощности и с весьма неравномерным распределением сурьмы |
Канавы |
- |
- |
- |
20-40 |
Штольни, штреки |
- |
|
40-60 |
Непрерывное прослеживание |
||
Орты, рассечки |
- |
- |
- |
20-40 |
||
Восстающие |
- |
- |
Непрерывное прослеживание |
40-80 |
||
Скважины |
- |
- |
20-60 |
40-80 |
||
Примечание. На оцененных месторождениях разведочная сеть для категории С_2 по сравнению с сетью для категории С_1 разрежается в 2-4 раза в зависимости от сложности геологического строения месторождения. |
Участки детализации должны отражать особенности условий залегания и форму рудных тел, вмещающих основные запасы месторождения, а также преобладающее качество руд. По возможности они располагаются в контуре запасов, подлежащих первоочередной отработке. В тех случаях, когда участки, намеченные к первоочередной отработке, не характерны для всего месторождения по особенностям геологического строения, качеству руд и горно-геологическим условиям, должны быть детально изучены также участки, удовлетворяющие этому требованию.
При использовании интерполяционных методов подсчета запасов (геостатистика, метод обратных расстояний и др.) на участках детализации необходимо обеспечить плотность разведочных пересечений, достаточную для обоснования оптимальных интерполяционных формул.
Полученная на участках детализации информация используется для обоснования группы сложности месторождения, подтверждения соответствия принятых геометрии и плотности разведочной сети и выбранных технических средств разведки особенностям его геологического строения, для оценки достоверности результатов опробования и подсчетных параметров, принятых при подсчете запасов на остальной части месторождения, и условий разработки месторождения в целом. На разрабатываемых месторождениях для этих целей используются результаты эксплуатационной разведки и разработки.
На месторождениях, оценка запасов которых производится без геометризации конкретных рудных тел, в обобщенном контуре, с использованием коэффициентов рудоносности, на основании определения пространственного положения, типичных форм и размеров участков кондиционных руд, а также распределения запасов по мощности рудных интервалов должна быть оценена возможность их селективной выемки.
23. Все разведочные выработки и выходы рудных тел или зон на поверхность должны быть задокументированы. Результаты опробования выносятся на первичную документацию и сверяются с геологическим описанием.
Полнота и качество первичной документации, соответствие ее геологическим особенностям месторождения, правильность определения пространственного положения структурных элементов, составления зарисовок и их описаний должны систематически контролироваться сличением с натурой специально назначенными комиссиями в установленном порядке. Следует также оценивать качество геологического и геофизического опробования (выдержанность сечения и массы проб, соответствие их положения особенностям геологического строения участка, полноту и непрерывность отбора проб, наличие и результаты контрольного опробования), представительность минералого-технологических и инженерно-гидрогеологических исследований, качество определений объемной массы, обработки проб и аналитических работ.
24. Для изучения качества полезного ископаемого, оконтуривания рудных тел и подсчета запасов все рудные интервалы, вскрытые разведочными выработками или установленные в естественных обнажениях, должны быть опробованы.
25. Выбор методов (геологических, геофизических) и способов опробования производится на ранних стадиях оценочных и разведочных работ, исходя из конкретных геологических особенностей месторождения и физических свойств полезного ископаемого и вмещающих пород, а также применяемых технических средств разведки.
На месторождениях сурьмяных руд целесообразно применение ядерно-геофизических методов в качестве рядового опробования*(2). Применение геофизических методов опробования и использование их результатов при подсчете запасов регламентируется "Методическими рекомендациями по геофизическому опробованию при подсчете запасов месторождений металлов и нерудного сырья".
Принятые метод и способ опробования должны обеспечивать наибольшую достоверность результатов при достаточной производительности и экономичности. В случае применения нескольких способов опробования они должны быть сопоставлены по точности результатов и достоверности. При выборе геологических способов опробования (керновый, бороздовый, задирковый и др.), определении качества отбора и обработки проб, оценке достоверности методов опробования следует руководствоваться "Требованиями к обоснованию достоверности опробования рудных месторождений", утвержденными Председателем ГКЗ*(3) 23 декабря 1992 г.
Для сокращения нерациональных затрат труда и средств на отбор и обработку проб рекомендуется интервалы, подлежащие опробованию, предварительно наметить по данным каротажа или замерам ядерно-геофизическими, магнитным и другими методами.
26. Опробование разведочных сечений следует производить с соблюдением следующих обязательных условий:
сеть опробования должна быть выдержанной, плотность ее определяется геологическими особенностями изучаемых участков месторождения и обычно устанавливается, исходя из опыта разведки месторождений-аналогов, а на новых объектах - экспериментальным путем. Пробы необходимо отбирать в направлении максимальной изменчивости оруденения; в случае пересечения рудных тел разведочными выработками (в особенности скважинами) под острым углом к направлению максимальной изменчивости (если при этом возникают сомнения в представительности опробования) контрольными работами или сопоставлением должна быть доказана возможность использования в подсчете запасов результатов опробования этих сечений;
опробование следует проводить непрерывно, на полную мощность рудного тела с выходом во вмещающие породы на величину, превышающую мощность пустого или некондиционного прослоя, включаемого в соответствии с кондициями в промышленный контур. В разведочных выработках кроме коренных выходов руд должны быть опробованы и продукты их выветривания;
природные разновидности руд и минерализованных пород должны опробоваться раздельно - секциями; длина каждой секции (рядовой пробы) определяется внутренним строением рудного тела, изменчивостью вещественного состава, текстурно-структурных особенностей, физико-механических и других свойств руд, а в скважинах - также длиной рейса. Она не должна превышать установленные кондициями минимальную мощность для выделения типов или сортов руд, а также максимальную мощность внутренних пустых и некондиционных прослоев, включенных в контуры балансовых руд.
Способ отбора проб в буровых скважинах (керновый, шламовый) зависит от используемого вида и качества бурения. При этом интервалы с разным выходом керна опробуются раздельно; при наличии избирательного истирания керна опробованию подвергается как керн, так и измельченные продукты бурения (шлам, пыль и др.); мелкие продукты отбираются в самостоятельную пробу с того же интервала, что и керновая проба, обрабатываются и анализируются отдельно. При небольшом диаметре бурения и весьма неравномерном распределении минералов сурьмы деление керна при опробовании на половинки не производится.
В горных выработках, пересекающих рудное тело на всю мощность, и в восстающих опробование должно проводиться по двум стенкам выработки; в выработках, пройденных по простиранию рудного тела - в забоях. Расстояние между опробуемыми забоями в прослеживающих выработках обычно не превышает 2-4 м (рациональный шаг опробования должен быть подтвержден экспериментальными данными). В горизонтальных горных выработках при крутом залегании рудных тел все пробы размещаются на постоянной, заранее определенной высоте. Принятые параметры проб должны быть обоснованы экспериментальными работами.
Условия опробования для изучения возможностей крупнопорционной сортировки и покусковой сепарации руд определяются в соответствии с "Требованиями к изучению радиометрической обогатимости минерального сырья при разведке месторождений металлических и неметаллических полезных ископаемых", утвержденными Председателем ГКЗ 23 ноября 1992 г.
27. Качество опробования по каждому принятому методу и способу и по основным разновидностям руд необходимо систематически контролировать, оценивая точность и достоверность результатов. Следует своевременно проверять положение проб относительно элементов геологического строения, надежность оконтуривания рудных тел по мощности, выдержанность принятых параметров проб и соответствие фактической массы пробы расчетной, исходя из принятого сечения борозды или фактического диаметра и выхода керна (отклонения не должны превышать 10-20% с учетом изменчивости плотности руды).
Точность бороздового опробования следует контролировать сопряженными бороздами того же сечения, кернового опробования в случае деления керна на половинки - отбором проб из вторых половинок керна.
