Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение А
(справочное)
Дополнительная информация и рекомендации
А.1 Область применения
Установленные настоящим стандартом требования определены в отношении стационарных и мобильных МНГС, эксплуатирующихся как на морском дне, так и на плаву:
- построенных в соответствии с любыми стандартами проектирования;
- проанализированных с достаточной степенью технической детализации;
- изготовленных с использованием любых процедур/спецификаций сварки;
- смонтированных в любом году (независимо от времени ввода в эксплуатацию);
- в соответствии с любой историей эксплуатации;
- возможно, содержащих конструктивные недостатки или дефекты изготовления;
- испытывающих ухудшение качества или имеющих повреждения от различных источников.
Основные принципы УКЦ применимы к любому сооружению, а принципы УКЦ для ППБУ и СпБУ концептуально не отличаются от тех, которые используются для стационарных сооружений. В частности, многие требования и рекомендации в отношении процессов УКЦ настоящего стандарта в разной степени применимы к ППБУ и СпБУ. Единственным исключением в применении является оценка пригодности к эксплуатации, которая не применима к корпусам, швартовкам и судовым системам.
Предполагается, что в будущем требования и рекомендации УКЦ будут расширены, чтобы предоставить специальные требования и рекомендации для стационарных и мобильных МНГС путем их включения либо в настоящий стандарт, либо в отдельный документ.
Для корпусов, швартовок и морских систем требуется дополнительно разработать требования и рекомендации с учетом сложности этих систем. Рекомендуется использовать подходы на основе оценки рисков с целью фокусирования мероприятий УКЦ на специальных и уникальных критичных аспектах каждого конкретного сооружения, которое, как правило, не достигается с использованием директивных критериев.
Эти требования и рекомендации применимы к существующим МНГС с пониманием того, что оценки должны дополнительно учитывать, как минимум, эффекты устойчивости корпуса, удержание, эффекты глобальных движений корпуса, а также локальные взаимодействия корпуса/ВС.
Процесс УКЦ при использовании предоставляет для эксплуатирующей организации средства для прогнозирования параметров сооружения при наличии повреждения или перегрузки за счет использования методов, включая анализ, испытания, мониторинг и т.п. Как только это поведение конструкции становится известным и понятным, то может быть составлена и реализована программа инспекции, адаптированная к сроку службы сооружения.
В дополнение к пригодности к эксплуатации УКЦ обеспечивает дополнительную информацию в отношении того, как конструктивная целостность влияет на принятие решений в отношении добавления персонала, оборудования, скважин и/или водоотделяющих колонн. УКЦ обеспечивает дополнительную информацию в отношении того, когда эксплуатирующей организации нужно уменьшить количество персонала, ликвидировать или временно законсервировать скважину, убрать оборудование, водоотделяющие колонны или другие принадлежности, чтобы уменьшить риск и/или последствия, связанные с поврежденными МНГС и скважинами.
Процесс УКЦ является непрерывным и используется как средство определения того, способна ли существующая МНГС выполнять необходимую функцию на основе философии пригодности к эксплуатации. Сущность подхода заключается в оценке МНГС, а также в подводном обследовании и планируемой программе технического обслуживания.
А.2 Нормативные ссылки
Указания отсутствуют.
А.3 Термины и определения
Указания отсутствуют.
А.4 Обозначения
Указания отсутствуют.
А.5 Аббревиатуры
Указания отсутствуют.
А.6 Основные принципы УКЦ
А.6.1 Общие положения
Указания отсутствуют.
А.6.2 Оценка пригодности к эксплуатации
Указания отсутствуют.
А.6.3 Инфраструктура управления
А.6.3.1 Общие положения
УКЦ предусматривает постановку четких задач/целей и регулярное выполнение оценок, а при отклонении от ожидаемых результатов выполняются корректирующие действия.
Инфраструктура управления является средством подтверждения того, что персонал (квалификация и должностные обязанности), руководящие принципы и процедуры компании, системы, процессы и ресурсы, которые обеспечивают конструктивную целостность, реально действуют, используются и выполняются, при необходимости, в течение всего срока службы актива.
УКЦ соотносится с ТБ, ПБ и ООС и бизнес-целями эксплуатирующей организации посредством системы управления с тремя взаимосвязанными элементами:
- управление элементами, которые определяют согласованный набор руководящих и бизнес-принципов, формирующих требования, которые достигают целевые установки конструктивной целостности. Эти требования не подлежат пересмотру;
- функциональные элементы, которые определяют неотъемлемые важные функции УКЦ. Каждый из этих функциональных элементов присутствует в определенной степени на каждом этапе жизненного цикла данного актива - от концептуальной проработки до вывода из эксплуатации;
- вспомогательные элементы, обеспечивающие важную системную поддержку функции конструктивной целостности в выполнении ее задач. Эту поддержку осуществляют лица и организации, а также руководство, которое прямо не осуществляется с помощью бизнес-процессов, влияющих на результаты конструктивной целостности.
