Вы можете открыть актуальную версию документа прямо сейчас.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение 3
(рекомендуемое)
Принципиальные схемы систем геотермального теплоснабжения
А. Принципиальные схемы простейших систем геотермального теплоснабжения
1. Открытые системы геотермального теплоснабжения
1.1. Открытые системы теплоснабжения, обеспечивающие только горячее водоснабжение.
Схема 1а (рис.1). В соответствии со схемой геотермальная вода по однотрубной тепловой сети подается непосредственно на водоразбор. Суточная неравномерность потребления горячей воды компенсируется с помощью бака-аккумулятора.
Недостатком схемы 1а является отсутствие циркуляции теплоносителя в распределительной сети ГВ, в результате чего неизбежно остывание теплоносителя в период отсутствия водоразбора горячей воды (например, ночью). По причине этого недостатка схема может быть рекомендована к применению только при малых расстояниях между термоводозабором и потребителем геотермальной теплоты.
Схема 1б (рис.2). Схема отличается от схемы 1а наличием двухтрубной распределительной сети, в которой циркулирует геотермальная вода. Подпитка по мере водопотребления осуществляется из однотрубной транзитной тепловой сети. Суточная неравномерность водопотребления уравнивается баком-аккумулятором. Схема может быть рекомендована при сравнительно большом удалении термоводозабора от потребителя геотермальной теплоты.
1.2. Открытые геотермальные системы теплоснабжения с зависимым присоединением отопления. В зависимости от расположения места сброса схема имеет две модификации.
Схема 2а (рис.3). Геотермальная вода параллельно подается на отопление и горячее водоснабжение. После отопительных систем вода сбрасывается вблизи термоводозабора. Транзитная тепловая сеть имеет двухтрубную прокладку.
Схема 2б аналогична работе схемы 2а, но сброс отработанного геотермального теплоносителя производится вблизи потребителя. Транзитные подающая и сбросная тепловые сети имеют однотрубную прокладку.
Приведенные схемы не могут быть применены при несоответствии геотермальной воды нормативным требованиям на воду питьевую и при ее температуре ,
где - температура термальной воды на устье скважин, °С; - снижение температуры воды за счет охлаждения при транспортировании, °С; - нормируемая температура воды в системах горячего водоснабжения, °С.
2. Закрытые системы геотермального теплоснабжения
2.1. Закрытые геотермальные системы, обеспечивающие только горячее водоснабжение.
В зависимости от расположения места сброса и источника питьевой воды могут быть использованы три вида схемного решения:
Схема 3а (рис.4). Геотермальная вода подается на теплообменник ЦТПГ, расположенный вблизи термоводозабора, после чего сбрасывается или закачивается в пласт через скважину обратной закачки. Вода из источника питьевой воды (например, холодной артезианской скважины) нагревается в теплообменнике, транспортируется до потребителя и там разбирается на горячее водоснабжение. Суточная неравномерность водопотребления уравнивается с помощью бака-аккумулятора. Распределительная сеть выполняется однотрубной. Недостатком здесь также, как и у схемы 2а, является отсутствие циркуляции теплоносителя в период отсутствия водоразбора.
При сравнительно большом удалении термоводозабора от потребителя целесообразна схема 3б. Она отличается от схемы 3а наличием двухтрубной распределительной сети с баком-аккумулятором, которая полностью аналогична такой же распределительной сети, примененной в схеме 1б (см. рис.2). Преимуществом схемы 3б по сравнению со схемой 3а является возможность осуществления циркуляции в распределительной сети в период отсутствия водоразбора.
Схема 3в (рис.5). Применение этой схемы целесообразно при расположении места сброса отработанной геотермальной воды вблизи потребителя геотермальной теплоты. В соответствии со схемой геотермальный теплоноситель по однотрубной транзитной тепловой сети подается в теплообменник ЦТПГ (который расположен вблизи потребителя), после чего сбрасывается. Негеотермальный теплоноситель питьевого качества, циркулируя по двухтрубной распределительной сети, нагревается в теплообменнике ЦТПГ и подается на водоразбор. Подпитка осуществляется из водопровода. Ввиду сравнительно большой протяженности тепловой сети, по которой транспортируется геотермальная вода, схема 3в может быть рекомендована при отсутствии опасности интенсивной коррозии и солеотложения.