При геофизическом опробовании в естественном залегании контролируются стабильность работы аппаратуры и воспроизводимость метода при одинаковых условиях рядовых и контрольных измерений. Достоверность геофизического опробования устанавливается путем сопоставлением данных геологического и геофизического опробования скважин и горных выработок по опорным интервалам, по которым доказано отсутствие избирательного истирания керна и избирательного выкрашивания при отборе бороздовых проб.
В случае выявления недостатков, влияющих на точность опробования, следует производить переопробование (или повторный каротаж) рудного интервала.
Достоверность принятых методов и способов опробования контролируется более представительным способом, как правило валовым, в соответствии с "Требованиями к обоснованию достоверности опробования рудных месторождений", утвержденными Председателем ГКЗ 23 декабря 1992 г. Для этой цели также необходимо использовать данные технологических проб, валовых проб для определения объемной массы в целиках и результаты отработки месторождения.
Объем контрольного опробования должен быть достаточным для статистической обработки результатов и обоснованных выводов от# отсутствии или наличии систематических ошибок, а в случае необходимости - и для введения поправочных
28. Обработка проб производится по схемам, разработанным для каждого месторождения или принятым по аналогии с однотипными месторождениями. Основные и контрольные пробы обрабатываются по одной схеме.
Качество обработки должно систематически контролироваться по всем операциям в части обоснованности коэффициента К и соблюдения схемы обработки. При высоком содержании сурьмы и золота необходимо регулярно контролировать чистоту поверхностей дробильного оборудования.
Обработка контрольных крупнообъемных проб производится по специально составленным программам.
29. Химический состав руд должен изучаться с полнотой, обеспечивающей выявление всех основных, попутных полезных компонентов и вредных примесей. Содержания их в руде определяются анализами проб химическими, спектральными, физическими или другими методами, установленными государственными стандартами или утвержденными Научным советом по аналитическим методам (НСАМ) и Научным советом по методам минералогических исследований (НСОММИ) Министерства природных ресурсов Российской Федерации.
Изучение в рудах попутных компонентов производится в соответствии с утвержденными ГКЗ "Рекомендациями по комплексному изучению месторождений и подсчету запасов попутных полезных ископаемых и компонентов".
Все рядовые пробы, как правило, анализируются на сурьму, а также на компоненты, содержание которых учитывается при оконтуривании рудных тел по мощности (ртуть, золото, флюорит), иногда на вредные примеси - мышьяк и др. В комплексных ртутно-сурьмяно-флюоритовых рудах наряду с флюоритом в рядовых пробах определяется кальцит, являющийся вредной примесью. Другие полезные компоненты (вольфрам, медь, цинк, свинец, серебро, селен) и вредные примеси (мышьяк) определяются обычно по групповым пробам.
Порядок объединения рядовых проб в групповые, их размещение и общее количество должны обеспечивать равномерное опробование основных разновидностей руд на попутные компоненты и вредные примеси и выяснение закономерностей изменения их содержаний по простиранию и падению рудных тел.
Для выяснения степени окисления первичных руд и установления границы зоны окисления должны выполняться фазовые анализы.
30. Качество анализов проб необходимо систематически проверять, а результаты контроля своевременно обрабатывать в соответствии с методическими указаниями НСАМ и НСОММИ. Геологический контроль анализов проб следует осуществлять независимо от лабораторного контроля в течение всего периода изучения месторождения. Контролю подлежат результаты анализов на все основные и попутные компоненты и вредные примеси.
31. Для определения величин случайных погрешностей необходимо проводить внутренний контроль путем анализа зашифрованных контрольных проб, отобранных из дубликатов аналитических проб, в той же лаборатории, которая выполняет основные анализы, не позднее следующего квартала.
Для выявления и оценки возможных систематических погрешностей должен осуществляться внешний контроль в лаборатории, имеющей статус контрольной. На внешний контроль направляются дубликаты аналитических проб, хранящиеся в основной лаборатории и прошедшие внутренний контроль. При наличии стандартных образцов состава (СОС), аналогичных исследуемым пробам, внешний контроль следует осуществлять, включая их в зашифрованном виде в партию проб, которые сдаются на анализ в основную лабораторию.
Пробы, направляемые на внутренний и внешний контроль, должны характеризовать все разновидности руд месторождения и классы содержаний. В обязательном порядке на внутренний контроль направляются все пробы, показавшие аномально высокие содержания анализируемых компонентов, в том числе ураганные.
32. Объем внутреннего и внешнего контроля должен обеспечить представительность выборки по каждому классу содержаний и периоду выполнения анализов (квартал, полугодие, год).
При выделении классов следует учитывать параметры кондиций для подсчета запасов (бортовое и минимальное промышленное содержания). В случае большого числа анализируемых проб (2000 и более в год) на контрольные анализы направляется 5% от их общего количества; при меньшем числе проб по каждому выделенному классу содержаний должно быть выполнено не менее 30 контрольных анализов за контролируемый период.
33. Обработка данных внешнего и внутреннего контроля по каждому классу содержаний производится по периодам (квартал, полугодие, год), раздельно по каждому методу анализа и лаборатории, выполняющей основные анализы. Оценка систематических расхождений по результатам анализа СОС выполняется в соответствии с методическими указаниями НСАМ по статистической обработке аналитических данных.
Относительная среднеквадратическая погрешность, определенная по результатам внутреннего контроля, не должна превышать значений, указанных в табл. 4. В противном случае результаты основных анализов для данного класса содержаний и периода работы лаборатории бракуются и все пробы подлежат повторному анализу с выполнением внутреннего геологического контроля. Одновременно основной лабораторией должны быть выяснены причины брака и приняты меры по его устранению.
Таблица 4
Предельно допустимые относительные среднеквадратические погрешности анализов по классам содержаний
Компонент |
Класс содержаний компонентов в руде, % (Se, Au, г/т)* |
Предельно допустимая относительная средне- квадратическая погрешность, % |
Компонент |
Класс содержаний компонентов в руде, % (Se, Au, г/т)* |
Предельно допустимая относительная средне- квадратическая погрешность, % |
Sb |
>10 |
2,5 |
СаСO3 |
>10 |
6 |
5-10 |
3,5 |
5-10 |
8 |
||
2-5 |
5,5 |
2-5 |
11 |
||
0,5-2 |
12 |
As |
0,05-0,5 |
16 |
|
0,1-0,5 |
20 |
0,01-0,05 |
25 |
||
Hg |
0,2-1 |
8,5 |
<0,01 |
30 |
|
0,04-0,2 |
17 |
Se |
20-50 |
25 |
|
0,01-0,04 |
20 |
5-20 |
30 |
||
CaF2 |
20-50 |
3,0 |
1-5 |
30 |
|
10-20 |
5,0 |
Au |
64-128 |
4,5 |
|
2-10 |
10 |
16-64 |
10 |
||
0,5-2 |
17 |
4-16 |
18 |
||
1-4 |
25 |
||||
Менее 1 |
30 |
||||
* Если выделенные на месторождении классы содержаний отличаются от указанных, то предельно допустимые относительные среднеквадратические погрешности определяются интерполяцией. |
34. При выявлении по данным внешнего контроля систематических расхождений между результатами анализов основной и контролирующей лабораторий проводится арбитражный контроль. Этот контроль выполняется в лаборатории, имеющей статус арбитражной. На арбитражный контроль направляются хранящиеся в лаборатории аналитические дубликаты рядовых проб (в исключительных случаях - остатки аналитических проб), по которым имеются результаты рядовых и внешних контрольных анализов. Контролю подлежат 30-40 проб по каждому классу содержаний, по которому выявлены систематические расхождения. При наличии СОС, аналогичных исследуемым пробам, их также следует включать в зашифрованном виде в партию проб, сдаваемых на арбитраж. Для каждого СОС должно быть получено 10-15 результатов контрольных анализов.
При подтверждении арбитражным анализом систематических расхождений следует выяснить их причины, разработать мероприятия по устранению недостатков в работе основной лаборатории, а также решить вопрос о необходимости повторного анализа всех проб данного класса и периода работы основной лаборатории или о введении в результаты основных анализов соответствующего поправочного коэффициента. Без арбитражного анализа введение поправочных коэффициентов не допускается.