А.6.3.2 Руководящие принципы
Законодательство во многих странах предусматривает наличие руководящих принципов по предотвращению серьезных происшествий и ущерба окружающей среде от добычи углеводородов, их обработки, хранения и сбыта на внешние рынки. В некоторых случаях нормативные документы носят предписывающий характер и предусматривают специальные мероприятия и регламенты. Руководящие принципы УКЦ эксплуатирующей организации предназначены для дополнения нормативных документов, поэтому работа эксплуатирующей организации в таких условиях должна соответствовать нормативным требованиям.
В руководящих принципах УКЦ выражены намерение и указание в отношении конструктивной целостности, относящейся к процессам и мероприятиям. Они согласуются со стратегическим планом эксплуатирующей организации и другими корпоративными принципами и включают:
- определение намерений и направленности организации в отношении УКЦ;
- интеграцию и согласование УКЦ с корпоративным бизнес-планом и другими руководящими принципами;
- периодический анализ и приверженность непрерывному улучшению процесса УКЦ;
- документальное оформление и доведение до сведения сторон, имеющих отношение к УКЦ;
- соответствие обязательству сделать ресурсы доступными для реализации руководящих принципов.
А.6.3.3 Письменное описание
Для удобства пользования письменное описание вкладывается в единый документ, в котором указываются технические и бюджетные обязательства, а также роль и управление внешними поставщиками. Письменное описание периодически анализируется и обновляется, чтобы отражать изменения в требованиях к мониторингу, процессам, персоналу и документации, как это требуется на протяжении срока службы МНГС или группы МНГС. Письменное описание, как правило, анализируется после слияний и приобретения дополнительных активов для подтверждения их дальнейшей пригодности.
Письменное описание предоставляет эксплуатирующей организации контролируемый механизм подхода к УКЦ и включает:
- описание активов, включенных в инфраструктуру, в том числе их функции, а также требования к рабочим параметрам и состоянию;
- организационную структуру, а также функциональные обязанности, функциональное подчинение персонала, в соответствии с которым эксплуатирующая организация предоставляет стратегию УКЦ;
- определение процесса и обоснования, включенного в инспекцию, испытания и профилактическое техническое обслуживание, посредством которого эксплуатирующая организация предоставляет и обеспечивает конструктивную целостность;
- процедуры, относящиеся к УКЦ, а также форматы отчетности, с помощью которых эксплуатирующая организация проверяет выполнение процессов конструктивной целостности;
- определение процедуры оценки риска и управления риском;
- ссылку на стратегию ликвидации аварийных ситуаций;
- документацию по происшествиям с конструкциями, которые могут привести к ликвидации аварии;
- процесс, с помощью которого эксплуатирующая организация выполняет периодический анализ и непрерывное улучшение стратегии УКЦ;
- организационные мероприятия по овладению опытом на основе штатной работы конструкций и его использование в организации управления для осуществления непрерывного улучшения;
- ограничение и взаимодействие по конкретной обязанности в отношении конструктивных компонентов и конструктивной системы;
- правила и/или стандарты, которые необходимы в соответствии с местными нормативными документами, или правилами, и/или стандартами, в которых основу составляет УКЦ;
- подробности компьютеризированных информационных систем, которые будут использоваться для поддержки этих мероприятий.
А.6.3.4 Управление организационными изменениями
Эксплуатирующая организация должна поддерживать систему УОИ для временных и постоянных изменений, вносимых в процесс, оборудование, операции. Записи, процедуры и чертежи должны обновляться, чтобы отражать УОИ, а также доведение информации и обучения, проведенное вслед за этим. Системы УОИ должны создаваться, чтобы подтверждать, что действия выполнены. Когда проведены модификации, изменение массы, это должно быть записано в системе базы данных по массе.
Эксплуатирующая организация должна использовать УОИ для выявления и мониторинга изменений, имеющих отношение к УКЦ. Кроме того, практикующие специалисты по УКЦ должны участвовать в процессе УОИ путем осуществления поддержки связанных оценок рисков и утверждений изменений, относящихся к УКЦ.
УОИ должно использоваться для изменений, относящихся к конструктивной целостности, включая:
- задерживающиеся мероприятия;
- недостатки руководства;
- временные изменения;
- постоянные изменения;
- изменения в опасностях;
- изменения в нормативных положениях, стандартах и спецификациях.
Пункт УОИ в отношении временного, не соответствующего условиям ремонта должен быть закрыт после того, как будут закончены действия постоянного характера. Процесс должен отслеживать модификации на протяжении срока службы актива для подтверждения, что входные данные отражают операции на каждом этапе.
