Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
1. Общая часть
Геодезические измерения служат для математического описания физической поверхности Земли в единой системе координат. Результаты геодезических измерений, как исходные данные для решения геодезических задач такого рода, относятся к поверхности эллипсоида. Параметры земного эллипсоида выводились многократно учеными разных стран на основании астрономо-геодезических, гравиметрических, а позднее и спутниковых данных измерений. В разных странах используют различные эллипсоиды.
На рис. 1 показан эллипсоид вращения с центром О, осью вращения Z, экваториальным эллипсом, проходящим через плоскость OXY, и меридианным эллипсом, проходящим через точку начала счета долгот и через плоскость OXZ. К параметрам земного эллипсоида относятся:
а - большая (экваториальная) полуось эллипсоида;
b - малая (полярная) полуось эллипсоида;
- полярное сжатие эллипсоида: = (a-b)/a ;
е - первый эксцентриситет меридианного эллипса: .
Система геодезических (географических) координат определяется геодезическими широтой В, долготой L и геодезической высотой H.
Геодезическая широта В - угол между нормалью к поверхности эллипсоида в исследуемой точке и плоскостью экватора.
Геодезическая долгота L - двугранный угол, образованный плоскостью начального меридиана и плоскостью меридиана исследуемой точки.
Геодезическая высота Н - расстояние от исследуемой точки по нормали к эллипсоиду до его поверхности.
Широты точек, расположенных в северном полушарии от 0° на экваторе до +90° на Северном полюсе, называют северными, широты точек южного полушария от 0° на экваторе до +90° на Южном полюсе - южными. Долготы точек, расположенных восточнее нулевого меридиана до меридиана 180°, называются восточными, долготы точек, расположенных западнее начального меридиана от 0° на начальном меридиане до 180° на противоположном меридиане - западными.
Чтобы избежать смену направлений отсчета координат в полушариях, наряду с указанными выше, применяют оцифровки координат, изменяющихся по широте от - 90° на Южном полюсе до +90° на Северном полюсе, и по долготе - от 0° до 360°: в Восточном полушарии от 0° до 180°, и далее в Западном полушарии от 180° до 360°. При этом отпадает необходимость пояснений в каких полушариях находится исследуемая точка.
Астрономические координаты, относящиеся к уровенной поверхности, определяются астрономическими широтой и долготой.
Отвесная линия - нормаль к уровенной поверхности.
Астрономическая широта - угол между отвесной линией в исследуемой точке и плоскостью экватора.
Астрономическая долгота - двугранный угол, образованный плоскостью начального меридиана и плоскостью астрономического меридиана исследуемой точки, при этом под плоскостью астрономического меридиана понимается плоскость, проходящая через отвесную линию в этой точке и параллельная оси мира.
На рис. 1 обозначено:
- нормальная геодезическая широта;
- направление силы тяжести в точке К на поверхности Земли;
- направление касательной к силовой линии нормального поля в точке К.
- составляющая уклонения отвесной линии в плоскости меридиана;
, - астрономические широта и долгота;
H - геодезическая высота в точке М, равная ,
где
- нормальная высота в точке М;
- высота квазигеоида (аномалия высоты) в точке М.
В геодезических работах обязательно учитываются различия между геодезическими и астрономическими координатами, обусловленные влиянием выбора размеров и ориентировки референц-эллипсоида и уклонениями отвесных линий.
Астрономо-геодезическое уклонение отвесной линии (в геометрическом определении) - угол между направлениями отвесной линии и нормали к референц-эллипсоиду.
Составляющие астрономо-геодезического уклонения в плоскости меридиана и в плоскости первого вертикала определяются из сравнения геодезических B, L и астрономических , координат:
,
.
Разность геодезического и астрономического азимутов некоторого направления в данной точке определяется из выражения:
,
где z - зенитное расстояние направления в данной точке.
Полное уклонение отвесной линии (в физическом определении) - угол между касательными к силовым линиям реального и нормального полей силы тяжести, то есть угол между направлением действительной силой тяжести и направлением нормальной силы тяжести в исследуемой точке.
Составляющие уклонения отвесной линии в первом вертикале в физическом и геометрическом определении совпадают, так как силовые линии нормального поля силы тяжести - плоские кривые, лежащие в меридиональных плоскостях.
Составляющая уклонения отвесной линии в плоскости меридиана (в физическом определении) - угол между касательной к силовой линии нормального поля и проекцией силовой линии реального поля силы тяжести на меридиональную плоскость.
,
где - нормальная широта;
;
Н - геодезическая высота.
Абсолютное уклонение отвесной линии - уклонение отвесной линии, определяемое относительно нормали к общему земному эллипсоиду.
Относительное уклонение отвесной линии - уклонение отвесной линии, определяемое относительно нормали к референц-эллипсоиду.
Разности между относительными , и абсолютными , составляющими уклонения отвесной линии вычисляют следующим образом:
,
,
где , , - угловые элементы ориентирования референцной системы относительно общеземной.
Геодезическая высота равна сумме нормальной высоты и высоты квазигеоида :
.
Нормальная высота определяется следующим выражением:
,
где , - значения потенциалов силы тяжести для уровенных поверхностей, проходящих начальный пункт (футшток) на уровне моря (точку О) и через точку М. Разность потенциалов - называют геопотенциальной отметкой точки М
- значения силы тяжести в пунктах нивелирного хода;
dh - элементарное измеренное превышение;
- среднее значение нормальной силы тяжести на отвесной линии :
;
- нормальная сила тяжести на поверхности относимости, вычисленная по нормальной формуле как функции широты .
Практически расчет нормальной высоты в точке М относительно точки К выполняют с использованием следующей формулы:
,
где ,
- измеренное превышение репера М над репером К;
- средняя высота реперов К и М;
- среднее арифметическое из аномалий силы тяжести в точках К и М.
Определение общего земного эллипсоида (абсолютного земного эллипсоида) и нормального потенциала выполняется при следующих условиях:
1. Масса эллипсоида равна массе Земли.
2. Центр эллипсоида совпадает с центром масс Земли.
3. Разность между экваториальным и полярным моментами инерции эллипсоида равна - разности между средним из экваториальных и полярных моментами инерции Земли.
4. Координатная ось Z совпадает с осью вращения Земли.
5. Потенциал на эллипсоиде равен потенциалу Земли на уровне моря .
Референц-эллипсоид (относительный эллипсоид) - эллипсоид определенных размеров, таким образом ориентированный в теле Земли, что геодезические координаты какого-либо одного пункта поверхности Земли оказываются равными наперед заданным величинам и при этом малая ось эллипсоида параллельна оси вращения Земли.
После установления параметров ориентирования референц-эллипсоида задача определения геодезических координат других пунктов, расположенных на территории данного государства, формально сводится к определению приращений этих координат относительно исходного пункта. Для определения этих приращений координат изучаемая территория покрывается триангуляционными и спутниковыми сетями, полигонометрическими ходами и нивелирными полигонами.
Системы координат СК-42 и СК-95 формально являются плановыми системами координат. Однако во многих случаях результаты геодезических определений бывают представлены одновременно и плановыми координатами и высотами. При использовании спутниковых методов пространственное представление положений пунктов является стандартным. Во многих программных приложениях при обработке координат в системах СК-42 и СК-95 пространственное представление положений пунктов может быть обязательным.