35. По результатам выполненного контроля опробования - отбора, обработки проб и анализов - должна быть оценена возможная погрешность выделения рудных интервалов и определения их параметров.
36. Минеральный состав руд, их текстурно-структурные особенности и физические свойства должны быть изучены с применением минералого-петрографических, физических, химических и других видов анализа по методикам, утвержденным НСОММИ и НСAM. При этом наряду с описанием отдельных минералов производится также количественная оценка их распространенности.
Особое внимание уделяется сурьмусодержащим минералам, определению их количества, выяснению их взаимоотношений между собой и с другими минералами (наличие и размеры сростков, характер срастания), размеров зерен и их распределения по крупности. Для смешанных и окисленных руд обязательно должно быть установлено количественное соотношение различных оксидных минералов сурьмы.
В процессе минералогических исследований должно быть изучено распределение основных, попутных компонентов и вредных примесей и составлен их баланс по формам минеральных соединений.
37. Объемная масса и влажность руды входят в число основных параметров, используемых при подсчете запасов месторождений, их определение необходимо производить для каждой выделенной природной разновидности руд и внутренних некондиционных прослоев в соответствии с "Требованиями к определению объемной массы и влажности руды для подсчета запасов рудных месторождений", утвержденными Председателем ГКЗ 18 декабря 1992 г.
Объемная масса плотных руд определяется главным образом по представительным парафинированным образцам и контролируется результатами ее определения в целиках. Объемная масса рыхлых, сильно трещиноватых и кавернозных руд, как правило, определяется в целиках. Определение объемной массы может производиться также методом поглощения рассеянного гамма-излучения при наличии необходимого объема заверочных работ. Одновременно с определением объемной массы на том же материале определяется влажность руд. Образцы и пробы для определения объемной массы и влажности должны быть охарактеризованы минералогически и проанализированы на основные компоненты.
Достоверность определения объемной массы по образцам должна быть подтверждена методом выемки целиков или исследованиями целиков геофизическими методами.
38. В результате изучения химического и минерального состава, текстурно- структурных особенностей и физических свойств руд устанавливаются их природные разновидности и предварительно намечаются промышленные (технологические) типы, требующие селективной добычи и раздельной переработки.
Окончательное выделение промышленных (технологических) типов и сортов руд производится по результатам технологического изучения выявленных на месторождении природных разновидностей.
IV. Изучение технологических свойств руд
39. Технологические свойства руд, как правило, изучаются в лабораторных и полупромышленных условиях на минералого-технологических, малых технологических, лабораторных, укрупненно-лабораторных и полупромышленных пробах. При имеющемся опыте промышленной переработки для легкообогатимых руд допускается использование аналогии, подтвержденной результатами лабораторных исследований. Для труднообогатимых или новых типов руд, опыт переработки которых отсутствует, технологические исследования руд и в случае необходимости, продуктов их обогащения должны проводиться по специальным программам, согласованным с заказчиком и региональным органом управления фондом недр.
Отбор проб для технологических исследований на разных стадиях геологоразведочных работ следует выполнять в соответствии с временным методическим руководством "Технологическое опробование месторождений цветных металлов в процессе разведки", утвержденным заместителем Министра цветной металлургии СССР и заместителем Министра геологии СССР в 1983 г. и стандартом Российского геологического общества СТО РосГео 09-001-98 "Твердые полезные ископаемые и горные породы. Технологическое опробование в процессе геологоразведочных работ", утвержденным и введенным в действие Постановлением Президиума Исполнительного комитета Всероссийского геологического общества (от 28 декабря 1998 г. N 17/6).
40. В процессе технологических исследований целесообразно изучить возможность предобогащения и (или) разделения на сорта добытой руды в тяжелых суспензиях, с использованием крупнопорционной радиометрической сортировки горнорудной массы в транспортных емкостях, а для руд с высоким выходом кусковой фракции (-200 +20 мм) - возможность их радиометрической сепарации.
При положительных результатах исследований по предобогащению следует уточнить промышленные (технологические) типы руд, требующие селективной добычи, или подтвердить возможность валовой выемки рудной массы. Дальнейшие исследования способов глубокого обогащения руд проводятся с учетом возможностей и экономической эффективности включения в общую технологическую схему обогащения руд стадии предобогащения.
При изучении возможности радиометрической сортировки и сепарации руд следует руководствоваться "Требованиями к изучению радиометрической обогатимости минерального сырья при разведке месторождений металлических и неметаллических полезных ископаемых", утвержденными Председателем ГКЗ 23 ноября 1992 г.
41. Для выделения технологических типов и сортов руд проводится геолого- технологическое картирование, при котором сеть опробования выбирается в зависимости от числа и частоты перемежаемости природных разновидностей руд. При этом рекомендуется руководствоваться стандартом Российского геологического общества - СТО РосГео 09-002-98 "Твердые полезные ископаемые и горные породы. Геолого-технологическое картирование", утвержденным и введенным в действие Постановлением Президиума Исполнительного комитета Всероссийского геологического общества (от 28 декабря 1998 г. N 17/6).
Минералого-технологическими и малыми технологическими пробами, отобранными по определенной сети, должны быть охарактеризованы все природные разновидности руд, выявленные на месторождении. По результатам их испытаний проводится геолого- технологическая типизация руд месторождения с выделением промышленных (технологических) типов и сортов, изучается пространственная изменчивость вещественного состава, физико-механических и технологических свойств руд в пределах выделенных промышленных (технологических) типов и составляются геолого-технологические карты, планы и разрезы.
На лабораторных и укрупненно-лабораторных пробах должны быть изучены технологические свойства всех выделенных промышленных (технологических) типов руд в степени, необходимой для выбора оптимальной технологической схемы их переработки и определения основных технологических показателей обогащения и качества получаемой продукции. При этом важно определить оптимальную степень измельчения руд, которая обеспечит максимальное вскрытие ценных минералов при минимальном ошламовании и сбросе их в хвосты.
Полупромышленные технологические пробы служат для проверки технологических схем и уточнения показателей обогащения руд, полученных на лабораторных пробах.
Полупромышленные технологические испытания проводятся в соответствии с программой, разработанной организацией, выполняющей технологические исследования, совместно с геологоразведочной организацией и согласованной с проектной организацией отраслевого министерства. Отбор проб производится по специальному проекту.
Укрупненно-лабораторные и полупромышленные технологические пробы должны быть представительными, т.е. отвечать по химическому и минеральному составу, структурно-текстурным особенностям, физическим и другим свойствам среднему составу руд данного промышленного (технологического) типа с учетом возможного разубоживания рудовмещающими породами.
42. При исследовании обогатимости сурьмяных руд изучаются степень их окисленности, минеральный состав, структурные и текстурные особенности, а также физические и химические свойства минералов, устанавливается наличие попутных компонентов и вредных примесей с использованием приемов и методов технологической минералогии. Оценивается дробимость и измельчаемость, проводится ситовый, дисперсионный и гравитационный анализы разных классов руды. Выбирается технологическая схема обогащения, устанавливается число стадий и стадиальная крупность измельчения. Определяются способы обогащения и доводки концентратов и промпродуктов, содержащих попутные компоненты.
43. Для всех промышленных (технологических) типов сурьмяных руд базовой является гравитационно-флотационная схема обогащения. В ней используется принцип "щадящей" технологии, заключающийся в выделении и сохранении при переработке руды крупнокускового товарного продукта, по качеству (30% Sb) и гранулометрическому составу отвечающего требованиям, предъявляемым к шихте при выплавке черновой сурьмы. Принятая технология наиболее эффективна для обогащения монометалльных антимонитовых руд. Она обеспечивает получение товарных концентратов с высоким извлечением сурьмы. Иногда первым этапом обогащения является рудоразборка, позволяющая получать штуфные концентраты с содержанием не менее 20% сурьмы, независимо от степени окисленности руд*(4).