При эксплуатации термоводозабора методом обратной закачки или расположении места сброса вблизи продуктивной скважины целесообразна схема 3г. Эта схема в основном аналогична схеме 3в. Различие их заключается в том, что ЦТПГ в схеме 3г расположен вблизи термоводозабора, а распределительная сеть (так же, как и в 3в - двухтрубная) имеет транзитный участок, связывающий термоводозабор с потребителем. Преимуществом данной схемы является малая протяженность трубопроводов геотермальной воды, что делает систему менее уязвимой в части коррозии и солеотложения.
2.2. Закрытые геотермальные системы теплоснабжения, обеспечивающие отопление и горячее водоснабжение.
Расположение места сброса вблизи потребителя, а также отсутствие повышенной коррозионной активности и солеотложения делает возможным создание системы с однотрубной транзитной тепловой сетью для транспортирования геотермальной воды до ЦТПГ, расположенного рядом с потребителем. После ЦТПГ геотермальная вода сбрасывается. Распределительная сеть после ЦТПГ, в зависимости от качества и температуры геотермального теплоносителя, может быть четырехтрубной с зависимым присоединением отопления [схема 4а (рис.6)] четырехтрубной с независимым присоединением отопления [схема 4б (рис.7)] либо с двухтрубной распределительной сетью и независимым присоединением отопления (схема 4в).
В случае обратной закачки или возможности сброса вблизи термоводозабора применима схема 4г (рис.8). Здесь геотермальная вода поступает в ЦТПГ, расположенный вблизи термоводозабора, где отдает свою теплоту негеотермальному теплоносителю в теплообменных аппаратах, после чего закачивается в пласт или сбрасывается. Подготовленный негеотермальный теплоноситель транспортируется от потребителя до ЦТПГ и обратно по двухтрубной распределительной сети, имеющей транзитный участок. В данной схеме (как и у всех схем с расположением ЦТПГ вблизи термоводозабора) положительной является малая протяженность трубопроводов тепловой сети, соприкасающихся с геотермальной водой.
2.3. Закрытые геотермальные системы теплоснабжения, обеспечивающие только отопление.
При непитьевом качестве геотермального теплоносителя и отсутствии воды питьевого качества возможно применение систем теплоснабжения, обеспечивающих только отопление зданий и сооружений.
Схема 5а (рис.9). Эта схема двухтрубной системы с зависимым присоединением отопления применима при отсутствии угрозы интенсивной коррозии и солеотложения. Система обеспечивает только отопление.
При расположении места сброса в отдалении от термоводозабора применима схема 5б. Эта схема отличается от 5а наличием однотрубных подающей и сбросной транзитных тепловых сетей. Распределительная сеть двухтрубная. Система обеспечивает только отопление.
Предварительный выбор принципиальной схемы с учетом перечисленных факторов может быть произведен с помощью табл.1. Оборудование этих систем может быть подобрано с помощью табл.2.
Б. Принципиальные схемы геотермальных систем теплоснабжения с повышенной эффективностью использования геотермальной теплоты
1. Бессливная система геотермального теплоснабжения
При соответствии качества геотермального теплоносителя требованиям на питьевую воду может быть применена бессливная система геотермального теплоснабжения (рис.10), обеспечивающая минимальный расход геотермальной воды на единицу расчетной отопительной нагрузки, равный среднечасовому расходу горячего водоснабжения. В этой системе при наименьшем удельном расходе воды (по сравнению со всеми другими схемами) имеют место наибольшая мощность пикового источника теплоты и наибольший расход топлива. Регулирование отопительной нагрузки системы производится путем постепенного сокращения доли пикового догрева, работающего большую часть отопительного сезона с последующим переходом на пропуски. Эффективность такой системы тем выше, чем больше доля ГВ в суммарной тепловой нагрузке.