А.6.3.5 Процедуры
Процедуры обеспечивают критерии, которые могут быть измерены таким образом, что можно будет осуществлять мониторинг эффективности процедур, и включают:
a) процедуры по исследованиям с целью определения общих причин после происшествия с конструктивной целостностью. Выводы и рекомендации в результате расследования происшествия, которые затрагивают конструктивные компоненты МНГС, фиксируются в ходе периодического рассмотрения/обновления оценки рисков по активам и возвращаются в виде обратной связи в процесс УКЦ. Для уменьшения возможных происшествий в будущем выводы расследования происшествия общедоступны;
b) процедуры по аварийному реагированию и контролю готовности, которые взаимодействуют с планом эвакуации и спасения с МНГС (EER). Процесс чрезвычайного и аварийного реагирования устанавливает средства, с помощью которых персонал предупреждается об аварии в случае чрезвычайной и аварийной ситуаций. Процессы чрезвычайного и аварийного реагирования имеют доступ к информации о конструктивной целостности, включая:
- программное обеспечение по оценке,
- модели конструкции,
- специальные инспекции после события,
- ресурсы,
- поименованный персонал;
c) процедуры по поддержанию и повышению квалификации персонала, которым можно содействовать за счет введения в действие политики планирования найма, привлечения и преемничества в отношении персонала эксплуатирующей организации и персонала подрядчика, чтобы обеспечить последовательную смену персонала. Во многих случаях управление квалификации также распространяется на внешних подрядчиков:
- процедуры управления несоответствием, которые вводят в действие процесс отчетности с целью документального оформления того, что рекомендованные действия по разрешению несоответствия утверждены.
Процессы и документация, которые, как правило, составляют процедуру, включают в себя:
- нормативные требования и требования к отчетности эксплуатирующей организации;
- руководящие принципы УКЦ;
- управление рисками;
- документацию по защитным системам;
- проектные и эксплуатационные процедуры;
- управление поддержанием и повышением квалификации персонала;
- управление несоответствиями;
- управление изменениями;
- чрезвычайное и аварийное реагирование, относящееся к конструктивной целостности;
- оперативное вмешательство и ремонт;
- отчет о происшествиях и расследование;
- управление эффективностью деятельности;
- порядок отчетности;
- передачу данных по проекту;
- управление информацией и данными;
- анализ данных;
- оценку пригодности к эксплуатации;
- управление аномалиями;
- стратегию инспекции;
- программу инспекций;
- главные эксплуатационные показатели;
- положения по целостности;
- стандарты эффективности работы МНГС;
- фактическую процедуру контроля веса, включая основные принципы эксплуатации ВС;
- базу данных по контролю веса;
- ежегодный план контроля масс;
- итоговую суммарную сводку по целостности конструкции;
- модели конструктивной оценки;
- отчеты по контролю рабочих характеристик.
В целом вводится в действие отдельная система, которая:
- проверяет, что процедуры соответствуют современным требованиям и достоверны;
- поддерживает процедуры контроля документации;
- обеспечивает доступ к записям со стороны организации и третьих лиц;
- устанавливает срок хранения документов;
- проверяет, что документация разборчивая, легко извлекается и защищена от повреждения, порчи или утраты;
- соответствует законодательным и нормативным требованиям;
- показывает инфраструктуру и взаимозависимость между документами.
А.6.3.6 Расследование аварийной ситуации
Аварийная ситуация, относящаяся к конструктивной целостности, приведет к отказу МНГС. Каждый случай внезапного отказа, повреждения или сбоя при эксплуатации и перепада за пределами проектных допусков дает возможность узнать о конструктивной целостности МНГС.
А.6.3.7 Аварийное реагирование и контроль
Разработка планов действий в чрезвычайных и аварийных ситуациях для каждого режима конструктивного отказа является профилактическим средством предоставления эксплуатирующей организации быстрого отклика в случае возникновения аварии. Планы ликвидации аварии могут составляться, чтобы отражать выявленные опасности с помощью введенного в действие процесса периодического рассмотрения для подтверждения того, что планы учитывают изменения в рисках и/или вводят новые опасности, которые формируются в ходе срока эксплуатации МНГС.
А.6.3.8 Валидация
Периодическая валидация используется для подтверждения того, что процесс УКЦ выполняется в соответствии с процедурами, предусматриваемыми руководящими принципами УКЦ, а также письменным описанием, кроме того, что процесс УКЦ соответствует нормативным требованиям.
Валидация включает периодическое рассмотрение с целью выявления разницы между фактическими рабочими характеристиками и планом, а также разработку согласованных корректирующих мер. Рассмотрение состоит в большей степени из опроса персонала и анализа записей, относящихся к конструктивной целостности. Результаты рассмотрения документально оформляют и доводят до сведения как часть сводки.
В ходе периодического рассмотрения определяется выполнение следующих задач процесса УКЦ:
- решаются ли задачи, поставленные руководящими принципами и стратегией УКЦ;
- выполняются ли эксплуатирующей организацией договорные обязательства по отношению к УКЦ;
- осуществляется ли управление рисками конструктивной целостности;
- выполнен, поддерживается и регистрируется ли процесс;
- рассматриваются ли результаты ранее проведенных рассмотрений, а также принимаются ли меры с целью устранения несоответствий;
- предоставляется ли информация по результатам рассмотрений вышестоящему руководству.
Перед сдачей в эксплуатацию МНГС выполняют комплексную проверку для выяснения конструктивного состояния и статуса записей по эксплуатации и техническому обслуживанию. При ликвидации МНГС сохраняются данные о конструктивной целостности МНГС, и эти данные передаются новой эксплуатирующей организации.