1.1. Система координат 1942 года
1.1.1. Началом истории построения в нашей стране единой геодезической системы координат можно считать 1816 год. С этого года начались работы под руководством академика Петербургской Академии Наук, основателя и первого директора Пулковской обсерватории В.Я. Струве и генерала от инфантерии, почетного члена Петербургской Академии Наук К.И. Теннера по проложению триангуляционного ряда по территории России от устья Дуная до Северного Ледовитого океана через Финляндию с включением территорий Швеции и Норвегии. Этот ряд триангуляции, протяженностью 25°20', получил в последствии название дуги Струве.
В 1898 году Корпусом Военных Топографов под руководством генерала К.В. Шарнгорста было начато уравнивание разрозненных "губернских триангуляций", покрывавших страну от западных границ до Урала, включая Кавказ. Завершена эта работа была только в 1926 году изданием силами Военнно-топографической службы каталога Шарнгорста. Референц-эллипсоидом служил эллипсоид Бесселя, а исходными пунктами являлись астрономическая обсерватория в Дерпте и пункты триангуляции меридианной дуги Струве.
1.1.2. Началом следующего этапа построения единой системы координат на всю территорию России является 1928 год, когда Главным геодезическим управлением СССР была утверждена единая схема и программа развития государственной триангуляции страны, предложенная Ф.Н. Красовским. В схеме Ф.Н. Красовского передача координат на большие расстояния осуществляется проложением по возможности вдоль меридианов и параллелей звеньев (рядов) триангуляции 1 класса, образующих при взаимном пересечении полигоны с периметром 800-1000 км. Звено триангуляции 1 класса длиной обычно не более 200 км состоит из треугольников, близких к равносторонним, или из комбинации треугольников, геодезических четырехугольников и центральных систем. Длины сторон в звеньях триангуляции 1 класса составляют, как правило, не менее 20 км. На концах звеньев триангуляции 1 класса измерялись базисные стороны непосредственно прибором Едерина (инварными проволоками) или светодальномером. На обоих концах базисных сторон (в вершинах полигонов) определялись пункты Лапласа (астрономические определения широт, долгот и азимутов). Звено полигонометрии 1 класса вытянуто и состоит не более чем из 10 сторон длиною 20-25 км. На обоих концах крайних сторон звена (в вершинах полигонов) определяются пункты Лапласа с целью исключения накопления ошибок от полигона к полигону и решения редукционных задач высшей геодезии. Для решения редукционных задач необходимо знать составляющие уклонения отвесных линий в плоскости меридиана и в плоскости первого вертикала .
Государственная геодезическая сеть подразделялась на сети 1, 2, 3 и 4 классов, различающихся между собой точностью измерений углов и расстояний, длиной сторон сети и порядком последовательного развития. Основные характеристики построения астрономо-геодезической сети приведены в табл. 1 в соответствии с [6, 9, 13], [12, с. 360].
В 1930 году под общим руководством Ф.Н. Красовского вычислительное бюро Главного геодезического управления приступило к уравниванию 8 полигонов 1 класса для Европейской части СССР. Позднее к этим полигонам был присоединен Уральский полигон. Вычисления велись относительно эллипсоида Бесселя методом развертывания, за начальный пункт принимался пункт Саблино. Основная особенность и главный недостаток метода развертывания состоит в том, что результаты измерений, выполненные на земной поверхности и редуцированные к уровню моря при дальнейшей обработки считались выполненными на поверхности референц-эллипсоида без каких либо поправок за несовпадение поверхности эллипсоида и уровенной поверхности нулевой высоты.
Работы по уравниванию триангуляции были завершены в 1932 году и принятая система координат получила название системы 1932 года.
В те же годы в ЦНИИГАиК под руководством Ф.Н. Красовского и А.А. Изотова начались работы по выводу референц-эллипсоида, наилучшим образом подходившего для территории СССР. Под руководством и участием М.С. Молоденского велись работы по определению высот геоида по данным астрономо-гравиметрического нивелирования.
1.1.3. В 1942 году начались работы по переуравниванию АГС. Совместным решением Главного управления геодезии и картографии (ГУГК) и Военно-топографического управления Генерального Штаба Министерства Обороны (ВТУ ГШ МО) от 4 июня 1942 года в качестве референц-эллипсоида при уравнивании был принят эллипсоид (в последующем получившего имя Красовского) со следующими параметрами:
большая полуось а = 6378245,0 м и обратное сжатие = 298,3,
а систему координат, в которой велись вычисления, было решено именовать системой координат 1942 года.
Установление системы координат 1942 года предполагало также вывод значений исходных геодезических дат в исходном пункте геодезической сети Пулково. В состав исходных геодезических дат входят геодезические широта и долгота исходного пункта на референц-эллипсоиде Красовского, геодезический азимут исходного направления, составляющие уклонения отвесной линии и высота квазигеоида над эллипсоидом Красовского в исходном пункте. Эти данные в совокупности определяют пространственную ориентировку осей референц-эллипсоида в теле Земли при выполнении следующих теоретически строгих условий:
- малая ось эллипсоида параллельна направлению к положению среднего полюса;
- плоскость нулевого меридиана параллельна плоскости начального астрономического меридиана;
- поверхность референц-эллипсоида имеет в среднем наименьшие уклонения от поверхности геоида на всей территории расположения обрабатываемой геодезической сети.
Реальная строгость выполнения перечисленных условий определяется точностью всех использованных астрономо-геодезических данных и не зависит от конкретного выбора исходного пункта. Значения исходных геодезических дат устанавливают систему отсчета координат, но не определяют внутреннюю точность самой геодезической сети. Точность взаимного положения геодезических пунктов в сети также не зависит от местоположения исходного пункта, а также от значений исходных геодезических дат.
Подобное установление по существу референцных систем координат был единственно возможным в то время при использовании традиционных астрономо-геодезических измерений, выполняемых на земной поверхности. Исходные геодезические даты лишь частично определяют пространственное положение референцной системы в теле Земли через взаимное положение поверхности референц-эллипсоида и геоида для данной территории. Однако положение центра референц-эллипсоида относительно центра масс Земли остается неизвестным без привлечения дополнительной информации. Например, высот геоида над общим земным эллипсоидом или координат некоторого количества пунктов, известных в референцной и общеземной геоцентрической системе координат.
При установлении системы координат 1942 года в уравнивание вошли 87 полигонов АГС, покрывавших большую часть Европейской территории СССР и узкой полосой распространяющих координаты до Дальнего Востока. Обработка выполнялась на эллипсоиде Красовского с использованием метода проектирования. Метод проектирования в отличие от метода развертывания предполагал редуцирование данных геодезических измерений с земной поверхности через поверхность уровня моря на поверхность референц-эллипсоида. Определение высот квазигеоида и составляющих уклонений отвесных линий, необходимых для такого редуцирования, выполнялось с использованием гравиметрических данных: сначала для повышения точности интерполяции астрономо-геодезических уклонений отвеса и для расчета приращений высот квазигеоида, а затем с развитием гравиметрического метода высоты квазигеоида и составляющие уклонений отвесных линий определялись независимо от астрономо-геодезических данных.
Постановлением Совета Министров СССР от 7 апреля 1946 года N 760 на основе результатов выполненного уравнивания была введена единая система геодезических координат и высот на территории СССР - система координат 1942 года.