Таблица 1
Исходные данные проектирования | |||||||||
Характеристика геотермального теплоносителя |
Сброс вблизи объекта теплоснабжения |
Обратная закачка или сброс вблизи термоводозабора | |||||||
Источник питьевой воды в населенном пункте |
Расположение источника питьевой воды | ||||||||
водопровод в населенном пункте |
вблизи термоводозабора |
||||||||
Характер теплопотребления | |||||||||
ГВ | ГВ и отопление |
отопле- ние |
ГВ |
ГВ и отопление |
отопление |
ГВ |
ГВ и отопление |
отопле- ние |
|
Вода: питьевого качества непитьевого качества |
1а 1б 3б |
2а 2б 4а 4б 4в |
5б 5б |
1а 1б 3в |
2а 2б 4г |
5а 5а |
1а 1б 3а |
2а 2б 4г |
5а 5а |
Таблица 2
Оборудова- ние |
Свойства геотермального теплоносителя | |||||||
общие | частные | |||||||
случайная исходная темпера- тура, однократное использова- ние и необходи- мость сброса |
малое устьевое давление и недостаточ- ный дебит скважин |
сравнитель- но низкая температура |
наличие взвешенных частиц горных пород |
высокое газосодер- жание |
высокая коррозионная активность |
интенсивное солеотложе- ние в трубопрово- дах и оборудовании |
наличие вредных веществ выше ПДК |
|
Отопитель- ные приборы повышенной теплоплот- ности |
+ |
|||||||
Водовоздуш- ные теплообмен- ники |
+ |
|||||||
Теплонасос- ные установки (ТНУ) |
+ |
|||||||
Промежуточ- ные баки-акку- муляторы геотермаль- ной воды |
+ |
+ |
||||||
Погружные скважинные насосы |
+ |
|||||||
Пиковые котельные |
+ |
|||||||
Гидроцикло- ны |
+ | |||||||
Дегазаторы | + | |||||||
Теплообмен- ники водоводяные в антикорро- зионном исполнении |
+ |
|||||||
Трубы и арматура в антикорро- зионном исполнении |
+ |
|||||||
Дозаторы химреаген- тов |
+ |
+ |
||||||
Ультразву- ковые антинакип- ные установки |
+ |
|||||||
Установки для обработки сбросной воды |
+ |
Система работает следующим образом. Геотермальная вода по однотрубной магистрали от скважины 1 подается к пиковой котельной. Расход этой воды равен среднечасовому расходу на горячее водоснабжение , а в подающем трубопроводе двухтрубной распределительной сети среднечасовой расход составляет
, (1)
где - добавочный расход теплоносителя, равный расходу в обратном трубопроводе распределительной сети и определяемый по формуле
. (2)
В пиковой котельной 4 суммарный расход воды догревается до и подается в системы отопления 2 через регулятор постоянства расхода 7 и элеватор 9, а также в системы ГВ 3. Суточная неравномерность водопотребления ГВ уравнивается баком-аккумулятором 5, установленным на обратном трубопроводе распределительной сети, циркуляция в этой сети создается насосом 6.
Возможны три варианта соотношений между температурой геотермальной воды и нормируемой температурой теплоносителя в системах ГВ:
а) .
Вся отопительная нагрузка и часть нагрузки ГВ при этом покрывается пиковой котельной. Доля нагрузки горячего водоснабжения , покрываемая пиковой котельной в расчетном режиме, подсчитывается по формуле:
. (3)
Расчетная теплопроизводительность пиковой котельной равна
, (4)
где - расчетная тепловая нагрузка объекта; , - доли отопления и горячего водоснабжения в расчетный период.
Пиковая котельная работает круглый год. Величина , значение определяется по уравнению
, (5)
где - доля нагрузки горячего водоснабжения, покрываемая пиковой котельной в летнем режиме:
, (6)
где - температура водопроводной воды летом;
б) .