При переработке комплексных (флюорит-киноварь-антимонитовых, золото- антимонитовых, бертьерит-галенит-антимонитовых) и окисленных (сенармонтит- надоритовых) руд используются комбинированные схемы с радиометрическим, гравитационно-флотационным обогащением и выделением из концентратов обогащения части сопутствующих компонентов (ртуть, золото, серебро, свинец и др.) пиро- и гидрометаллургическими методами. При этом используется различное сочетание перечисленных процессов: для ртутно-сурьмяных руд - с выделением ртути пирометаллургическим способом и последующим получением сурьмы из огарков пиро- или гидрометаллургическими методами; для золото-серебро-сурьмяных руд - с плавкой, рафинированием сурьмы и концентрацией благородных металлов в купеляционном остатке и анодном шламе; для свинцово-сурьмяных руд - с получением различных товарных продуктов сурьмы и свинца пиро- и гидрометаллургическими методами.
Сульфидные руды обогащаются обычно флотационным методом, смешанные и окисленные руды обогащаются по гравитационно-флотационной схеме или подвергаются обжигу с возгонкой и улавливанием летучей , направляемой на металлургическою# переработку.
Переработка ртутно-сурьмяных руд и концентратов основана на выделении ртути в отдельный продукт пирометаллургическим способом и последующим получением сурьмы из огарков пиро- или гидрометаллургическим способами.
Выбор схемы переработки золото-сурьмяных руд определяется характером связи золота с рудными и породообразующими минералами. Если золото непосредственно связано с минералами сурьмы, схема обработки руды должна предусматривать получение коллективного золото-сурьмяного концентрата. При отсутствии четкой связи руду перерабатывают по комбинированным схемам с извлечением сурьмы и части золота в коллективный концентрат и доизвлечением золота из хвостов методами, принятыми в золотодобывающей промышленности.
При обогащении мышьяково-сурьмяных руд применяют схему коллективно- селективной флотации. По этой технологии все сульфиды извлекаются в концентрат. Селекция концентрата проводится путем депрессии пирита и арсенопирита цианидом и цинковым купоросом.
Из свинцовых, цинковых и медных концентратов различные сурьмяные соединения получают в сложных пиро- и гидрометаллургических процессах (агломерация, плавка в шахтных печах или горнах, огневое или электролитическое рафинирование, переработка шлаков, штейнов, шпейзы, пыли и т.д.).
Для получения особо чистых марок сурьмы (Су-000, Су-0000), идущих в полупроводниковую промышленность, применяют специальные методы очистки, включающие химическую обработку с последующей зонной плавкой.
Для производства товарной металл, полученный обычно пирометаллургическим способом и содержащий нередко повышенное количество свинца и благородных металлов, окисляют в отражательных электропечах в токе воздуха или конверторах. Образующуюся при этом улавливают рукавными фильтрами.
Товарной продукцией сурьмяной промышленности, помимо металлической сурьмы различных марок (Су-2, Су-1, Су-1Э, Су-0, Су-00, Су-000, Су-0000, Су-00000), являются оксид сурьмы, трехсернистая сурьма, пятисернистая сурьма, хлориды сурьмы, галогениды сурьмы, а также сульфидный сурьмяный концентрат для спичечной промышленности и соль Шлиппе (тиоантимонат натрия).
Качество концентратов должно в каждом конкретном случае регламентироваться договором между поставщиком (рудником) и металлургическим предприятием или должно соответствовать существующим стандартам и техническим условиям. Для сведения в табл. 5 в качестве ориентировочных приведены технические требования к сурьмяным концентратам, которые использовались в бывшем СССР.
Таблица 5
Марки и сорта сурьмяных концентратов
Богатые сульфидные сурьмяные крупнокусковые концентраты используются иногда для выплавки (зейгерования) трехсернистой сурьмы (крудума), являющейся товарным продуктом. Сурьмяные концентраты (флотационные, штуфные, а также возгоны) перерабатываются пирометаллургическим (осадительной или восстановительной плавкой с получением черновой сурьмы и последующим ее рафинированием) или гидроэлектрометаллургическим способом. Последний включает растворение антимонита в щелочном растворе сульфида натрия, электролиз раствора, огневое рафинирование полученного катодного металла и обеспечивает получение высших марок сурьмы. Плавка сурьмяных концентратов производится в отражательных или электрических руднотермических печах, рафинирование - в отражательных печах.
Перспективные методы переработки сурьмяных руд:
- тяжелосредное обогащение класса -2+0,5 мм в гидроциклонах;
- биохимическое выщелачивание труднообогатимых окисленных руд с применением метода извлечения сурьмы, золота, серебра, свинца, цинка, меди, основанного на использовании вещества руды в качестве природного источника питания для микрорганизмов, развивающихся в самой руде в период выщелачивания.
44. В результате исследований технологические свойства руд должны быть изучены с детальностью, обеспечивающей получение исходных данных, достаточных для проектирования технологической схемы их переработки с комплексным извлечением содержащихся в них компонентов, имеющих промышленное значение.
Промышленные (технологические) типы и сорта руд должны быть охарактеризованы по соответствующим предусмотренным кондициями показателям, установлены особенности этих руд при добыче и определены основные технологические параметры обогащения или передела (выход концентратов, их характеристика, извлечение полезных компонентов в отдельных операциях и сквозное извлечение и др.).
Достоверность данных, полученных в результате полупромышленных испытаний, оценивают на основе технологического и товарного баланса. Разница в массе металла между этими балансами не должна превышать 10%, и она должна быть распределена пропорционально массе металла в концентратах и хвостах.
Для попутных компонентов в соответствии с "Рекомендациями по комплексному изучению месторождений и подсчету запасов попутных полезных ископаемых и компонентов" необходимо выяснить формы нахождения и баланс их распределения в продуктах обогащения и передела концентратов, а также установить условия, возможность и экономическую целесообразность их извлечения.
Должна быть изучена возможность использования оборотных вод и отходов, получаемых при рекомендуемой технологической схеме переработки минерального сырья, даны рекомендации по очистке промстоков.
V. Изучение гидрогеологических, инженерно-геологических, экологических и других природных условий месторождения
45. Гидрогеологическими исследованиями должны быть изучены основные водоносные горизонты, которые могут участвовать в обводнении месторождения, выявлены наиболее обводненные участки и зоны и решены вопросы использования или сброса рудничных вод.
По каждому водоносному горизонту следует установить его мощность, литологический состав, типы коллекторов, условия питания, взаимосвязь с другими водоносными горизонтами и поверхностными водами, положение уровней подземных вод и другие параметры, определить возможные водопритоки в эксплуатационные горные выработки, проходка которых предусмотрена в технико-экономическом обосновании (ТЭО) кондиций, и разработать рекомендации по их защите от подземных вод. Необходимо также:
изучить химический состав и бактериологическое состояние вод, участвующих в обводнении месторождения, их агрессивность по отношению к бетону, металлам, полимерам, содержание в них полезных и вредных примесей; по разрабатываемым месторождениям привести химический состав рудничных вод и промстоков;
оценить возможность использования дренажных вод для водоснабжения или извлечения из них ценных компонентов, а также возможное влияние их дренажа на действующие в районе месторождения подземные водозаборы;
дать рекомендации по проведению в последующем необходимых специальных изыскательских работ, оценить влияние сброса рудничных вод на окружающую среду;
оценить возможные источники хозяйственно-питьевого и технического водоснабжения, обеспечивающие потребность будущих предприятий по добыче и переработке минерального сырья.
Утилизация дренажных вод предполагает подсчет эксплуатационных запасов. Подсчет эксплуатационных запасов дренажных вод производится в соответствии с "Требованиями к изученности и подсчету эксплуатационных запасов подземных вод, участвующих в обводнении месторождений твердых полезных ископаемых", утвержденными приказом ГКЗ СССР от 06 июня 1986 г. N 20-орг. и "Методическими рекомендациями по оценке эксплуатационных запасов дренажных вод месторождений твердых полезных ископаемых", одобренными начальником отдела геоэкологии и гидрогеологии Мингео СССР 24.01.1991 г.