Дальнейшее распространение системы координат 1942 года на территорию СССР проводилось последовательно несколькими крупными блоками полигонов триангуляции и полигонометрии 1 класса. При присоединении каждого очередного блока координаты пунктов на границах блоков уравненной сети принимались за жесткие. Для сгущения АГС, сформированной в виде системы полигонов, выполнялось их заполнение сплошными сетями триангуляции 2 класса (рис. 2) [6]. Реальная схема полигонов рядов триангуляции 1 класса часто существенно отличалась от приведенной на этом рисунке.
Сплошные сети триангуляции 2 класса уравнивались в пределах отдельных полигонов с использованием уравненных координат пунктов триангуляции 1 класса в качестве исходных.
Таблица 1
Характеристики построения астрономо-геодезической сети
Показатели |
Основные положения 1939 г. |
Основные положения 1961 г. |
Основные положения 2000 г. (по результатам заключительного уравнивания ГГС) |
||||||||
I кл. |
II кл. осн. ряд |
II кл. зап. сеть |
III кл. |
IV кл. |
1 кл. |
2 кл. |
3 кл. |
4 кл. |
1 кл. |
2 кл. |
|
Средняя длина стороны треугольника, км |
25-30 |
15-20 |
13 |
8 |
|
20-25 |
7-20 |
5-8 |
2-5 |
20-25 |
7-20 |
Относительная ср. кв. ошибка базисной (выходной) стороны |
- |
|
|||||||||
Относительная ср. кв. ошибка стороны в слабом месте |
|
- для смежных пунктов; - при расстояниях от 1 до 9 тыс. км |
|||||||||
Наименьшее значение угла треугольника |
40° |
30° |
20° |
15° |
20° |
40° |
20° |
20° |
20° |
|
|
Допустимая невязка треугольника |
3" |
5" |
9" |
15" |
35" |
3" |
4" |
6" |
8" |
|
|
Ср. кв. ошибка угла (по невязкам треугольников) |
0,7-0,9" |
1,2-1,5" |
2,0-2,5" |
4,0-5,0" |
- |
0,7" |
1,0" |
1,5" |
2,0" |
0,74" |
1,06" |
Ср. кв. ошибка астрономических определений: |
|
|
|
|
|
|
|
|
|
|
|
широты |
0,2-0,4" |
0,4" |
- |
- |
- |
0,3" |
0,3" |
- |
- |
0,36" |
|
долготы |
- |
- |
- |
- |
- |
||||||
азимута |
0,5" |
1,0" |
- |
- |
- |
0,5" |
0,5" |
- |
- |
1,27" |
1.2. Система координат 1995 года
1.2.1. Развитие традиционной астрономо-геодезической сети для всей территории СССР было завершено к началу 80-х годов.
К этому времени стала очевидной необходимость выполнения общего уравнивания АГС без разделения на ряды триангуляции 1 класса и сплошные сети 2 класса. Раздельное уравнивание полигонов 1 класса и последующая вставка в них сплошных сетей 2 класса приводили, как к недопустимо большим ошибкам в координатах самих пунктов 1 класса, так и к значительным деформациям сплошных сетей 2 класса вблизи рядов 1 класса и особенно вблизи углов полигонов [1, 7, 9, 13]. В то же время было показано, что сплошная сеть пунктов 1-2 классов потенциально представляет собой значительно более жесткое построение.
В целях подготовки к сплошному уравниванию в 80-х годах было выполнено несколько вариантов общего полигонального уравнивания АГС. С учетом результатов этого уравнивания выполнялось повторное уравнивание линий астрономо-гравиметрического нивелирования с соответствующим последовательным уточнением карт высот квазигеоида над эллипсоидом Красовского. Уточненная карта высот квазигеоида была составлена в 1987 году, данные которой были использованы затем в общем уравнивании АГС как свободной сети.
В мае 1991 года общее уравнивание АГС было завершено. По результатам уравнивания получены следующие основные характеристики точности АГС [7, 9]:
- средняя квадратическая ошибка направления - 0,7";
- средняя квадратическая ошибка измеренного азимута - 1.3";
- относительная средняя квадратическая ошибка измеренных базисных сторон - 1:260 000;
- средняя квадратическая ошибка взаимного положения смежных пунктов - 2-4 см;
- средняя квадратическая ошибка передачи координат от исходного пункта на пункты на краях сети по каждой координате - 1 м.
Уравненная астрономо-геодезическая сеть включала в себя 164306 пунктов 1 и 2 классов, 3,6 тысяч геодезических азимутов, определенных из астрономических наблюдений, и 2,8 тысяч базисных сторон, расположенных через 170-200 км.
1.2.2. К моменту завершения общего уравнивания АГС на территории нашей страны независимо были созданы две спутниковые геодезические сети: космическая геодезическая сеть ВТУ ГШ МО и доплеровская геодезическая сеть ГУГК.
Космическая геодезическая сеть (КГС) ВТУ ГШ МО на территории бывшего СССР включала в себя 26 стационарных астрономо-геодезических пунктов при расстояниях между смежными пунктами от 500 до 1500 тыс.км. Координаты пунктов КГС были определены по фотографическим, доплеровским, дальномерным радиотехническим и лазерным наблюдениям ИСЗ системы ГЕОИК. Точность определения взаимного положения любых пунктов КГС характеризовалась средними квадратическими ошибками, равными 0,3-0,4 м. Использованные при построении КГС орбитальные методы космической геодезии обеспечивали определение координат непосредственно в геоцентрической системе координат с началом координат, теоретически совпадающим с центром масс Земли, и осью Z, направленной к положению среднего полюса. Система координат КГС, практически реализованная координатами ее пунктов, является составной частью более широкого набора фундаментальных геодезических параметров, получивших название "Параметры Земли 1990 года" (ПЗ-90). Этот же шифр получила и сама система координат.
Доплеровская геодезическая сеть ГУГК (ДГС) состояла из 131 пункта, координаты которых определялись по доплеровским наблюдениям ИСЗ системы TRANSIT. Точность определения взаимного положения пунктов при среднем расстоянии между ними 500-700 км характеризовалась средними квадратическими ошибками, равными 0,4-0,6 м. ДГС строилась в своей собственной системе координат WGS-84, близкой к геоцентрической, но по ряду причин точно не совпадающей с системой координат ПЗ-90, и существенно отличающейся по точности от системы координат с тем же наименованием WGS-84, которая фактически существует сейчас на время написания данного руководства.
1.2.3. Для использования потенциала всех трех перечисленных сетей, как независимых построений, и достижения максимально высокой точности распространения государственной системы координат на всю территорию бывшего СССР было выполнено совместное уравнивание АГС, ДГС и КГС. В совместное уравнивание были включены все указанные пункты КГС и ДГС и общие с ними (совмещенные или близко расположенные и привязанные) пункты АГС.
Дополнительно в общее уравнивание были включены значения геоцентрических радиусов-векторов для части пунктов объединенной сети и сеть из семи пунктов, построенная по наблюдениям спутников GPS для точной привязки о. Сахалин к АГС на материке.
Географическое положение пунктов геодезических сетей, включенных в совместное уравнивание показано на рис. П5.2 Приложения 5.