Пиковая котельная подбирается на расчетную относительную нагрузку, т.е. и работает в течение всего отопительного сезона.
Величина , величина ;
в) .
В этом случае пиковый догрев обеспечивает часть отопительной нагрузки
. (7)
Доля пикового догрева для отопления определяется по формуле
. (8)
Величина .
Работа пиковой котельной продолжается до тех пор, пока вносимое геотермальное водой количество теплоты не станет равным необходимой теплопроизводительности отопительной системы, т.е.
. (9)
2. Геотермальная система теплохладоснабжения с тепловыми насосами
При технико-экономическом обосновании экономии геотермальной теплоты рекомендуется геотермальная система теплоснабжения с применением теплонасосных установок (ТНУ). В летний период такая система может работать в режиме хладоснабжения.
Теплонасосные установки следует размещать на обратной линии геотермальных систем. На рис.11 показана упрощенная схема с пиковой котельной и ТНУ.
Системы геотермального теплохладоснабжения могут выполняться централизованными или децентрализованными.
2.1. Система централизованного теплохладоснабжения с компрессионными тепловыми насосами.
Принципиальная схема системы изображена на рис.12.
В этой системе при работе в режиме теплоснабжения:
а) трехтрубная тепловая сеть - открыты вентили , , , , , , , , , ; закрыты вентили , , , , , . Вентиль закрыт в период работы пиковой котельной;
б) двухтрубная тепловая сеть - открыты вентили , , , , , , , , ; закрыты вентили , , , , , , .
При работе в режиме хладоснабжения открыты вентили , , , , , , (или , ); закрыты вентили , (или ), , , , , , , .
При работе в режиме теплоснабжения с низкотемпературными источниками теплоты () открыты вентили , , , , , , , , , ; закрыты вентили , , , , , .
Примечание: При достаточном дебите термоводозабора возможен режим работы с закрытым вентилем .
2.2. Система децентрализованного теплохладоснабжения с компрессионными тепловыми насосами.
Принципиальная схема этой системы изображена на рис.13. При работе в режиме теплоснабжения открыты вентили , , , , , , ; закрыты вентили , , , ; вентиль закрыт в период работы пиковой котельной. При работе в режиме хладоснабжения открыты вентили , , , , ; закрыты вентили , , , , , .
Распределительные сети в централизованных системах при работе только в режиме теплоснабжения являются 2-трубными. При работе по летнему режиму - 3-трубными (прямая и обратная линии холодной воды и линия горячего водоснабжения) или 4-трубными (с циркуляционной линией ГВ).
Распределительные сети в децентрализованных системах представляют собой в основном однотрубную прокладку, за исключением участков между абонентами, если ТНУ установлены на групповом вводе.
Эффективность работы тепловых насосов возрастает при использовании низкотемпературных отопительных систем, а также за счет последовательно-противоточного включения нескольких агрегатов.
Соотношение расходов нагреваемой в конденсаторах ТНУ воды и сбрасываемой через испарители определяется по формуле
, (10)
где и - расчетные температуры воды на выходе из конденсаторов и испарителей (сброс), °С; величина принимается 5 - 25°С; - расчетная температура обратной воды в тепловой сети после систем отопления, °С; - отопительный коэффициент ТНУ, при ориентировочных расчетах принимается .
Ориентировочная установленная мощность ТНУ и годовой расход электроэнергии определяются по формулам:
(11)
и
, (12)
где и - доля расчетной и среднегодовой тепловой мощности теплового насоса соответственно; - среднегодовой отопительный коэффициент ТНУ; - продолжительность отопительного сезона; - среднегодовой коэффициент отпуска теплоты, который можно вычислить по формуле (3) п.2.6. Норм.
3. Открытая геотермальная система с комбинацией водяного и воздушного отопления
При исходных условиях проектирования аналогичных предыдущему пункту и высоком качестве геотермальной воды может быть рекомендована открытая геотермальная система теплоснабжения с последовательным включением водяного и воздушного отопления (рис.14).