Эксплуатирующая организация периодически проводит сравнительный анализ процесса конструктивной целостности по сравнению с письменным описанием. Цель сравнительного анализа - это выявление недостатков в существующих процессах конструктивной целостности, применяемых эксплуатирующей организацией. В промежуточной оценке сравниваются существующие процессы с будущими требованиями к конструктивной целостности, а также даются рекомендации по устранению недостатков.
Рассмотрение основано на результатах оценки рисков процесса конструктивной целостности, происшествий в ходе эксплуатации или непредвиденных технических характеристик, а также сведений на основе предыдущих данных. Рассмотрение может применяться (или запрашиваться) после происшествий и отказов. Там, где это возможно, рассмотрение выполняется персоналом (внутренним или внешним), который является независимым от тех лиц, которые несут прямую ответственность за проведение мероприятия.
Эксплуатирующая организация, как правило, рассматривает руководящие принципы конструктивной целостности и задачи процессов обеспечения конструктивной целостности, чтобы решить, гарантирует ли процесс включения подход верификации. Процессы конструктивной целостности, как правило, включают независимую валидацию для подтверждения того, что и надежность принятия решений валидирована.
А.6.3.9 Непрерывное улучшение
Поддержание конструктивной целостности представляет собой непрерывный процесс на протяжении срока жизни МНГС. Процессы ухудшаются со временем, и процессы управления не являются исключением. Процессы конструктивной целостности могут обеспечить возможности для эксплуатирующей организации по принятию подходов на основе оценки рисков, исключению малоценных работ, минимизации отказов и постоянному улучшению.
Непрерывный мониторинг и рассмотрение выполняются с целью подтверждения, что инфраструктура конструктивной целостности остается годной для эксплуатации. Изменения неизбежно произойдут в составе персонала, корпоративных структур, систем управления, а также в праве собственности на МНГС. Эти изменения могут влиять на способность организации поддерживать конструктивную целостность на необходимом уровне.
Непрерывное улучшение требует проведения измерений и сбора данных для определения системы мер в отношении принятых процессов конструктивной целостности. Данные по рабочим показателям анализируются, и выявляется тенденция отклонения со временем, чтобы предоставить в конкретный момент времени анализ и тенденции рабочих показателей. Показатели конструктивной целостности докладываются и рассматриваются на регулярной основе.
Выводы валидации процесса конструктивной целостности используются для совершенствования подхода к конструктивной целостности. Это включает в себя оценку рабочих показателей по сравнению с основными и отсталыми показателями результативности, которые определены. Плановые показатели фокусируются на управлении элементами рабочего процесса, а итоговые показатели - на результатах процессов. Сочетание обеспечивает производительность и эффективность.
Возможности для улучшения изыскиваются за счет упреждающего поиска, применения и совместного использования рациональных практик, характеристик и систем. Практикующие специалисты по конструктивной целостности делятся приобретенным опытом в отношении конструктивной целостности в рамках своей организации.
А.6.3.10 Организационная структура
Целью определения организационной структуры по конструктивной целостности является предоставление подотчетности отдельных лиц и указание их действий, взаимодействий, линий коммуникаций и границ контактов. Организационная структура охватывает все аспекты процесса конструктивной целостности и представляет подотчетность и подчиненность. Организационные мероприятия объединяются с конкретными функциями и обязанностями, а также квалификационными требованиями к лицам, вовлеченным в процесс конструктивной целостности. Организационная структура формируется таким образом, чтобы персонал знал и принимал свои обязанности и подотчетность.
А.6.3.11 Функции и обязанности
Эксплуатирующая организация, как правило, предоставляет инженерам по конструктивной целостности, а также практикующим специалистам должностные инструкции и квалификационные требования. В должностной инструкции указаны обязанности и мероприятия по конструктивной целостности, а также мероприятия, имеющие отношение, наряду с необходимыми определяющими признаками, к профессиональным качествам, квалификации, опыту работ, обучению и аттестации (где это требуют регулирующие органы). Как часть периодических оценок работы могут выполняться проверяемые самостоятельные оценки по сравнению с профилями должностных обязанностей.
Функции и обязанности могут варьироваться в зависимости от организационной структуры, сложности, количества МНГС и нормативных требований. Ответственный специалист конструктивной целостности определяется по должностной инструкции и полномочиям, а также на основе указания функций и обязанностей другого вспомогательного персонала, подрядчиков, специалистов и т.п.
Эксплуатирующая организация, как правило, проверяет, чтобы персонал, чья работа влияет на конструктивную целостность, определил свои функции и они были оценены как компетентные по отношению к задачам, которые перед ними стоят. Функции и обязанности персонала между группами эксплуатации, технического обслуживания и технической целостности, как правило, документально оформляют в письменном виде и доводят до сведения данного персонала.