По результатам гидрогеологических исследований должны быть даны рекомендации к проектированию рудника: по способам осушения геологического массива; по водоотводу; по утилизации дренажных вод; по источникам водоснабжения; по природоохранным мерам.
46. Проведение инженерно-геологических исследований на месторождениях при разведке необходимо для информационного обеспечения проекта разработки (расчета основных параметров карьера, подземных выработок и целиков, типовых паспортов буровзрывных работ и крепления) и повышения безопасности ведения горных работ.
Инженерно-геологические исследования на месторождении необходимо проводить в соответствии с "Методическим руководством по изучению инженерно-геологических условий рудных месторождений при разведке", рассмотренным и одобренным Департаментом геологии и использования недр Министерства природных ресурсов Российской Федерации (протокол N 7 от 4 сентября 2000 г.) и методическими рекомендациями: "Инженерно-геологические, гидрогеологические и геоэкологические исследования при разведке и эксплуатации рудных месторождений", рассмотренными и одобренными Управлением ресурсов подземных вод, геоэкологии и мониторинга геологической среды Министерства природных ресурсов Российской Федерации (протокол N 5 от 12 апреля 2002 г.).
Инженерно-геологическими исследованиями месторождения должны быть изучены физико-механические свойства руд, рудовмещающих пород и перекрывающих их отложений, определяющие характеристику их прочности в естественном и водонасыщенном состояниях, инженерно-геологические особенности массивов пород месторождения и их анизотропия, состав пород, трещиноватость, тектоническая нарушенность, текстурные особенности, закарстованность, разрушенность в зоне выветривания; охарактеризованы современные геологические процессы, которые могут осложнить разработку месторождения.
В районах с развитием многолетнемерзлых пород следует установить температурный режим пород, положение верхней и нижней границ мерзлотной толщи, контуры и глубину распространения таликов, характер изменения физических свойств пород при оттаивании, глубину слоя сезонного оттаивания и промерзания.
В результате инженерно-геологических исследований должны быть получены материалы по прогнозной оценке устойчивости пород в в# подземных горных выработках, бортах карьера и расчету основных параметров карьера.
При наличии в районе месторождения действующих шахт или карьеров, расположенных в аналогичных гидрогеологических и инженерно-геологических условиях, для характеристики разведываемой площади следует использовать данные о степени обводненности и инженерно-геологических условиях этих шахт и карьеров.
47. Разработка месторождений сурьмяного сырья производится открытым, подземным и комбинированным способами. При комбинированном способе границу отработки открытым способом устанавливают при помощи предельного коэффициента вскрыши, исходя из равенства себестоимости добычи полезного ископаемого тем и другим способом. Применяемые способы разработки зависят от горно-геологических условий залегания рудных тел, принятых горнотехнических показателей, схем добычи руды и обосновываются в ТЭО кондиций.
48. Для месторождений, где установлена природная газоносность отложений (метан, сероводород и др.), должны быть изучены закономерности изменения содержания и состава газов по площади и с глубиной.
49. Следует определить влияющие на здоровье человека факторы (пневмокониозоопасность, повышенная радиоактивность, геотермические условия и др.).
50. По районам новых месторождений необходимо указать площади с отсутствием залежей полезных ископаемых для размещения объектов производственного и жилищно-гражданского назначения, хвостохранилища и отвалов пустых пород. Приводятся данные о наличии местных строительных материалов.
51. Основная цель геоэкологических исследований заключается в информационном обеспечении проекта освоения месторождения в части природоохранных мер.
Экологическими исследованиями должны быть: установлены фоновые параметры состояния окружающей среды (уровень радиации, качество поверхностных и подземных вод и воздуха, характеристика почвенного покрова, растительного и животного мира и т.д.); определены предполагаемые виды химического и физического воздействия намечаемого к строительству объекта на окружающую природную среду (запыление прилегающих территорий, загрязнение поверхностных и подземных вод, почв рудничными водами и промстоками, воздуха выбросами в атмосферу и т.д.), объемы изъятия для нужд производства природных ресурсов (лесных массивов, воды на технические нужды, земель для размещения основных и вспомогательных производств, отвалов вскрышных и вмещающих горных пород, некондиционных руд и т.д.); оценены характер, интенсивность, степень и опасность воздействия, продолжительность и динамика функционирования источников загрязнения и границы зон их влияния.
Специфика техногенных источников воздействия месторождений сурьмяных руд определяется горным (подземным и открытым) способом разработки, применением флотации в качестве ведущего метода обогащения, высокой токсичностью продуктов окисления сурьмусодержащих руд, наличием в хвостохранилищах сурьмы в оксидных и гидроксидных формах, а также присутствием в качестве примесей мышьяка, висмута, свинца, цинка, меди, олова, золота, серебра, селена. Существенную экологическую опасность представляют мышьяк и ртуть, поступающие в окружающую среду в ходе переработки содержащих их сурьмяных руд, а также сточные воды установок по выщелачиванию золота из руд, что требует организации строго замкнутого процесса с максимальным использованием оборотных вод и последующего захоронения отходов выщелачивания.
Для решения вопросов, связанных с рекультивацией земель, следует определить мощность почвенного покрова и произвести агрохимические исследования рыхлых отложений, а также выяснить степень токсичности пород вскрыши и возможность образования на них растительного покрова. Должны быть даны рекомендации по разработке мероприятий по охране недр, предотвращению загрязнения окружающей среды и рекультивации земель.
При проведении экологических исследований следует руководствоваться "Временными требованиями к геологическому изучению и прогнозированию воздействия разведки и разработки месторождений полезных ископаемых на окружающую среду", утвержденными Председателем ГКЗ СССР 22 июня 1990 г. и "Методическими указаниями к экологическому обоснованию проектов разведочных кондиций на минеральное сырье", утвержденными заместителем министра охраны окружающей среды и природных ресурсов Российской Федерации# 1995 г.
52. Гидрогеологические, инженерно-геологические, геокриологические, горно-геологические и другие природные условия должны быть изучены с детальностью, обеспечивающей получение исходных данных, необходимых для составления проекта разработки месторождения. При особо сложных гидрогеологических, инженерно-геологических и других природных условиях разработки, требующих постановки специальных работ, объемы, сроки и порядок проведения исследований согласовываются с недропользователями и проектными организациями.
53. Другие полезные ископаемые, образующие во вмещающих и перекрывающих породах самостоятельные залежи, должны быть изучены в степени, позволяющей определить их промышленную ценность и область возможного использования в соответствии с "Рекомендациями по комплексному изучению месторождений и подсчету запасов попутных полезных ископаемых и компонентов".
VI. Подсчет запасов
54. Подсчет и квалификация по степени разведанности запасов месторождений сурьмяных руд производится в соответствии с требованиями Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых, утвержденной приказом Министерства природных ресурсов Российской Федерации от 7 марта 1997 г. N 40.
55. Запасы подсчитываются по подсчетным блокам, запасы руды в которых не должны превышать, как правило, годовую производительность будущего горного предприятия. Участки рудных тел, выделяемые в подсчетные блоки, должны характеризоваться:
одинаковой степенью разведанности и изученности параметров, определяющих количество запасов и качество руд;
однородностью геологического строения, примерно одинаковой степенью изменчивости мощности, внутреннего строения рудных тел, вещественного состава, основных показателей качества и технологических свойств руды;
выдержанностью условий залегания рудных тел, определенной приуроченностью блока к единому структурному элементу (крылу, замковой части складки, тектоническому блоку, ограниченному разрывными нарушениями);
общностью горнотехнических условий разработки.
По падению рудных тел подсчетные блоки следует разделять горизонтами горных работ или скважин с учетом намечаемой последовательности отработки запасов.