В соответствии со схемой геотермальная вода из скважины 1 направляется параллельно в системы ГВ 7 и отопления. Вода, поступающая на отопление, проходит пиковый догрев 2 и затем подается в системы водяного отопления 3 и параллельно в калориферы второго подогрева 6 системы воздушного отопления 4. Обратная вода после калориферов второго подогрева 6 и систем водяного отопления 3 поступает в калориферы первого подогрева 5 и затем сбрасывается. Наличие пикового догрева в схеме не является обязательным и зависит от величины .
Регулирование системы производится путем уменьшения доли пикового догрева с переходом на пропуски при его отключении. Если пиковая котельная отсутствует или нежелательно переходить на ранние пропуски, то может производиться качественное регулирование путем подмешивания обратной воды. С учетом циркуляционной линии ГВ распределительные сети имеют четырехтрубную прокладку.
Уравнение теплового баланса отопительных установок системы описывается выражением
, (13)
где - доля систем воздушного отопления в общей расчетной отопительной нагрузке объекта; - расчетная отопительная нагрузка объекта, МВт; - расчетная теплопроизводительность систем воздушного отопления, МВт;
- (14)
расчетный расход геотермальной воды в водных системах отопления;
- (15)
расчетный расход воды через калориферы второго подогрева; ; - расчетная нагрузка и температура обратной воды калориферов 2-го подогрева.
Применение схемы, представленной на рис.14, возможно только при , где - снижение температуры геотермального теплоносителя из-за теплопотерь при транспортировании. При низкой схема может применяться без ГВ.
4. Комплексные геотермальные системы теплоснабжения
Комплексные геотермальные системы теплоснабжения могут охватывать отопление гражданских зданий и, например, весенних теплиц, отопление гражданских, промышленных зданий и обеспечение технологических нужд производств (автомойки, прачечные и пр.), а также отопление теплиц и горячее водоснабжение гражданских и производственных зданий; они способны обеспечить существенное повышение технико-экономических показателей термоводозаборов с одновременным достижением дополнительного социального эффекта.
Выбор принципиальной схемы комплексной системы теплоснабжения, как и у всякой геотермальной системы, зависит от ряда исходных природных данных, уже рассмотренных ранее.
4.1. Комплексные геотермальные системы теплоснабжения, обеспечивающие отопление теплиц и горячее водоснабжение (ГВ) гражданских и промышленных зданий.
Принципиальные схемы комплексных систем, обеспечивающих отопление теплиц и горячее водоснабжение других объектов (в том числе и на технологические нужды), изображены на рис.15 и 16.
Наличие транзитного участка распределительных двухтрубных сетей связано с необходимостью расположения ЦТПГ на термоводозаборе ввиду обратной закачки (в другом случае это может быть место сброса). Системы различаются лишь видом пикового источника теплоты. В схеме на рис.15 таким источником служит пиковая котельная, работающая на органическом топливе и расположенная в населенном пункте вблизи потребителя ГВ. В схеме на рис.16 эту функцию выполняет теплонасосная установка (ТНУ), необходимость расположения которой на термоводозаборе при данных условиях сброса (обратной закачке) очевидна.
Подобные системы могут быть применены в тех случаях, когда геотермальный теплоноситель не отличается повышенной коррозионной активностью, но его качество не соответствует требованиям, предъявляемым к питьевой воде. При этом источником питьевой воды служит водопровод населенного пункта.
При других исходных условиях возможны и другие схемные решения подобных комплексных систем. Например, возможно создание закрытой комплексной системы с однотрубной тепловой сетью ГВ (рис.17) при наличии вблизи термоводозабора источника питьевой воды и места сброса.
При расположении места сброса близ потребителей геотермальной теплоты ЦТПГ может быть расположен в населенном пункте. Однако такое его расположение удлиняет протяженность тепловой сети, по которой циркулирует геотермальный теплоноситель, что нежелательно из-за распространенной повышенной коррозионной активности геотермальной воды. Создание систем, аналогичных приведенным, возможно также при независимом присоединении системы отопления тепличного комбината.