Значения геоцентрических радиусов-векторов вычислялись с использованием параметров общеземного эллипсоида и высот пунктов над этим эллипсоидом как суммы высот квазигеоида и нормальных высот. Высоты квазигеоида вычислялись с использованием гравиметрических данных и планетарной модели гравитационного поля Земли. Начало системы координат, к которой относятся получаемые радиусы вектора, теоретически совпадает с центром масс Земли. Радиусы-вектора были вычислены для 35 пунктов КГС или ДГС, расположенных не ближе 1000 км друг от друга, чтобы можно было считать эти значения независимыми друг от друга.
Уравнивание выполнялось в пространственной системе координат. Поэтому данные о плановых координатах по результатам общего уравнивания АГС были дополнены данными о геодезических высотах пунктов над эллипсоидом Красовского. Значения этих высот получались как сумма нормальных (нивелирных высот) пунктов и высот квазигеоида. Последние получались по данным обработки астрономо-гравиметрического нивелирования, выполненного в ЦНИИГАиК в 1993 г. с использованием данных общего уравнивания АГС 1991 г. В процессе совместного уравнивания было проведено дополнительное уточнение этих данных для территории Дальнего востока, Чукотки и Камчатки.
Все данные включались в общее уравнивание с учетом их ковариационных матриц, которые или были получены непосредственно при построении уравниваемых сетей (КГС и ДГС) или специально моделировались (плановые координаты и высоты для АГС, геоцентрические радиусы-вектора пунктов, сеть привязки о.Сахалин). Совместное уравнивание выполнялось в несколько этапов (приближений) с последовательной корректировкой используемых ковариационных матриц.
За опорную систему, в которой получались окончательные уравненные значения координат, была выбрана система координат КГС. В качестве определяемых неизвестных в уравнивание входили поправки в три пространственные координаты пунктов и дополнительные параметры координатных преобразований, обеспечивающих преобразование каждой из других групп данных в систему координат КГС. При включении в уравнивание данных ДГС и АГС дополнительно определялось по семь параметров ортогонального координатного преобразования (три смещения, три разворота и масштабная поправка). При включении в уравнивание геоцентрических радиусов векторов определялись дополнительно три параметра смещения и масштабная поправка. Включение сети привязки Сахалина дополнялось определением трех параметров смещения.
1.2.4. В результате такого совместного уравнивания была построена геодезическая сеть, содержащая 134 пункта при среднем расстоянии между смежными пунктами 400-500 км. При этом уравненные координаты были получены в системе ПЗ-90, точнее в ее частной реализации совокупностью координат всех пунктов КГС, вошедших в уравнивание. Для использования этих данных для окончательного общего уравнивания АГС уравненные координаты были предварительно переведены в референцную систему, достаточно близкую к СК-42. Из большого числа возможных способов формирования референцной системы был выбран следующий вариант. Направление осей и масштаб референцной системы совпадает с таковыми в упомянутой выше реализации системы координат ПЗ-90, а положение начала системы выбирается так, чтобы в результате координаты пункта Пулково во вновь создаваемой референцной системе были равны его координатам в системе СК-42. Такому выбору новой референцной системы, получившей название "Система координат 1995 года", соответствуют три параметра связи с ПЗ-90, значения которых приведены в Приложении 1.
Сеть из 134 пунктов с согласованной системой плановых координат в СК-95 и геодезических высот была использована как жесткая исходная основа в последующем заключительном уравнивании всех 164306 пунктов триангуляции и полигонометрии 1 и 2 классов.
Точность определения взаимного планового положения пунктов, полученная из заключительного уравнивания АГС 1995 года, характеризуется средними квадратическими ошибками:
- 0,02-0,04 м - при расстояниях до нескольких десятков километров;
- 0,2-0,5 м - при расстояниях от 1 до 9 тысяч км.
Объем измерительной астрономо-геодезической информации, обработанной при совместном уравнивании АГС, ДГС и КГС для установления системы координат 1995 года, превышает на порядок объем измерительной информации, использованной для установления системы координат 1942 года.
Оценка точности уравненных координат, полученная в процессе выполнения общего уравнивания, основана на оценках внутренней согласованности всех включенных в уравнивание данных и имеет обобщенный характер. Более объективная и детальная оценка может быть получена только сравнением положений пунктов в СК-95 с какими-либо более точными и независимо полученными результатами. Реально такую возможность представляют данные, получаемые в процессе выполняемых в настоящее время работ по построению ФАГС и ВГС. Такое сравнение показывает, что внутренние деформации СК-95 в целом по всей сети могут быть оценены их средними квадратическими значениями, равными примерно 30 см по координатам "х" и около 20 см по координатам "у". Под внутренними деформациями в данном случае понимаются те ошибки координат пунктов, которые не могут быть исключены в результате ортогонального преобразования. Более подробно информация о сетях ФАГС и ВГС и оценках деформаций СК-95 дана в подразделах 1.3.3 и 1.3.4, разделе 3 и Приложении 5.
1.2.5. Геодезические высоты пунктов ГГС определяют или как сумму нормальной высоты и высоты квазигеоида над отсчетным эллипсоидом, или непосредственно методами космической геодезии, или путем привязки к пунктам с известными геоцентрическими координатами.
Нормальные высоты пунктов ГГС определяются в Балтийской системе высот 1977 года, исходным началом которой является нуль Кронштадтского футштока.
Карты высот квазигеоида над общим земным эллипсоидом и референц-эллипсоидом Красовского на территории Российской Федерации издаются Роскартографией и Топографической службой ВС РФ.
КГС создавалась при метрологическом обеспечении эталонными средствами Госстандарта СССР. Масштаб задавался Единым государственным эталоном времени-частоты-длины при длине метра как расстояния, проходимого светом в вакууме за 1:299 792 458-ую долю секунды, в соответствии с резолюцией XYII Генеральной конференции по мерам и весам (октябрь 1983 г.). При построении КГС в системе координат ПЗ-90 использовались шкалы атомного ТA (SU) и координированного UTC (SU) времени, задаваемые существующей эталонной базой Российской Федерации, а также параметры вращения Земли и поправки для перехода к международным шкалам времени, периодически публикуемые Госстандартом России в специальных бюллетенях Государственной службы времени и частоты (ГСВЧ). Соответствующие эталонные масштаб и ориентировка переданы на ГГС косвенным образом через масштаб и ориентировку КГС.
1.3. Основные положения дальнейшего развития государственной геодезической сети Российской Федерации
1.3.1. О концепции развития системы геодезического обеспечения
Обеспечивая многие практические потребности экономики и обороны страны, существующие наземные геодезические методы по точности, оперативности, экономической эффективности не соответствуют некоторым крайне важным современным требованиям науки и практики. В частности требованиям, возникающим при крупномасштабных съемках городов и поселков, при строительных изысканиях, при геодезическом обеспечении обороны страны, решении задач морской и авиационной навигации и изучении природной среды. Эти задачи на современном уровне требований могут быть решены только с использованием спутниковых методов. Ядром современных геодезических спутниковых методов являются технологии оперативных координатных определений (в том числе и высотных), основанные на использовании глобальных навигационных спутниковых систем ГЛОНАСС и GPS [7, 9].
Задание, поддержание и воспроизведение системы координат на уровне требований, обеспечивающих решение фундаментальных перспективных задач в области геодезии, геофизики, геодинамики и космонавтики, обусловливает необходимость создания геодезической сети на качественно новом, более высоком, уровне точности.