А.6.3.12 Возможности и ресурсы
На протяжении срока службы МНГС эксплуатирующая организация может запросить необходимую документацию технического характера и подтверждение профессиональных компетенций для завершения мероприятий по конструктивной целостности, которые включают:
- проектирование конструкций;
- проектирование с учетом массовых характеристик;
- геотехническое проектирование;
- гидрометеорологию;
- морские операции;
- специалистов по управлению рисками;
- ответственного исполнителя инспекций.
Эксплуатирующая организация несет ответственность за конструктивную целостность, которая включает профессионализм его персонала, а также несет ответственность за профессионализм внешних подрядчиков. Управление профессиональной пригодностью расширяется до обеспечения профессиональной пригодности во внутренней организации, а также у внешних подрядчиков, участвующих в процессе конструктивной целостности. Знание полученного обучения проверяется, а их профессиональная пригодность оценивается с регулярными интервалами.
В широком понимании слово "профессиональный" означает обладание соответствующей квалификацией. Профессиональная пригодность - это необходимые способности или качества личности, которыми она обязана обладать в профессии, чтобы удовлетворять ожидания конструктивной целостности. Способности представляют собой сочетание профессиональных навыков, понимания, опыта, а также других качеств (отличительные черты, отношение и склонность), которые создают устойчивое поведение и способность выполнять задачи на уровне стандартов, которые ожидались при найме. Эти стандарты включают нормативные требования и отраслевые стандарты помимо стандартов эксплуатирующей организации, а также перечень процедур по эксплуатации и техническому обслуживанию.
Уровень профессионализма различается между функциями конструктивной целостности. Конструктивная целостность часто может быть одним навыком среди всего набора умений конкретного специалиста и может быть более или менее важным в зависимости от того, каковы рабочие требования. Для тех лиц, которые постоянно участвуют в процессе конструктивной целостности, "специалисты - практики по конструктивной целостности", их уровень знаний, как правило, выше и отражает широту всего процесса конструктивной целостности.
Опыт показал, что реализация процесса конструктивной целостности в рамках организации не может быть достигнута без привлечения опытных специалистов, включая специализированных специалистов и экспертов. Заинтересованные стороны, привлекаемые в мероприятия по конструктивной целостности, подтверждают, что у них введены в действие процессы управления профессиональной пригодностью персонала и оборудования.
Специалисты или группы специалистов, участвующие в процессе конструктивной целостности, как правило:
- знакомы с информацией по УКЦ на рассматриваемом МНГС;
- знакомы с процессами ухудшения качества и корректирующими мерами;
- имеют опыт в проектировании морских конструкций;
- знают разницу между проектированием и инженерной оценкой;
- имеют опыт по принятию проектных решений на основе оценки риска;
- имеют опыт планирования инспекций;
- знакомы и аттестованы по использованию инспекционного инструментария и методов;
- осведомлены об общих аспектах инспекции в морской отрасли.
А.6.4 Уровень эффективности работы
Уровни эффективности работы указывают на отклик конструкции МНГС (или ответственной конструкции) на повышение опасности. На стратегии конструктивной целостности в будущем может влиять предел, при котором МНГС превышает уровень эффективности работы (например, на МНГС, на котором только достигается уровень эффективности работы, может потребоваться проведение инспекции и ремонта, если механизмы ухудшения характеристик, скорее всего, еще больше снизят его способность).
Смертельный случай, загрязнение окружающей среды или финансовые потери могут возникнуть в том случае, если действия от опасности превышают способность МНГС, ее конструктивных элементов или водоотделяющих колонн, трубной обвязки или направлений.
Примеры уровней эффективности работы представлены в таблице А.1.
Таблица А.1 - Уровень эффективности работы
Уровень эффективности работы |
Описание уровня эффективности работы |
В условиях эксплуатации |
Возникает, когда авария вызывает вибрацию, смещения или движения, которые превышают ограничения, приемлемые для жизни и безопасности персонала, либо границы работоспособности при добыче и/или риск для безопасности жизни от оборудования |
Временная потеря добычи |
Возникает, когда опасность приводит к временной остановке добычи для проведения инспекции после добычи и ремонта (в основном повреждение вторичных конструкций) |
Продолжительная потеря добычи |
Возникает, когда авария вызывает существенную остановку в добыче для проведения серьезного ремонта под водой и ремонта ВС основной конструкции. Тем не менее требуется проведение ремонта, но он экономичный, и МНГС остается в эксплуатации. Возможно, сохранится неизменный угол наклона МНГС после события, но он не повлияет на операции в будущем, включая доступ к скважинам. Типичное повреждение заключается в отрезанных раскосах вышки, треснутых сварных швах на стыках или образовании дыр от оторванной стенки пояса балки |
Выход из строя МНГС без смертельных случаев |
Возникает, когда авария приводит к повреждению, которое не может быть отремонтировано экономичным образом, и требуется вывод МНГС из эксплуатации. Тем не менее без разрушения МНГС сооружение выполняет свою функцию, чтобы не допустить получения смертельных травм. Может возникнуть в момент максимального воздействия в ходе опасности сейсмического события или серьезного шторма. Тем не менее при условии, если величина воздействия в оставшееся время воздействия не превышает способности повреждения МНГС, то не прогнозируется обрушение МНГС. Повреждение неремонтируемое, и нужен вывод МНГС из эксплуатации. Типичное повреждение включает множественные отрезанные раскосы вышки, отрыв ноги из-за локального пластического выпучивания, множественные треснутые сварные швы на стыках или образование дыр от оторванных стенок пояса балки и/или постоянный угол наклона МНГС, не позволяющий продолжать операции, включая доступ к скважинам |
Выход из строя МНГС со смертельными случаями |
Возникает, когда авария приводит к разрушению МНГС в ходе опасного события со смертельными случаями, которые пропорциональны количеству персонала на борту |
Пример возможных уровней эффективности работы, которые могут быть установлены для стационарного МНГС, представлен на рисунке А.1 в форме кривой нагрузки/смещения для типичной опасности. На рисунке иллюстрируются следующие пять возможных уровней эффективности работы:
1 - МНГС остается работоспособным;
2 - работа прерывается из-за проведения инспекции после события, а также проведения незначительных ремонтов с временной потерей добычи;
3 - работа прерывается из-за проведения инспекции и выполнения после события и крупного ремонта с продолжительной потерей добычи;
4 - МНГС остается в вертикальном положении, но утратило свою функциональность, и могут произойти смертельные случаи;
5 - происходят обрушение МНГС и смертельные случаи.