При невозможности геометризации и оконтуривания рудных тел количество и качество балансовых и забалансовых руд (и их промышленных типов) в подсчетном блоке определяются статистически.
56. При подсчете запасов должны учитываться следующие дополнительные условия, отражающие специфику месторождений сурьмяных руд.
Запасы категории А подсчитываются только на разрабатываемых месторождениях по данным эксплуатационной разведки и горно-подготовительных выработок. К ним относятся запасы подготовленных или готовых к выемке блоков, отвечающие по степени изученности требованиям Классификации к этой категории.
Запасы категории В при разведке подсчитываются только на месторождениях 2-й группы. К ним относятся запасы, выделенные на участках детализации или в пределах других частей рудных тел, степень разведанности которых соответствует требованиям Классификации к этой категории.
Контур запасов категории В должен быть проведен по разведочным выработкам, без экстраполяции, а основные горно-геологические характеристики рудных тел и качество руд в пределах этого контура определены по достаточному объему представительных данных. На месторождениях, где объем руды определяется с использованием коэффициента рудоносности, к категории В могут быть отнесены блоки, в пределах которых коэффициент рудоносности выше, чем средний по месторождению, установлены изменчивость рудонасыщенности в плане и на глубину, закономерности пространственного положения, типичная форма и характерные размеры участков кондиционных руд в степени, позволяющей дать оценку возможности их селективной отработки.
На разрабатываемых месторождениях запасы категории В подсчитываются по данным дополнительной разведки, эксплуатационной разведки и горно-подготовительных выработок в соответствии с требованиям Классификации к этой категории.
К категории относятся запасы на участках месторождений, в пределах которых выдержана принятая для этой категории сеть разведочных выработок, а достоверность полученной при этом информации подтверждена на новых месторождениях результатами, полученными на участках детализации, на разрабатываемых месторождениях - данными эксплуатации. При невозможности геометризации рудных тел количество и качество балансовых, забалансовых и промышленных типов руд в подсчетном блоке определяются статистически.
Контуры запасов категории определяются, как правило, по разведочным выработкам, а для наиболее выдержанных и крупных рудных тел - геологически обоснованной ограниченной экстраполяцией, учитывающей изменение морфоструктурных особенностей, мощностей рудных тел и качества руд.
Запасы категории подсчитываются по конкретным рудным телам, а при невозможности их геометризации - статистически, в обобщенном контуре, границы которых определены по геологическим и геофизическим данным и подтверждены скважинами, встретившими промышленные руды, или путем экстраполяции по простиранию и падению от разведанных запасов более высоких категорий при наличии подтверждающих экстраполяцию единичных пересечений, результатов геофизических работ, геолого-структурных построений и закономерностей изменения мощностей рудных тел и содержаний сурьмы.
57. Запасы подсчитываются раздельно по категориям разведанности, способам отработки (карьерами, штольневыми горизонтами, шахтами), промышленным (технологическим) типам и сортам руд и их экономическому значению (балансовые, забалансовые).
При разделении запасов полезных ископаемых по категориям в качестве дополнительного классификационного показателя могут использоваться количественные и вероятностные оценки точности и достоверности определения основных подсчетных параметров. Соотношение различных промышленных типов и сортов руд при невозможности их оконтуривания определяется статистически.
Забалансовые (потенциально-экономические) запасы подсчитываются и учитываются в том случае, если в ТЭО кондиций доказана возможность их сохранности в недрах для последующего извлечения или целесообразность попутного извлечения, складирования и сохранения для использования в будущем. При подсчете забалансовых запасов производится их подразделение в зависимости от причин отнесения запасов к забалансовым (экономических, технологических, гидрогеологических, экологических и др.).
Балансовые и забалансовые запасы руды подсчитываются без учета влажности (сухая руда) с указанием влажности сырой руды. Для влагоемких, пористых руд производится также подсчет запасов сырой руды.
58. При подсчете запасов традиционными методами (геологических блоков, разрезов и др.) должны быть выявлены пробы с аномально высоким содержанием сурьмы ("ураганные" пробы), проанализировано их влияние на величину среднего содержания по разведочным сечениям и подсчетным блокам и при необходимости ограничено их влияние. Части рудных тел с высоким содержанием и увеличенной мощностью или участки с высоким коэффициентом рудоносности или участки с высоким коэффициентом рудоносности следует выделять в самостоятельные подсчетные блоки и более детально разведывать.
На разрабатываемых месторождениях для определения уровня "ураганных" значений и методики их замены следует использовать результаты сопоставления данных разведки и эксплуатации (в том числе особенности изменения распределения проб по классам содержаний сурьмы по данным сгущения разведочной сети).
59. На разрабатываемых месторождениях вскрытые, подготовленные и готовые к выемке, а также находящиеся в охранных целиках горно-капитальных и горно-подготовительных выработок запасы руд подсчитываются отдельно с подразделением по категориям в соответствии со степенью их изученности.
60. Запасы руд, заключенные в охранных целиках крупных водоемов и водотоков, населенных пунктов, капитальных сооружений и сельскохозяйственных объектов, заповедников, памятников природы, истории и культуры, относятся к балансовым или забалансовым в соответствии с утвержденными кондициями.
61. На разрабатываемых месторождениях для контроля за полнотой отработки ранее утвержденных запасов и обоснования достоверности подсчитанных новых запасов необходимо производить сопоставление данных разведки и эксплуатации по запасам, условиям залегания, морфологии, мощности, внутреннему строению рудных тел, коэффициенту рудоносности и содержанию полезных компонентов в соответствии с "Методическими рекомендациями по сопоставлению данных разведки и разработки месторождений твердых полезных ископаемых".
В материалах сопоставления должны быть приведены контуры ранее утвержденных органами госэкспертизы и погашенных запасов (в том числе добытых и оставшихся в целиках), списанных как неподтвердившихся, контуры площадей приращиваемых запасов, а также сведения о запасах, числящихся на государственном балансе (в том числе - об остатке запасов, ранее утвержденных ГКЗ или ТКЗ); представлены таблицы движения запасов (по категориям, рудным телам и месторождению в целом) и баланс руды с характеристикой ее качества в контуре погашенных запасов, отражающий изменение утвержденных ГКЗ (ТКЗ) запасов при доразведке, потери при добыче и транспортировке, выход товарной продукции и потери при переработке руд. Результаты сопоставления сопровождаются графикой, иллюстрирующей изменение представлений о геологическом строении месторождения.
Если данные разведки в целом подтверждаются разработкой или имеющиеся незначительные расхождения не влияют на технико-экономические показатели горнодобывающего предприятия, для сопоставления данных разведки и разработки могут быть использованы результаты геолого-маркшейдерского учета.
По месторождению, на котором по мнению недропользовотеля утвержденные ГКЗ (ТКЗ) запасы или качество руд не подтвердились при разработке или необходимо введение поправочных коэффициентов в ранее утвержденные параметры или запасы, обязательным является выполнение специального подсчета запасов по данным доразведки и эксплуатационной разведки и оценка достоверности результатов, полученных при проведении этих работ.
При анализе результатов сопоставления необходимо установить величины изменений при разработке или доразведке утвержденных ГКЗ (ТКЗ) подсчетных параметров (площадей подсчета, мощностей рудных тел, коэффициентов рудоносности, содержаний полезных компонентов, объемных масс и т.д.), запасов и качества руд, а также выяснить причины этих изменений.
62. В последние годы при подсчете запасов рудных месторождений находит применениие# метод геостатистического моделирования, позволяющий использовать процедуру крайгинга для исследования закономерностей пространственного распределения изучаемых признаков (концентраций полезного компонента, мощностей рудных пересечений, метропроцентов) и их оценивания, с установлением амплитуды возможных ошибок.
