Вы можете открыть актуальную версию документа прямо сейчас.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение М
(справочное)
Обоснование
Настоящее приложение представляет собой пояснения к некоторым требованиям настоящего стандарта и предназначено для тех, кто знаком с предметом настоящего стандарта, но не принимал участия в его разработке. Понимание причин возникновения требований важно для правильного применения данного стандарта. Более того, можно предположить, что по мере изменения технологии и клинической практики данные пояснения смогут облегчить пересмотр стандарта, необходимый вследствие этих изменений.
Нумерация пунктов относится к настоящему стандарту, поэтому она непоследовательная.
1.1 Целью настоящего стандарта является нормирование частных требований к безопасности аппаратов ИВЛ, применяемых в экстренных ситуациях.
1.3 Определение рабочей части в настоящем стандарте является основой для прояснения требований к токам утечки на пациента, а также к их измерению.
Следует принять во внимание, что антистатические шланги и другие трубки, которые считаются электропроводящими, могут использоваться в дыхательных контурах аппаратов ИВЛ, применяемых в экстренных ситуациях.
Части, встроенные в аппарат ИВЛ, такие как датчики температуры и двуокиси углерода, которые предназначены для контакта с пациентом и электрически соединены с аппаратом, рассматриваются как части, на которые распространяются требования по токам утечки настоящего стандарта, поэтому такие части включены в определения рабочей части.
1.7 Идентификация, маркировка и документация
6.8.2а)2 Доступная длительность работы может изменяться, но она предоставляет наиболее важную информацию, так как аппараты ИВЛ для экстренных ситуаций применяют, главным образом, вне больниц, где источники резервного питания отсутствуют.
6.8.3а) Здесь не упоминаются термины параметров пациента в отличие от параметров аппарата, так как эти различия уже приведены в общем стандарте.
Примеры параметров аппарата ИВЛ таковы: "подаваемый объем", а не "дыхательный объем"; "генерируемое давление", а не "давление в дыхательных путях"; "установленная вентиляция", а не "вентиляция на выдохе"; "давление в отверстии выдоха", а не "давление в дыхательных путях" (что касается последнего, то чрезвычайно важно различать эти понятия при использовании некоторых аппаратов ИВЛ, предназначенных для новорожденных).
Некоторые условия нарушения, такие как сопротивление или утечки, могут стать причиной серьезной разницы между объемами и давлениями аппарата ИВЛ и соответствующими объемами и давлениями у пациента; но и другие условия нарушения, например повышенная секреция или накопление конденсата в линии передачи давления, могут стать причиной серьезных погрешностей при непосредственном измерении параметров пациента.
6.8.3а)5) Изменения некоторых характеристик (например температур, давления) газа и его состава могут изменить чувствительность к потоку и объему некоторых типов датчиков. Изменения этих характеристик могут также повлиять на коррекцию, требующуюся для приведения потока, объема или вентиляции к некоторым стандартным условиям. Выходной сигнал измерительного устройства, реагирующего, например, на изменение объема при нормальном использовании, будет пропорционален состоянию газа внутри этого устройства. Однако если датчик пневмотахографа, присоединенного к отверстию выдоха аппарата ИВЛ, используют для измерения выдыхаемого объема, приведенного к условиям BTPS, то показание пневмотахографа при температуре в нем выдыхаемого газа 30 °С будет меньше, чем реальный выдыхаемый объем в условиях BTPS.
3.7 Длительные токи утечки и дополнительные токи в цепи пациента
19.4 h) См. обоснование к 1.3.
7.2 Пожаробезопасность
43 Отчеты о пожарах, вызванных медицинскими устройствами, очень редки. Однако если пожары возникнут в больнице или в домашних условиях, они могут иметь трагические последствия.
Риск пожара возникает при наличии:
- горючих материалов;
- температуры, равной или превышающей минимальную температуру воспламенения материала или же искр, энергия рассеяния которых равна или превышает минимальную энергию воспламенения материалов;
- окислителя.
Поэтому, следуя основным концепциям безопасности ГОСТ 30324.0/ГОСТ Р 50267.0, конструкция оборудования должна обеспечить безопасность его работы в нормальных условиях и в условиях единичного нарушения и при наличии окислителей, воздействию которых могут подвергаться материалы. Температура материала не должна превышать минимальную температуру его воспламенения, или энергия искрения не должна превышать уровень энергии, необходимый для воспламенения материала. Альтернативно опасность не возникает, если воспламенение в закрытых частях самоограничено (например предохранители или резисторы внутри герметизированного пространства).
Минимальная температура воспламенения для большого количества материалов хорошо известна из опубликованных источников, обычно только для среды воздуха и чистого кислорода. Минимальная температура воспламенения может в значительной степени зависеть от концентрации окислителей. Если требуются данные по температуре воспламенения других материалов или различных концентраций кислорода, то их можно определить, используя методы и аппаратуру, описанные в МЭК 79-4.
При рассмотрении воспламеняющихся материалов следует обращать особое внимание на материалы, которые могут накапливаться в результате длительного использования, например, частицы бумаги или хлопка, содержащиеся в воздухе.