Уровни эффективности работы с 1 по 3 относятся к уровням финансового риска, в то время как уровень 5 относится к уровню риска для безопасности жизни персонала. Риск для окружающей среды относится к уровню 5 (либо в отношении обрушения МНГС, которое приводит к прорыву оборудования, содержащего нефть, или в отношении обрушения оборудования, содержащего нефть, в результате прямого воздействия).
1 - работоспособная; 2 - временная потеря добычи; 3 - длительная потеря добычи; 4 - выход из строя МНГС со смертельными случаями; 5 - разрушение МНГС со смертельными случаями
Рисунок А.1 - Пример уровней эффективности работы
А.6.5 Проектирование
Указания отсутствуют.
А.6.6 Верхние строения
Указания отсутствуют.
А.6.7 Продолжение эксплуатации
Концепция "продление срока службы" заключается в том, что имеется время или некое количество "ресурса", когда МНГС снимается с эксплуатации, но срок службы на основе конкретных процессов и критериев может быть продлен на определенный период без понижения границ ниже отметки "минимальные уровни эффективности работы".
Со временем конструкция, технологическая установка, системы безопасности и другие объекты обустройства, входящие в состав МНГС, подвергаются действию механизмов старения, которые могут привести к ухудшению состояния и снижению возможностей, с потенциальным воздействием на безопасность, функциональность и пригодность к эксплуатации в долгосрочной перспективе. Многие МНГС проектируются на заданный срок службы, который составляет 20-25 лет и который установлен для оценки инвестиций. Когда эффект старения медленный, или может быть ослаблен, или может управляться посредством инспекций, технического обслуживания и замены, появляется некоторый потенциал для продления срока службы.
А.6.8 Зоны обследования конструктивной целостности
В ходе инспекции конструкций ВС определяются особые области обследования, следует также учитывать, что пять из перечисленных ниже мероприятий требуют предварительной изоляции и/или остановки работы МНГС:
- моторный отсек крана и опора грузовой стрелы крана/кольцо вращения крана, кабина крановщика и стрела крана;
- опорные устройства грузоподъемного оборудования/кран-балки и портальные краны;
- опорные устройства водоотделяющих колонн/водоотделяющие колонны;
- буровая вышка/система перемещения буровой установки/повторная сертификация буровой установки;
- факельная башня/факельный оголовок и трубопроводы;
- шлюпбалки спасательных шлюпок/спасательная шлюпка и подъемное оборудование спасательной шлюпки;
- конструкция вертолетной площадки/сертификация вертолетной площадки;
- централизованные резервуары для хранения продукции/напорные системы;
- основные опоры для труб/трубопроводы;
- опоры основного оборудования/оборудование;
- инспекция внутреннего кессона/техническое обслуживание насоса;
- инспекция защитного покрытия/пассивная противопожарная защита (ППЗ).
А.7 Процесс УКЦ
Нумерация подпунктов приводится в соответствии с источником
А.7.1.1 Общие положения
После внедрения процесс УКЦ может использоваться для подтверждения поддержания технической целостности МНГС в течение предполагаемого срока эксплуатации. Таким образом, УКЦ может использоваться отдельными лицами или группами лиц, которые способствуют конструктивной целостности на протяжении жизненного цикла, начиная с проектирования, строительства и эксплуатации и вплоть до вывода из эксплуатации.
Конструктивная целостность может быть определена как способность МНГС эффективно и производительно выполнять необходимую функцию в соответствии с требованиями и допущениями, сделанными в ходе проектирования, при этом обеспечивая защиту здоровья персонала, безопасность и охрану окружающей среды.