Эффективность применения крайгинга в значительной степени обусловлена количеством и качеством исходной разведочной информации, методологией анализа первичных данных и моделирования, отвечающей индивидуальным геологическим особенностям строения разведываемого месторождения (законам распределения подсчетных параметров, характеру тренда и анизотропии, влиянию структурных границ, структуре и качеству экспериментальных вариограмм, параметрам поискового эллипсоида и др.). При использовании процедуры крайгинга количество и плотность разведочных пересечений должны быть достаточными для обоснования оптимальных интерполяционных формул (для двухмерного моделирования - не менее нескольких десятков разведочных пересечений, для трехмерного - не менее первых сотен проб). Изучение свойств пространственных переменных рекомендуется производить на участках детализации.
Вычисление вариограмм производится на основе данных опробования по сквозным рудным пересечениям (жильный тип), составным пробам, длина которых согласуется с уступом карьера (штокверки, мощные минерализованные зоны), и по интервалам опробования - в случаях, когда исключается возможность для изучения вертикальной изменчивости оруденения по составным пробам.
При построении блочной геостатистической модели месторождения максимально возможный размер элементарного блока выбирается исходя из планируемой технологии добычи, минимальный определяется плотностью созданной на месторождении разведочной сети наблюдений (не рекомендуется принимать размер сторон элементарного блока менее 1/4 средней плотности сети).
Результаты подсчета запасов могут быть представлены в двух видах: при расчете по сетке одинаковых равно-ориентированных блоков составляются таблицы подсчетных параметров по всем элементарным блокам совместно со значениями дисперсии крайгинга: при расчете крупными геологическими блоками индивидуальной геометрии каждый блок должен быть привязан в пространстве и иметь список проб, входящих в зону влияния.
Все массивы цифровых данных (данные опробования, координаты проб или рудных пересечений, аналитические выражения структурных вариограмм и др.) должны представляться в форматах, доступных для экспертизы с использованием наиболее распространенных программных комплексов (например, в виде DBF-файлов с отдельным указанием способа кодирования пропущенных значений или в виде ASCII-файлов стандартного формата GEOEAS). Модели симметризующих преобразований, трендов и вариограмм, прочие параметры представляются в аналитическом и описательном виде.
Считается, что геостатистический способ подсчета запасов дает возможность установления наилучших оценок средних содержаний полезного компонента в блоках, рудных телах и по месторождению в целом без специальных приемов по уменьшению влияния "ураганных" проб, позволяет снизить ошибки оконтуривания рудных тел с весьма сложной морфологией и внутренним строением и оптимизировать технологию отработки месторождения. Вместе с тем, геостатистические методы подсчета запасов должны быть контролируемыми в своем применении и подчинены особенностям геологического строения месторождения. Результаты геостатистического моделирования и оценивания должны проверяться (сравниваться) результатами традиционных методов подсчета запасов на представительных участках.
63. При компьютерном подсчете запасов должна быть обеспечена возможность просмотра, проверки и корректировки исходных данных (координаты разведочных выработок, данные инклинометрии, отметки литолого-стратиграфических границ или контактов, результаты опробования, планы опробования, параметры кондиций и др.), результатов промежуточных расчетов и построений (каталог рудных пересечений, выделенных в соответствии с кондициями; геологические разрезы или планы с контурами промышленного оруденения; проекции рудных тел на горизонтальную или вертикальную плоскость; каталог подсчетных параметров по блокам, уступам, разрезам) и сводных результатов подсчета запасов. Выходная документация и машинная графика должны отвечать существующим требованиям к этим документам по составу, структуре, форме и др.
64. Подсчет запасов попутных полезных ископаемых и компонентов производится в соответствии с "Рекомендациями по комплексному изучению месторождений и подсчету запасов попутных полезных ископаемых и компонентов".
65. Подсчет запасов оформляется в соответствии с "Требованиями к составу и правилам оформления представляемых на государственную экспертизу материалов по подсчету запасов металлических и неметаллических полезных ископаемых".
VII. Степень изученности месторождений (участков месторождений)
По степени изученности месторождения (и их участки) могут быть отнесены к группе оцененных или разведанных в соответствии с требованиями раздела 3 Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых, утвержденной приказом Министерства природных ресурсов Российской Федерации от 7 марта 1997 г. N 40.
Степень изученности для оцененных месторождений определяет целесообразность продолжения разведочных работ на объекте, для разведанных - подготовленность месторождения для промышленного освоения.
66. На оцененных месторождениях сурмяных руд должна быть определена их промышленная ценность и целесообразность проведения разведочной стадии работ, выявлены общие масштабы месторождения, выделены наиболее перспективные участки для обоснования последовательности разведки и последующей отработки.
Параметры кондиций для подсчета запасов должны быть установлены на основе технико-экономического обоснования временных разведочных кондиций, разрабатываемых на основе отчетов о результатах оценочных работ для новых открытых месторождений, как в целом, так и по отдельным их частям, в объеме, достаточном для предварительной геолого-экономической оценки месторождения.
Запасы оцененных месторождений по степени изученности квалифицируются, главным образом, по категории и, частично, .
Соображения о способах и системах разработки месторождения, возможных масштабах добычи обосновываются укрупнено# на основе проектов-аналогов; технологические схемы обогащения с учетом комплексного использования сырья, возможный выход и качество товарной продукции устанавливаются на основе исследований лабораторных проб; капитальные затраты на строительство рудника, себестоимость товарной продукции и другие экономические показатели определяются по укрупненным расчетам на базе проектов-аналогов.
Вопросы хозяйственно-питьевого водоснабжения горнодобывающих предприятий при оценке-промышленной значимости месторождений твердых полезных ископаемых предварительно характеризуются, основываясь на существующих, разведываемых и вероятных источниках водоснабжения.
Рассматривается и оценивается возможное влияние отработки месторождений на окружающую среду.
Для детального изучения морфологии оруденения, вещественного состава руд и разработки технологических схем обогащения и переработки руд на оцененных месторождениях (участках) может осуществляться опытно-промышленная разработка (ОПР). ОПР проводится в рамках проекта разведочной стадии работы по решению государственной экспертизы материалов подсчета запасов в течение не более 3 лет на наиболее характерных, представительных для большей части месторождения участках, включающих типичные для месторождения руды. Масштаб и сроки ОПР должны быть согласованы с органами Федеральной службы по экологическому, технологическому и атомному надзору (Ростехнадзор). Необходимость проведения ОПР должна быть обоснована в каждом конкретном случае с определением ее целей и задач.
Проведение ОПР диктуется обычно необходимостью выявления особенностей геологического строения рудных тел (изменчивость морфологии и внутреннего строения), горно-геологических и горнотехнических условий отработки, технологии добычи руд и их обогащения (природные разновидности и технологические типы руд и их взаимоотношения, особенности обогащения, полупромышленные испытания и т.д.); решение этих вопросов возможно только при вскрытии рудных тел на существенную глубину и протяженность.
К ОПР необходимо также прибегать при внедрении новых методов добычи полезных ископаемых, как, например, скважинная гидродобыча разрыхленных руд с больших и малых глубин, а также при отработке новых нетрадиционных типов руд. Кроме того, ОПР целесообразна при освоении крупных и гигантских месторождений, на которых, прежде чем приступить к строительству крупных фабрик, разработанная технологическая схема испытывается и совершенствуется на небольших обогатительных фабриках.
67. На разведанных месторождениях качество и количество запасов, их технологические свойства, гидрогеологические, горнотехнические и экологичекие# условия разработки должны быть изучены по скважинам и горным выработкам с полнотой, достаточной для разработки технико-экономического обоснования решения о порядке и условиях их вовлечения в промышленное освоение, а также о проектировании строительства или реконструкции на их базе горнодобывающего производства.