Учитывая регулирование отопительной нагрузки тепличного комбината (см. разд.5 Норм), в годовом цикле работы изображенных комплексных схем можно выделить три режима эксплуатации в зависимости от коэффициента отпуска теплоты на отопление :
в летний период () термоводозабор имеет постоянный дебит геотермальной воды, обеспечивающий тепловую нагрузку ГВ;
с наступлением отопительного периода до включения пикового догрева () дебит термоводозабора регулируется в зависимости от нагрузки отопления и полностью обеспечивает геотермальной теплотой потребности отопления и ГВ;
при низких температурах наружного воздуха () дебит термоводозабора постоянен, равен максимальному и обеспечивает полностью потребность в теплоте отопления теплиц, в то время как на нужды ГВ теплоты не хватает. Нехватка геотермальной теплоты на нужды ГВ компенсируется пиковым догревом. Регулирование производится изменением тепловой мощности пикового источника теплоты.
При проектировании комплексных систем геотермального теплоснабжения, обеспечивающих отопление теплицы и ГВ зданий, за расчетные условия следует принимать расчетный режим эксплуатации системы отопления теплицы, т.е. при коэффициенте отпуска теплоты на отопление .
Установленная тепловая мощность пикового источника теплоты определяется при этом по формуле
, (16)
где c - удельная теплоемкость геотермального теплоносителя, ; - среднесуточный расход питьевой воды в системе ГВ, кг/с; - расчетная начальная температура водопроводной воды в системе ГВ после пикового догрева, °С; - расчетная температура водопроводной воды системы ГВ после сетевого теплообменника, °С; - расчетная температура обратной воды в сети после системы отопления теплицы, °С; - разность температур теплоносителей на "горячем" конце противоточного теплообменника в расчетном режиме (рекомендуется выбирать °С).
Значение коэффициента отпуска теплоты , соответствующее включению (выключению) пикового догрева, следует определять по формуле
, (17)
где
- (18)
ориентировочный коэффициент эффективности теплообменного аппарата системы ГВ в расчетном режиме; - расчетная температура водопроводной воды, поступающей в систему ГВ на подпитку, °С; - расчетная температура геотермальной воды, °С.
Температура наружного воздуха , соответствующая , при которой должен включаться (выключаться) пиковый догрев, определяется по формуле
, (19)
где - температура внутреннего воздуха теплиц, °С; - расчетная температура наружного воздуха, °С.
График регулирования тепловой мощности пикового источника теплоты , МВт, следует строить, пользуясь зависимостью
, (20)
где - текущий коэффициент отпуска теплоты.
График общего расхода геотермального теплоносителя в режиме регулирования дебита термоводозабора следует строить по формуле
, (21)
где - текущий расход геотермальной воды, кг/с; K и F - коэффициент теплопередачи в расчетном режиме () и площадь поверхности нагрева теплообменного аппарата ГВ ().
Для этого, подставляя в (21) значения текущего расхода , получим соответствующие значения . Затем, отложив по оси абсцисс вычисленные значения , а по оси ординат - принятые значения , получаем искомый график. При этом расход теплоносителя в летнем режиме (при ) определяется графически.
Произведение KF характеризует конструктивные особенности и размеры теплообменного аппарата и вычисляется по формуле
при , (22)
или
при . (23)
График температуры сбросной геотермальной воды (необходимый для определения количества теплоты, возвращаемой в водоносный пласт при обратной закачке) следует строить по следующим расчетным зависимостям:
для систем с пиковой котельной в режиме максимального дебита термоводозабора и работы пикового догрева (т.е. при )
- (24)
для тех же систем в режиме регулирования дебита термоводозабора (т.е. при ), а также для систем с ТНУ во всем диапазоне изменения
- (25)
для любого пикового источника теплоты при выключенной системе отопления теплиц ();
. (26)
Во всех случаях текущий расход теплоносителя определяется по графику, построенному по формуле (21). Примеры укрупненного расчета описанных комплексных геотермальных систем теплоснабжения изложены в рекомендуемом прил.6.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.