Риск пожара, вызванного искрением в электрических цепях медицинских изделий, обычно считается незначительным, так как повышение температуры от рассеяния энергии искрения обычно не достигает уровня температуры воспламенения твердых материалов, используемых в практике создания оборудования.
Однако если используют материалы с низкой температурой воспламенения, очень низкой теплоемкостью и способные накапливаться, такие как бумага, вата или органические волокна, то не представляется возможным определить температуру поверхности, подвергаемую энергии искрения. Поэтому для обеспечения безопасности могут стать необходимыми специальные проверки на воспламенение в этих условиях.
В ряде применяемых в настоящее время стандартов требования по минимизации риска пожара основаны на ограничении абсолютных значений температуры, электрической энергии и концентрации окислителя.
На основании данных литературных источников было сделано допущение, что температура 300 °С может считаться приемлемым пределом для медицинского оборудования при обогащенной кислородом атмосфере.
Происхождение используемых ограничений значений электрической энергии менее ясно, и кажется, что в отсутствии специальных проверок, приведенные значения были заимствованы из других опубликованных стандартов. Однако простые проверки и детальный анализ уже известных факторов, повлиявших на возникновение пожаров в среде кислорода, показали, что эти значения или слишком ограничительные, или потенциально опасны в зависимости от способа рассеяния энергии и близости "топлива".
Сейчас общепризнанно, что не существует единых и универсально применяемых диапазонов температуры, энергии и концентрации окислителя, которые обеспечивали бы безопасность во всех обстоятельствах. В конце концов, только электрическая энергия имеет значение в свете ее возможности повышать температуру воспламеняемых материалов, а это, в свою очередь, зависит от конкретной конфигурации и близости воспламеняемого материала.
В условиях единичного нарушения в типичной электрической цепи возможное число повреждений чрезвычайно велико. В этом случае полная уверенность в безопасности может быть возможной только при использовании соответствующих анализов безопасности и наличии опасности, принимая во внимание три основные элемента: материал, температуру и окислитель.
Соответствующая конструкция устройства может ограничить электрическую энергию в цепи, чтобы температуры оставались ниже минимальных температур воспламенения в воздухе в нормальных условиях, а герметизированные отсеки и принудительная вентиляция могли обеспечить, чтобы содержание кислорода не превышало его содержания в окружающем воздухе в условиях единичного нарушения.
Может оказаться приемлемым ограничение электрической энергии, чтобы обеспечить температуру ниже минимальной температуры воспламенения в среде чистого кислорода, даже в условиях единичного нарушения.
Только особая комбинация материала, окислителя и температуры, а не один из этих факторов, определяет, может ли возникнуть пожар.
8.2 Защита от представляющих опасность выходных характеристик
51.11 Типичные примеры условий проверки для некоторых методик следующие:
a) если предусмотрено оповещение о потере давления, то сигнализация может включаться, когда давление падает более чем, например, на 20 % установленного или ожидаемого пикового давления в отверстии для присоединения пациента;
b) если предусмотрено оповещение о снижении потока газа, то сигнализация может включаться, когда поток падает, например, на 20 % установленного значения или ранее измеренного значения в отверстии для присоединения пациента или в линии выдоха;
c) если предусмотрено оповещение о снижении объема или вентиляции, то сигнализация может включаться, когда объем или вентиляция падают, например, на 20 % установленного значения или ранее измеренного значения в отверстии для присоединения пациента или в линии выдоха;
d) если предусмотрено оповещение об изменении уровня кислорода, то сигнализация может включаться, когда изменение средней концентрации кислорода достигнет 15 %. Желательно, чтобы датчик находился в линии выдоха дыхательного контура или в выпускном отверстии на расстоянии 5 см от отверстия для присоединения пациента. Однако использование монитора кислорода для включения сигнала об утечке газа не рекомендуется из-за ненадежности методики, когда используются различные концентрации кислорода;
е) если предусмотрено оповещение об изменении уровня двуокиси углерода, то сигнализация может включаться, когда в отверстии для присоединения пациента отсутствуют колебания содержания двуокиси углерода от значений ниже 1 % (объемная концентрация) до значений более 3 % (например при нарушении периодичности сигнала, зависящей от самостоятельного дыхания или ИВЛ). Нарушение возврата уровня двуокиси углерода до значения ниже 0,5 % также может рассматриваться как условие включения сигнализации. Желательно, чтобы точка отбора пробы располагалась в шланге выдоха дыхательного контура аппарата или в выпускном отверстии и на расстоянии до 5 см от отверстия для присоединения пациента, или в дыхательном тракте (например трахеальная трубка может иметь встроенный канал для отбора пробы).
10.1 Общие положения
54.1 Данный пункт предотвращает использование мониторного устройства для контроля приводного механизма, так как это может привести к нераспознанной неисправности привода в случае нарушения функций мониторинга.
10.4 Сетевые части, компоненты и монтаж
57.3 Случайное рассоединение может быть опасным для пациента.
<< Раздел 10. Требования к конструкции |
||
Содержание Государственный стандарт РФ ГОСТ Р ИСО 10651.3-99 "Аппараты искусственной вентиляции легких медицинские. Часть 3. Частные... |
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.