Разведанные месторождения по степени изученности должны удовлетворять следующим требованиям:
обеспечена возможность квалификации запасов по категориям, соответствующим группе сложности геологического строения месторождения;
вещественный состав и технологические свойства промышленных типов и сортов полезного ископаемого изучены с детальностью, обеспечивающей получение исходных данных, достаточных для проектирования рациональной технологии их переработки с комплексным извлечением всех полезных компонентов, имеющих промышленное значение, и определения направления использования отходов производства или оптимального варианта их складирования;
запасы других совместно залегающих полезных ископаемых (включая породы вскрыши и подземные воды) с содержащимися в них компонентами, отнесенные на основании кондиций к балансовым, изучены и оценены в степени, достаточной для определения их количества и возможных направлений использования;
гидрогеологические, инженерно-геологические, геокриологические, горно-геологические, экологические и другие природные условия изучены с детальностью, обеспечивающей получение исходных данных, необходимых для составления проекта разработки месторождения с учетом требований природоохранного законодательства и безопасности горных работ;
достоверность данных о геологическом строении, условиях залегания и морфологии рудных тел, качестве и количестве запасов подтверждена на представительных для всего месторождения участках детализации, размер и положение которых определяются недропользователем в каждом конкретном случае в зависимости от их геологических особенностей;
рассмотрено возможное влияние разработки месторождения на окружающую среду и даны рекомендации по предотвращению или снижению прогнозируемого уровня отрицательных экологических последствий до требований соответствующих нормативных документов;
подсчетные параметры кондиций установлены на основании технико-экономических расчетов, позволяющих определить масштабы и промышленную значимость месторождения с необходимой степенью достоверности.
Рациональное соотношение запасов различных категорий определяется недропользователем с учетом допустимого предпринимательского риска. Возможность полного или частичного использования запасов категории при проектировании отработки месторождений в каждом конкретном случае определяется государственной геологической экспертизой и оформляется в виде рекомендации. Решающими факторами при этом являются особенности геологического строения рудных тел, их мощность и характер распределения в них рудной минерализации, оценка возможных ошибок разведки (методов, технических средств, опробования и аналитики), а также опыт разведки и разработки месторождений аналогичного типа.
Разведанные месторождения относятся к подготовленным для промышленного освоения при выполнении настоящих рекомендаций и после утверждения запасов (балансовых и забалансовых) в установленном порядке.
VIII. Пересчет и переутверждение запасов
Пересчет и переутверждение запасов в установленном порядке производится по инициативе недропользователя, а также контрольных и надзорных органов в случаях существенного изменения представлений о качестве и количестве запасов месторождения и его геолого-экономической оценке в результате дополнительных геологоразведочных и добычных работ.
По инициативе недропользователя пересчет и переутверждение запасов производится при наступлении случаев, существенно ухудшающих экономику предприятия:
существенном неподтверждении разведанных и утвержденных ранее запасов и (или) их качества;
объективном, существенном (более 20%) и стабильном падении цены продукции при сохранении уровня себестоимости производства;
изменении требований промышленности к качеству минерального сырья;
когда общее количество балансовых запасов, списанных и намечаемых к списанию как неподтвердившихся (в процессе дополнительной разведки, эксплуатационной разведки и разработки месторождения), а также не подлежащих отработке по технико- экономическим причинам, превышает нормативы, установленные действующим положением о порядке списания запасов полезных ископаемых с баланса горнодобывающих предприятий (т.е. более 20%).
По инициативе контрольных и надзорных органов пересчет и переутверждение запасов производится при наступлении случаев, ущемляющих права недровладельца (государства) в части необоснованного уменьшения налогооблагаемой базы:
увеличении балансовых запасов, по сравнению с ранее утвержденными, более чем на 50%;
существенном и стабильном увеличении мировых цен на продукцию предприятия (более 50% от заложенных в обоснования кондиций);
разработке и внедрении новых технологий, существенно улучшающих экономику производства;
выявлении в рудах или вмещающих породах ценных компонентов или вредных примесей, ранее не учтенных при оценке месторождения и проектировании предприятия.
Экономические проблемы предприятия, вызванные временными причинами (геологические, технологические, гидрогеологические и горнотехнические осложнения, временное падение мировых цен продукции), решаются с помощью механизма эксплуатационных кондиций и не требуют пересчета и переутверждения запасов.
_______________________________
*(1) По району месторождения и рудному полю представляются геологическая карта и карта полезных ископаемых в масштабе 1:25000-1:50000 с соответствующими разрезами. Указанные материалы должны отражать размещение рудоконтролирующих структур и рудовмещающих комплексов пород, месторождений сурьмы и рудопроявлений района, а также участков, на которых оценены прогнозные ресурсы сурьмяных руд.
Результаты проведенных в районе геофизических исследований следует использовать при составлении геологических карт и разрезов к ним и отражать на сводных планах интерпретации геофизических аномалий в масштабе представляемых карт.
*(2) Возможность использования результатов геофизического опробования для подсчета запасов, а также возможность внедрения в практику опробования новых геофизических методов и методик рассматривается экспертно-техническим советом (ЭТС) ГКЗ после их одобрения НСАМ или другими компетентными советами.
*(3) Здесь и далее в тексте приняты следующие сокращения названий организаций, осуществлявших государственную экспертизу запасов до выхода постановления Правительства Российской Федерации от 11 февраля 2005 года N 69: ГКЗ - Государственная комиссия по запасам полезных ископаемых, ТКЗ - территориальные комиссии по запасам полезных ископаемых.
Уточнение названий организаций, выполняющих государственную экспертизу, будет сделано после завершения организационных мероприятий во исполнение вышеуказанного постановления.
*(4) По степени окисленности сурьмяные руды подразделяются на сульфидные, содержащие до 30% окисленных минералов, смешанные - 30-50% и окисленные более 50%.
Приложение
к Методическим рекомендациям
по применению Классификации
запасов месторождений и прогнозных ресурсов
твердых полезных ископаемых (сурьмяных руд)
Характеристические показатели сложности геологического строения месторождений твердых полезных ископаемых
Система разведки и плотность разведочной сети зависят в основном от нескольких природных факторов: условий залегания и структурно-геологических особенностей рудных тел (выдержанности и морфологии рудных тел, характера границ) и распределения полезного компонента (степени изменчивости качества полезного ископаемого в пределах рудных тел).
В качестве основных количественных показателей сложности строения рудных тел рекомендуется использовать следующие величины: коэффициент рудоносности (), показатель сложности (q) и коэффициенты вариации мощности () и содержания () в рудных пересечениях (А.П. Прокофьев, 1973).
Коэффициент рудоносности обычно выражается как отношение линейных величин - длины рудных интервалов по скважинам или горным выработкам () к общей длине пересечений в пределах продуктивной зоны (в границах промышленного оруденения - ):
. (1.1)
Показатель сложности рассчитывается по отношению числа рудных пересечений () к сумме всех разведочных пересечений (рудных, безрудных внутриконтурных и законтурных , обрисовывающих общую границу сложного объекта):
. (1.2)
Коэффициент вариации мощности и коэффициент вариации содержания (в %) вычисляются общеизвестными способами по сумме разведочных данных:
; (1.3)
, (1.4)
где и - соответственно среднеквадратичные отклонения мощности единичных рудных пересечений и содержания в них полезного компонента от их среднеарифметических значений и .
Обобщенные ориентировочные предельные значения показателей сложности строения рудных тел по месторождениям 1-, 2-, 3- и 4-й групп сложности приведены в таблице.
Таблица
Количественные характеристики изменчивости основных свойств оруденения
Группа месторождений |
Показатели изменчивости объектов разведки |
|||
формы |
содержания |
|||
К_р |
q |
V_m, % |
V_c, % |
|
1-я |
0,9-1,0 |
0,8-0,9 |
<40 |
<40 |
2-я |
0,7-0,9 |
0,6-0,8 |
40-100 |
40-100 |
3-я |
0,4-0,7 |
0,4-0,6 |
100-150 |
100-150 |
4-я |
<0,4 |
<0,4 |
>150 |
>150 |
Решение по отнесению месторождения к конкретной группе принимается по совокупности всей геологической информации с учетом показателя, характеризующего наивысшую изменчивость формы или содержания.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.