Процесс УКЦ улучшает эксплуатационную эффективность за счет усовершенствованных показателей ТБ, ПБ и ООС и повышения рентабельности бизнеса благодаря улучшенной пригодности объекта. В процессе УКЦ происходит выявление опасностей, чтобы довести до сведения оператора и управлять конструктивным риском рентабельно и единообразно.
УКЦ обеспечивает возможность для эксплуатирующей организации, а также специалистов принять принципы риска для разработки стратегий УКЦ. Вероятность возникновения отказа в ходе экстремального события, такого как ураган, соответствует вероятности возникновения экстремального события в месте нахождения МНГС и будет достаточным по величине, чтобы преодолеть прочностные характеристики или сделать МНГС неработоспособным. Последствия возникновения отказа включают потенциальный смертельный случай, загрязнение окружающей среды, ремонтные работы, очистку, замену объекта, восстановительные работы на площадке, а также стоимость отсроченной добычи.
В случае ликвидации месторождения результирующие затраты будут включать недобытые запасы продукции, вывод из эксплуатации и восстановление площадки. В подходе на основе оценки рисков признается, что для МНГС с более высоким риском предусматривают более частое проведение более сфокусированных инспекций, чем для МНГС с меньшим риском. В ходе разработки стратегии инспекций может использоваться категория риска МНГС для установления интервалов обследований и объемов работ как части стратегии УКЦ.
В морской отрасли признают, что их эксплуатационная деятельность может негативно влиять на работу специалистов, подрядчиков, посетителей, на жизнь населения, а также на окружающую среду, которые конструктивная целостность призвана защитить. В подходе подразумевается, что эксплуатирующая организация систематически выявляет потенциальные эксплуатационные аварийные ситуации, которые могут возникнуть, оценивает их вероятность и последствия и способна подтвердить, что руководящие принципы, эксплуатационные процедуры, профилактические меры и безопасность, а также системы эвакуации и спасения введены в действие и понятны.
А.7.1.2 Преимущества
Потенциальные преимущества УКЦ включают:
- определение приоритетов в отношении источников инспекции - сооружения и компоненты могут быть расставлены по приоритетности на основе последствий, риска или надежности;
- улучшенное знание активов - УКЦ предусматривает оценку имеющихся данных и аналитических рассмотрений, которые обеспечивают знания в отношении состояния МНГС, прочности и сопротивления усталости;
- более эффективная система УОИ - записи могут рассматриваться и сохраняться, позволяя передавать знания и изучать в интересах эксплуатирующей организации, а также улучшать решения;
- плановое техническое обслуживание вместо проведения ремонтов на месте или модификаций;
- углубленные знания в отношении состояния МНГС, его прочности и усталостной стойкости могут обеспечить дополнительное время для специалиста на проведение ремонта. Рассмотрение оценки может выявить необходимость отложить либо вообще не проводить ремонт.
Следующие принципы относят к УКЦ:
- контроль опасных событий;
- конструктивную целостность элементов конструкции;
- резервируемость и альтернативные пути нагружения;
- смягчение последствий на персонал, окружающую среду или на морские нефтегазопромысловые сооружения;
- ликвидацию аварий;
- улучшение конструктивных элементов МНГС.
А.8 Данные
А.8.1 Общие сведения
Оценки и анализы точны в той мере, насколько это позволяет используемая инженерная методология, а также конкретные данные. Отсутствующие или неправильно оцененные данные могут привести к допущениям на основе консервативной инженерной оценки, которая может препятствовать осуществлению модификаций и таким образом несправедливо не допустить потенциального развития. Примером может служить ситуация, когда на участке с вмятинами замеры выполнены ненадлежащим образом. В этом случае инженер обязан предположить, что вмятина расположена в том месте, в котором вызовет наибольшее ослабление прочности. В некоторых случаях такая ошибка может препятствовать выполнению модификаций на МНГС или привести к принятию ошибочного решения о проведении более подробной оценки. Эксплуатирующая организация может разработать такие спецификации, в которых будут детально описаны методы подводных измерений, квалификация персонала, границы обследования, критерии аномалий и т.п.
Важными особенностями УКЦ являются действительность, объем и точность данных по МНГС, а также хронология проведения инспекций. Соответственно записи об анализах первоначальной конструкции, изготовлении, транспортировке, монтаже (включая забивку свай), а также инспекции в ходе эксплуатации, инженерных оценках, ремонтах и происшествиях должны сохраняться эксплуатирующей организацией в течение всего срока службы МНГС и передаваться новым эксплуатирующим организациям по мере необходимости.
Для процесса УКЦ необходима актуальная информация по МНГС. Информация по первоначальному проекту, изготовлению и монтажу (включая результаты структурного анализа), инспекциям в ходе эксплуатации, инженерным анализам, структурным оценкам, модификациям, упрочнению, ремонтам и эксплуатационным происшествиям составляет часть базы знаний по УКЦ.