Система координат СК-95 и существующая сеть ГГС, созданная главным образом традиционными методами геодезии, не могут, в качестве исходной геодезической основы, в полной мере обеспечить возможности для реализации всего потенциала современных спутниковых методов. В данном случае имеется в виду не только реальная точность пунктов ГГС в СК-95, но и недостаточная их доступность и возможность обеспечения благоприятных условий для спутниковых наблюдений. Современные спутниковые ГЛОНАСС/GPS технологии даже в оперативном режиме обеспечивают возможность передачи координат на большие расстояния и с меньшими относительными ошибками, чем в мы имеем сейчас в ГГС. Еще в большей мере подобное точностное несоответствие имеет место при решении задач геодинамики. Использование современных спутниковых технологий при решении различных практических и научных задач требует и развития соответствующей им высокоточной и легко доступной исходной геодезической основы.
Построение таких опорных сетей - составная часть работ по созданию новой высокоэффективной государственной системы геодезического обеспечения территорий Российской Федерации, основанной на применении методов космической геодезии и использовании глобальных навигационных спутниковых систем ГЛОНАСС и GPS.
Использование методов космической геодезии определения координат принципиально изменяет решение задач всей системы геодезического обеспечения [3].
В сравнении с традиционными методами ГЛОНАСС/GPS-технологии обладают следующими основными преимуществами:
- возможностью передачи координат практически на любые расстояния с оперативностью и точностью, недоступными для традиционных наземных методов;
- значительным снижением затрат в связи с отсутствием необходимости сооружения геодезических знаков;
- уменьшением риска при выполнении работ, особенно в труднодоступных и климатически сложных районах;
- отсутствием требования к взаимной видимости между пунктами, позволяющим без сооружения геодезических знаков располагать пункты в местах, более благоприятных для их сохранности и последующего использования;
- резким понижением требований к плотности исходной геодезической основы, позволяющим на 2 порядка сократить количество геодезических пунктов, как при создании Государственных геодезических сетей нового поколения, так опорных пунктов при выполнении геодезических съемок широким кругом пользователей;
- большей простотой в организации и выполнении работ, особенно в труднодоступных и климатически сложных районах;
- большим уровнем автоматизации на всех стадиях проведения работ, отсутствием технической зависимости от времени суток, года, погодных условий;
- более высоким уровнем культуры труда при исполнении геодезических работ;
- лучшими возможностями для объединения точной плановой и высотной геодезической основы на базе использования единой технологии, совмещения пунктов носителей координат и высот и связи существующих плановых и высотных сетей.
Открываются перспективы для создания и использования автоматизированных систем оперативных съемок, основанных на совместном использовании ГЛОНАСС/GPS-технологий и цифровых наземных, воздушных и космических оптико-электронных, радиолокационных и других съемочных систем цифрового картографирования. Применение таких систем может быть особенно эффективно при проведении городских съемок многоцелевого назначения с последующей (по мере возникновения потребностей) выборочной целевой обработкой и при выполнении съемок в чрезвычайных ситуациях в режиме, приближенном к режиму реального времени.
Одним из наиболее перспективных направлений оперативного навигационного и геодезического обеспечения потребителя является создание сетей активных пунктов спутниковых систем координатных определений реального времени.
Чрезвычайно важной особенностью геодезических спутниковых технологий является возможность одновременного определения с сопоставимыми точностями, как плановых координат, так и геодезических высот.
Появляется вполне реальная возможность реализации метода спутникового нивелирования, как альтернативы геометрическому нивелированию, но в значительно более оперативном и дешевом варианте. Однако для практического применения такого метода необходимо составление по гравиметрическим и спутниковым данным точных детальных карт высот квазигеоида на соответствующих территориях - по существу нового точного вида исходного геодезического обеспечения.
При традиционных видах геодезических измерений система высотного обеспечения развивалась обособленно от системы планового обеспечения: высотное и плановое обеспечение создавалось путем развития двух разных видов геодезических сетей. Плановое обоснование развивалось на основе плановых геодезических сетей триангуляции и полигонометрии, а высотное - на основе сетей геометрического нивелирования.
Система нормальных высот на территории России реализована сетью высокоточного геометрического нивелирования I и II классов - главной высотной основы (ГВО) страны. Сеть геометрического нивелирования I и II классов общей протяженностью около 400 тысяч км имеет один исходный пункт Кронштадт, в котором значение нормальной высоты принимается равным нулю.
Вся сеть нивелирования образует порядка тысячи замкнутых полигонов, по которым производится уравнивание сети как свободной с опорой на один исходный пункт. Поэтому система нормальных высот на всей протяженности нивелирной сети не имеет внешнего контроля, несмотря на то, что территория России имеет береговую линию протяженностью около 12 000 км, омываемую морями трех океанов, и в каждом из этих морей расположено по несколько уровнемерных постов, имеющих высокоточную связь с главной высотной основой. Так как отличие уровня одного моря от другого может достигать метра и более, то уровнемерные данные не могут служить контролем точности нивелирования.
Применение ГЛОНАСС/GPS технологий позволяет развивать плановое и высотное обоснование с помощью одной и той же совокупности геодезических сетей. Для согласования измеренных величин (нормальных и геодезических высот), получаемых соответственно по данным нивелирования и данным ГЛОНАСС/GPS измерений, необходимо точное знание высот квазигеоида.
Новая структура системы геодезического обеспечения показана на рис. 3.
Применение современных спутниковых технологий оптимальным образом развивает систему геодезического обеспечения, создавая условия, в том числе, и для реализации потенциала плановых и высотных опорных сетей, созданных на основе традиционных методов геодезических измерений.
Высшим звеном в иерархии опорных геодезических сетей в системе геодезического обеспечения является одна и та же совокупность геодезических пунктов спутниковых геодезических сетей ФАГС, ВГС и СГС-1, которые являются физической реализацией одновременно высокоточной системы координат и системы нормальных высот.
Структура и технология построения спутниковых геодезических сетей, создаваемых Роскартографией, определяется, во-первых, - необходимостью создания единой системы геодезических координат и поддержания ее на уровне современных требований науки, экономики и обеспечения безопасности, и, во-вторых, - задачами, возложенными на Роскартографию, по ведению Службы деформации земной коры, входящей в состав Федеральной системы сейсмологических наблюдений и прогноза землетрясений.
Существующая геодезическая основа, созданная с помощью традиционных методов геодезических измерений не обеспечивает на должном уровне возможности эффективного использования современных высокоэффективных спутниковых технологий по следующим основным причинам:
- точность существующих геодезических сетей не отвечает современных требованиям экономики и обороны страны;
- пункты опорных геодезических сетей, как правило, располагаются в труднодоступных местах, неблагоприятных для их последующего использования в системе геодезического обеспечения с аппаратурой ГЛОНАСС/GPS;
- большой объем геодезических пунктов, существующих опорных геодезических сетей, и места их расположения делают задачу их поддержания в рабочем состоянии практически трудно выполнимой в современных условиях.
Государственная геодезическая сеть, создаваемая в соответствии "Концепцией перехода топографо-геодезического производства на автономные спутниковые методы координатных определений" (1995 г.) и с "Основными положениями о построении государственной геодезической сети Российской Федерации" (2003 г.), структурно формируется по принципу перехода от общего к частному и включает в себя геодезические построения различных классов точности:
- фундаментальную астрономо-геодезическую сеть (ФАГС), состоящую из 50-70 пунктов, включая пункты космической геодезической сети, при расстояниях между пунктами, равных 650-1000 км. Из всех пунктов ФАГС 10-15 должны быть постоянно действующими, а остальные - периодически переопределяться группами с цикличностью, зависящей от геодинамической активности региона;
- высокоточная геодезическая сеть (ВГС), состоящая из 500-700 пунктов, при расстояниях между смежными пунктами, равных 150-300 км;
- спутниковая геодезическая сеть 1 класса (СГС-1) при расстояниях между смежными пунктами, равных 30-35 км в обжитых районах и 40-50 км и более - в малообжитых. В экономически развитых районах пункты СГС-1 могут располагаться и с большей плотностью, в зависимости от требований министерств и ведомств.
Часть пунктов ФАГС интегрируется в мировую спутниковую сеть в рамках международных программ.
В первую очередь СГС-1 будет развиваться в районах с интенсивной хозяйственной деятельностью.
Необходимо особо отметить, что пункты ФАГС и ВГС связываются не менее чем с 2-мя пунктами ГГС и с 2-мя пунктами ГВО, тем самым, реализуя и преумножая потенциал старой ГГС, и что пункты ФАГС, ВГС и СГС-1 располагаются в легко доступных местах.
Таким образом, для создания указанной новой высокоэффективной государственной системы геодезического обеспечения территории Российской Федерации, основанной на применении глобальной навигационной спутниковой системы ГЛОНАСС/GPS и других средств и технологий, должны выполняться:
1. Высокоточные геодезические измерения с наземной спутниковой аппаратурой на пунктах создаваемых фундаментальной астрономо-геодезической сети (ФАГС), высокоточной геодезической сети (ВГС) и спутниковой геодезической сети 1 класса (СГС-1);
2. Абсолютные измерения значений ускорения силы тяжести с помощью высокоточной гравиметрической аппаратуры и определения нормальных высот на пунктах ФАГС и ВГС;
3. Работы по построению высокоточных карт высот квазигеоида гравиметрическим методом, необходимых при определении нормальных высот с использованием глобальных навигационных спутниковых систем;
4. Работы по согласованию на соответствующем уровне точности геоцентрической системы координат, задаваемой пунктами ФАГС, с международной небесной опорной системой (ICRS - International Celestial Reference System), не связанной более с экватором и эклиптикой, а зафиксированной относительно системы направлений на 212 квазаров, принимаемых за неподвижные в пространстве и распределенных по всему небу со средней плотностью 1 квазар на 194.6 квадратных градуса.
Высокая точность слежения за положениями инструментов, с которыми наблюдаются и определяются координаты квазаров, и одновременно за параметрами вращения Земли (ПВЗ), обеспечивающими связь небесной (ICRS) и новой международной земной опорной системой (IТRS - International Terresrial Reference System), позволяет успешно решать целый ряд практических задач.
По измерениям, указанным в п. 1, определяются геодезические координаты: широта B, долгота L и высота H в принятой системе координат.
По измерениям, указанным в п.п. 1 и 2, осуществляется задание абсолютной гравиметрической системы. Эти измерения, в частности, позволят в дальнейшем выявлять возможные причины изменений координат пунктов ФАГС и ВГС во времени.
По высокоточным высотам квазигеоида (п. 3) и геодезическим высотам H (п. 1) определяются нормальные высоты , ранее определяемые с высокой точностью только из геометрического нивелирования.
По астрометрическим данным (п. 4) геоцентрическая система координат, задаваемая пунктами ФАГС, согласовывается на соответствующем уровне точности с фундаментальными астрономическими (небесными) системами координат.
1.3.2. Основные принципы дальнейшего развития государственной геодезической сети
Государственная геодезическая сеть, создаваемая в соответствии с "Основными положениями о построении государственной геодезической сети Российской Федерации" (2003 г.), структурно формируется по принципу перехода от общего к частному и включает в себя геодезические построения различных классов точности:
- фундаментальную астрономо-геодезическую сеть (ФАГС),
- высокоточную геодезическую сеть (ВГС),
- спутниковую геодезическую сеть 1 класса (СГС-1).
На основе этих пунктов создаются системы постоянно действующих пунктов спутниковых наблюдений с целью обеспечения возможностей определения координат потребителями в режиме реального времени или близком к реальному времени.
В указанную систему построений вписываются также существующие сети триангуляции и полигонометрии 1-4 классов.
По мере развития сетей ФАГС, ВГС и СГС-1 выполняется уравнивание всей ГГС или ее отдельных участков с целью более полной и быстрой реализации накапливаемой геодезической информации.
1.3.3. Фундаментальная астрономо-геодезическая сеть
Высший уровень в структуре координатного обеспечения территории России занимает фундаментальная астрономо-геодезическая сеть. Она служит исходной геодезической основой для дальнейшего повышения точности пунктов государственной геодезической сети. ФАГС практически реализует геоцентрическую систему координат в рамках решения задач координатно-временного обеспечения (КВО).
Фундаментальная астрономо-геодезическая сеть состоит из постоянно действующих и периодически определяемых пунктов Роскартографии, формирующих единую сеть на территории Российской Федерации.
В состав постоянно действующих пунктов ФАГС по согласованию могут включаться пункты службы вращения Земли Госстандарта России, пункты спутниковых наблюдений РАН и пункты радиоинтерферометрических измерений со сверхдлинной базой, а также часть АГП КГС, расположенных на территории страны. На стадии обработки измерений в состав постоянно действующих пунктов в ФАГС может также включаться часть пунктов, входящих в международную геодинамическую сеть пунктов (IGS).
В состав периодически определяемых пунктов ФАГС могут быть включены пункты Роскартографии, РАН и АГП КГС на территории страны, не вошедшие в число постоянно действующих пунктов ФАГС, пункты наблюдений ГЛОНАСС, а также пункты службы вращения Земли Госстандарта России и пункты, периодически участвующие в программах лазерной локации спутников и длиннобазисной радиоинтерферометрии.
Расположение остальных пунктов ФАГС определяется, исходя из решения задач геодинамики и требования равномерного покрытия всей территории страны.
Расстояние между смежными пунктами ФАГС - 650-1000 км.
Количество, расположение постоянно действующих и периодически определяемых пунктов ФАГС, состав аппаратуры и программы наблюдений определяются научно-технической программой построения и функционирования ФАГС с учетом проектов международного сотрудничества.
Все пункты ФАГС должны быть фундаментально закреплены с обеспечением долговременной стабильности их положения как в плане, так и по высоте.
Пространственное положение пунктов ФАГС определяется методами космической геодезии в геоцентрической системе координат относительно центра масс Земли со средней квадратической ошибкой 10-15 см, а средняя квадратическая ошибка взаимного положения пунктов ФАГС должна быть не более 2 см по плановому положению и 3 см по высоте с учетом скоростей их изменения во времени. В число основных задач построения ФАГС входит достижение требуемой точности и достоверное оценивание точности создаваемой новой геоцентрической системы координат и определение изменений координат пунктов ФАГС во времени.
На пунктах ФАГС выполняются определения нормальных высот и абсолютных значений ускорений силы тяжести. Определения нормальной высоты производится нивелированием не ниже II класса точности, абсолютные определения силы тяжести - по программе определения фундаментальных гравиметрических пунктов.
Периодичность этих определений на пунктах ФАГС устанавливается в пределах 5-8 лет и уточняется в зависимости от ожидаемых изменений измеряемых характеристик.
Задаваемая пунктами ФАГС геоцентрическая система координат согласовывается на соответствующем уровне точности с фундаментальными астрономическими (небесными) системами координат и надежно связывается с аналогичными пунктами различных государств в рамках согласованных научных проектов международного сотрудничества.
Параметры связи между земной системой координат, задаваемой пунктами ГГС, с фундаментальными астрономическими (небесными) координатами на адекватном уровне точности устанавливаются оперативными наблюдениями ГСВЧ и публикуются в специальных бюллетенях этой службы.
1.3.4. Высокоточная геодезическая сеть
Второй уровень в современной структуре ГГС занимает высокоточная геодезическая сеть, основные функции которой состоят в дальнейшем распространении на всю территорию России геоцентрической системы координат и уточнении параметров взаимного ориентирования геоцентрической системы и системы геодезических координат.
ВГС, наряду с ФАГС, служит основой для развития геодезических построений последующих классов, а также используется для создания высокоточных карт высот квазигеоида совместно с гравиметрической информацией и данными нивелирования.
ВГС представляет собой опирающееся на пункты ФАГС, однородное по точности пространственное геодезическое построение, состоящее из системы пунктов, удаленных один от другого на 150-300 км.
Пункты ВГС определяются относительными методами космической геодезии, обеспечивающими точность взаимного положения со средними квадратическими ошибками, не превышающими 3 мм + 5 х D (где D - расстояние между пунктами) по каждой из плановых координат и 5 мм + 7 х D по геодезической высоте. Каждый пункт ВГС должен быть связан измерениями со смежными пунктами ВГС и не менее чем с тремя ближайшими пунктами ФАГС. В исключительных случаях на труднодоступных территориях допускается отсутствие связей между смежными пунктами ВГС при условии их связи с большим количеством близких пунктов ФАГС и использовании наблюдений большей продолжительности.
На пунктах ВГС нормальные высоты определяются нивелированием не ниже II класса точности, абсолютные определения силы тяжести - по программе определения фундаментальных гравиметрических пунктов. Периодичность этих определений устанавливается Роскартографией в зависимости от ожидаемых изменений измеряемых характеристик. Для связи существующей сети с вновь создаваемыми геодезическими построениями определяется взаимное положение пунктов ФАГС и ВГС с ближними пунктами АГС со средней квадратической ошибкой, не превышающей 2 см по каждой координате. Для связи с главной высотной основой пункты ВГС привязываются к реперам нивелирной сети I-II классов или совмещаются с реперами соответствующих линий нивелирования. Существующая сеть пунктов ФАГС и ВГС на территории России создана в период с 1999 года по 2003 год. Спутниковая геодезическая сеть на 2003 г. состоит из 212 пунктов, в том числе:
- 19 постоянно действующих пунктов ФАГС;
- 15 периодически определяемых пунктов ФАГС;
- 178 пунктов ВГС.
Существующая сеть пунктов ФАГС и ВГС на территории Российской Федерации по состоянию на 2003 год показана на рис. 4.
1.3.5. Спутниковая геодезическая сеть 1 класса, астрономо-геодезическая сеть и геодезические сети сгущения
Третий уровень в современной структуре ГГС занимает спутниковая геодезическая сеть 1-го класса, основная функция которой состоит в обеспечении оптимальных условий для реализации точностных и оперативных возможностей спутниковой аппаратуры при переводе геодезического обеспечения территории России на спутниковые методы определения координат.
СГС-1 представляет собой пространственное геодезическое построение, создаваемое по мере необходимости, в первую очередь, в экономически развитых районах страны, состоящее из системы легко доступных пунктов с плотностью, достаточной для эффективного использования всех возможностей спутниковых определений потребителями, как правило, со средними расстояниями между смежными пунктами около 25-35 км.
СГС-1 создается относительными методами космической геодезии, обеспечивающими определение взаимного положения ее смежных пунктов со средними квадратическими ошибками 3 мм + 1 х D по каждой из плановых координат и 5 мм + 2 х D по геодезической высоте.
СГС-1 может строиться отдельными фрагментами. Создаваемый фрагмент должен опираться на окружающие пункты ВГС и и включать в себя пункты ФАГС, и ВГС, расположенные на территории фрагмента СГС-1.
Средняя квадратическая ошибка определения положения пунктов СГС-1 относительно ближайших пунктов ВГС и ФАГС не должна превышать 1-2 см в районах с сейсмической активностью 7 и более баллов и 2-3 см в остальных регионах страны.
Нормальные высоты должны определяться на всех пунктах СГС-1, либо из геометрического нивелирования с точностью, соответствующей требованиям к нивелирным сетям II, III классов, либо из спутникового нивелирования как разности геодезических высот, определяемых относительными методами космической геодезии, и высот квазигеоида.
Окончательная точность положения пунктов СГС-1 определяется по материалам обработки в соответствии с методиками по построению СГС-1, утверждаемыми Роскартографией.
Для связи СГС-1 с АГС и нивелирной сетью часть пунктов СГС-1 должна быть совмещена или связана с существующими пунктами АГС и реперами нивелирной сети не ниже III класса. Связь, как правило, должна определяться методами космической геодезии со средними квадратическими ошибками не более 2 см для плановых координат при привязке пунктов АГС и 1 см для геодезических высот при привязке нивелирных реперов. При высотной привязке использование пунктов АГС с известными нормальными высотами вместо нивелирных реперов не допускается. Расстояние между пунктами АГС, совмещенными с пунктами СГС-1 или привязанными к ним, не должно быть больше 70 км при средней плотности СГС-1 и 100 км при построении разреженной сети СГС-1 в необжитых районах. Расстояние между нивелирными реперами для связи с пунктами СГС-1 должно быть не более 100 км.
В случае необходимости могут создаваться геодезические спутниковые сети сгущения в соответствии с методиками, утверждаемыми Роскартографией.
Повторные определения координат пунктов ГГС и высот реперов должны планироваться в необходимом объеме и с требуемой точностью для выявления деформаций земной поверхности и изучения закономерностей их изменений
При необходимости повторных определений координат пунктов в сейсмоактивном регионе построение СГС-1 планируется с повторным определением пунктов ВГС на этой и смежной территориях.
В районах происшедших землетрясений с магнитудой 5 и более повторное определение координат пунктов геодезических сетей проводится в возможно короткие сроки. Протяженность создаваемых фрагментов СГС-1, включая пункты ВГС, на которые опираются фрагменты СГС-1, должна обеспечивать опору на пункты, не затронутые влиянием произошедшего землетрясения. Необходимость повторных определений координат пунктов геодезических сетей, обусловленная деформациями техногенного происхождения, обосновывается маркшейдерскими и другими геолого-геофизическими данными.
Пункты СГС-1, совмещенные или связанные с реперами нивелирной сети I-III классов, используются для уточнения высот квазигеоида.
В исключительных случаях в районах, не обеспеченных необходимыми данными о высотах квазигеоида, для определения нормальных высот допускается применение тригонометрического нивелирования. В последнем случае средняя квадратическая ошибка взаимного положения смежных пунктов по высоте должна быть не более 20 см.
1.3.6. Геодезические сети специального назначения
Существующая плотность ГГС при условии применения современных спутниковых и аэросъемочных технологий обеспечивает решение задач картографирования и обновления карт всего масштабного ряда до 1:500 для городов и 1:2 000 для остальной территории.
Геодезические сети специального назначения создаются в тех случаях, когда дальнейшее сгущение пунктов ГГС экономически нецелесообразно или когда требуется особо высокая точность геодезической сети.
Геодезические сети специального назначения создаются в единых государственных системах координат или в местных системах координат, устанавливаемых для отдельных участков местности.
Учет и хранение исходных данных, раскрывающих переход от этих местных систем координат к государственным системам координат (ключи перехода) осуществляется органами государственного геодезического надзора (госгеонадзора).
1.3.7. Организация работ и проектирование сетей
Производственный цикл построения геодезических сетей состоит из следующих основных видов работ: проектирование, рекогносцировка и закрепление геодезических пунктов, выполнение измерений, математическая обработка, составление каталогов и технических отчетов.
ФАГС и ВГС создаются в соответствии с научно-техническим проектом и специальным руководством.
Проектирование геодезических сетей выполняется с учетом всех ранее исполненных работ после обследования сохранности геодезических пунктов.
Выбор места расположения геодезического пункта и типа центра должен обеспечивать долговременную сохранность и устойчивость пунктов в плане и по высоте в течение длительного периода времени и удобства его использования.
Пункты СГС-1 располагаются, как правило, в легко и круглогодично доступных местах с условиями, благоприятными для спутниковых наблюдений. При соблюдении указанных требований пункты СГС-1 могут совмещаться с существующими пунктами АГС или реперами нивелирной сети I-III классов.
В геодинамически активных регионах при выборе местоположения пунктов учитываются данные о вертикальных движениях земной поверхности, а также данные о структуре разломов земной коры. СГС-1 на территориях существующих геодинамических и техногенных полигонов проектируется с учетом уже созданных на них плановых и высотных геодезических построений.
Типы центров устанавливаются в зависимости от физико-географических условий района работ, глубины промерзания и оттаивания грунтов, гидрогеологического режима и других особенностей местности.
В целях обеспечения длительной сохранности центров геодезических пунктов, они подлежат периодическому обследованию и при необходимости восстановлению.
Геодезический пункт считается утраченным, если не сохранился ни верхний, ни нижний центр и утрата центра подтверждена данными инструментально-геодезического поиска.
Предприятия Роскартографии несут ответственность за поддержание в рабочем состоянии пунктов ФАГС, ВГС и СГС-1 в пределах закрепленной за ними территории.
1.3.8. Математическая обработка измерений в ГГС
Математическая обработка измерений в государственной геодезической сети выполняется поэтапно по мере накопления материалов.
Математическая обработка геодезических измерений, выполняемых при построении и модернизации ГГС, включает полевые вычисления, предварительные вычисления и уравнивание сетей.
Полевые вычисления выполняются с целью контроля измерений на их соответствие допускам, установленным действующими нормативно-техническими актами и техническими предписаниями на выполнение работ. При выполнении работ традиционными геодезическими методами полевые вычисления выполняются непосредственно на каждом пункте наблюдений.
При использовании спутниковых методов космической геодезии соответствующие контрольные вычисления должны быть выполнены до завершения полевых работ на объекте. Объемы и состав полевых вычислений устанавливаются в технических проектах на выполнение работ и в соответствующих методических указаниях и инструкциях. При построении ФАГС, ВГС и СГС-1 полевой контрольной обработке подвергаются, как правило, материалы наблюдений по взаимной связи пунктов вновь создаваемых и существующих сетей.
Целью предварительных вычислений является вероятностно-статистический анализ результатов измерений, выявление и исключение грубых ошибок, вычисление рабочих координат, оценка качества и подготовка всей измерительной информации к окончательной обработке. Необходимость выполнения предварительной обработки результатов спутниковых наблюдений и ее содержание определяются при техническом проектировании работ.
Результаты измерений, прошедших предварительную обработку, передаются в архивы и банки данных.
Результаты наблюдений ФАГС обрабатываются в соответствии с программой ее построения. Порядок обработки ВГС, СГС-1, а также совместной обработки ФАГС, ВГС, СГС-1 и АГС определяется соответствующими методическими указаниями.
В результате совместной обработки ФАГС, ВГС, СГС-1 и АГС должны быть получены значения координат пунктов в системах геодезических и геоцентрических координат, а также параметры перехода, устанавливающие связь между координатами пунктов в обеих системах.
При уравнивании геодезических сетей 3 и 4 классов в качестве исходных используются уравненные координаты пунктов высших классов. Измерения, выполненные в сетях 3 и 4 классов, редуцируются методом проектирования на поверхность отсчетного эллипсоида, а затем, при необходимости, на плоскость в проекции Гаусса-Крюгера. Для редуцирования используются нормальные высоты и высоты квазигеоида над эллипсоидом, полученные в результате совместной обработки ФАГС, ВГС, СГС-1 и АГС.
По результатам совместной обработки ГГС, данных нивелирования и гравиметрической информации составляется карта высот квазигеоида на соответствующую территорию.
1.3.9. Каталогизация и хранение информации
Уравнивание сетей завершается составлением каталогов координат и высот геодезических пунктов и составлением научно-технических отчетов. При уравнивании сетей по объектам работ каталоги координат и технические отчеты составляются отдельно по каждому объекту.
На территорию страны составляются и издаются каталоги пунктов ГГС, в основной раздел которых помещаются плоские прямоугольные координаты пунктов 1...4 классов.
Плоские прямоугольные координаты приводятся в проекции Гаусса-Крюгера с шестиградусными зонами. Осевыми меридианами шестиградусных зон являются: 21, 27, 33, ..., 177°. Началом координат в каждой зоне является точка пересечения осевого меридиана с экватором; значение ординаты на осевом меридиане принимается равным 500 км.
Наряду с плановыми координатами в банках данных ГГС помещаются нормальные высоты пунктов и высоты квазигеоида.
Уравненные пространственные координаты пунктов ФАГС, ВГС и СГС-1, скорости их изменения и характеристики точности хранятся в специальных каталогах на машинных носителях в геоцентрической и геодезической системах координат с указанием эпох.
Каталоги пространственных прямоугольных координат пунктов ФАГС, совмещенных с пунктами наблюдений параметров вращения Земли ГСВЧ, ежегодно публикуются с указанием эпохи в специальных бюллетенях ГСВЧ.
Порядок и особенности каталогизации пунктов ГГС регламентируются действующей Инструкцией по составлению и изданию каталогов геодезических пунктов ГКИНП (ГНТА)-06, утвержденной 06.02.2002 г. руководителем Федеральной службы геодезии и картографии России и согласованной 04.02.2002 г. ВРИД начальника Военно-топографического управления Генерального Штаба Вооруженных Сил Российской Федерации.
Результаты измерений и уравнивания сетей, координаты геодезических пунктов, другие количественные характеристики элементов ГГС, сведения о геодезических знаках и центрах пунктов хранятся:
- на всю территорию страны - в банках геодезических данных при Роскартографии;
- на территорию регионов Российской Федерации - в региональных банках геодезических данных аэрогеодезических предприятий Роскартографии и геодезических частей Топографической службы ВС РФ, а также в территориальных инспекциях государственного геодезического надзора.
Структура и специальное программное обеспечение региональных банков геодезических данных должны быть идентичны и сопряжены с банками геодезических данных при Роскартографии.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.