А.8.2 Проектные данные
Типичными примерами проектных данных являются:
- данные о первоначальной и нынешней эксплуатирующей организациях;
- данные о первоначальном и сегодняшнем использовании и функции МНГС;
- данные о местонахождении, глубине моря и ориентации;
- данные о типе МНГС - кессонного типа, буровая тренога, 4/6/8 ног и т.п.;
- данные о количестве скважин, водоотделяющих колонн и дебита;
- другая информация по конкретным площадкам, штатная численность персонала и т.п.;
- данные о подрядчике по проектированию и дата проектирования;
- проектные чертежи и спецификации материалов;
- нормы проектирования;
- основы проектирования;
- критерии проектирования (например, гидрометеорологические, сейсмические, столкновение, ледовые, противопожарные и противовзрывные);
- клиренс;
- эксплуатационные критерии - нагружение палубы и размещение оборудования;
- данные по фундаментному основанию, включая данные по геоопасностям;
- информация по сваям и водоотделяющим колоннам - количество, размер и расчетное проникновение;
- информация по оснастке - количество, перечень размеров и проектное местонахождение.
А.8.3 Данные по изготовлению и монтажу
Типичными примерами данных по изготовлению могут быть:
- подробная информация подрядчиков по изготовлению;
- чертежи, утвержденные для строительства, или исполнительные чертежи;
- результаты инспекции после изготовления/строительства;
- спецификации по изготовлению, сварке и строительству;
- заводские сертификаты и документация по отслеживаемости материалов;
- записи по строительным допускам и соответствию/отклонению;
- записи об инспекциях сварных швов;
- записи об аномалиях, дефектах, ремонтах и мероприятиях по устранению;
- записи об обеспечении качества;
- ведомости материалов;
- отчеты о взвешивании.
Типичными примерами данных по монтажу могут быть данные:
- о подрядчике по монтажу и дата монтажа;
- забивке свай;
- забивке водоотделяющих колонн;
- цементировании свай (если применимо);
- модернизации на месте эксплуатации, повреждениях или ремонте;
- транспортировке (суровые погодные условия/качка).
А.8.4 Данные о состоянии
Примерами данных о состоянии за прошлые периоды могут быть данные:
- об инспекции после монтажа/инспекции по проверке исходных данных;
- по подводной инспекции в ходе эксплуатации и инспекции ВС;
- о техническом обслуживании конструкций в ходе эксплуатации - подводные (при наличии) и ВС;
- по катодной защите - потенциалы катодной защиты, марки анодов и подробная информация по переоборудованию анодов;
- упрочнению/модификации/ремонту - описания, анализы, чертежи и даты;
- мониторингу состояния;
- осадке/погружению МНГС (если применимо).
Типичными примерами данных по состоянию "как есть" могут быть:
- все палубы - реальный размер, местонахождение и высота;
- все палубы - существующее нагружение и размещение оборудования;
- клиренс;
- инвентарный список добычи и хранения;
- оснастка (т.е. перечень, размеры и места);
- скважины - количество, размер и место установки существующих направлений;
- результаты обследования выше уровня воды;
- результаты подводного обследования МНГС;
- УОИ конструкций;
- планы ослабления последствий;
- данные по техническому обслуживанию;
- объемы работ инспекций.
А.8.5 Эксплуатационные данные
Типичными примерами эксплуатационных данных могут быть:
- история эксплуатационного нагружения - записи о добавлении/удалении массы;
- история гидрометеорологического нагружения - экстремальные события, включая описания, даты и рабочие характеристики МНГС во время события;
- история сейсмического нагружения (если применимо) - описания, даты и рабочие характеристики МНГС во время события;
- история случайных нагружений - столкновения, падающие объекты и другие случайные нагрузки;
- операции по погрузке/разгрузке (например, зона действия крана, использованные борта МНГС);
- буровые конструкции и буровые операции в будущем;
- ограничения доступа (например, выпускные системы, факелы, участки под палубами);
- морские операции;
- вертолетные операции;
- трапы или мостовые/лестничные конструкции, а также их использование;
- извлечение кессонного насоса и операции по техническому обслуживанию;
- скважины/направления, используемые на МНГС;
- философия/стратегия внутрискважинных работ;
- вспомогательные модули, кессоны, направления;
- расширяющиеся или чрезмерно используемые зоны для складирования;
- замены кранов;
- удлинения с других МНГС или месторождений;
- данные по эксплуатационным происшествиям;
- план расположения оборудования;
- документация по управлению изменениями.
А.8.6 Технические данные
Типичными примерами технических данных могут быть:
- данные по оценке повреждений - описания, анализы и даты;
- анализ аварий;
- кривые аварий;
- данные по отбору технических оценок;
- реестр аномалий;
- основа оценки;
- модели оценки;
- реестры рисков;
- анализы затрат и выгод;
- анализы основных причин происшествий;
- уровни эффективности работы;
- модели конструкций.
А.8.7 Отсутствующие данные
Невозможно переоценить важность поддержания данных по конструкциям и инспекциям. Анализ и оценка настолько точны, насколько это позволяет инженерная методология, а также используемые данные. Отсутствующие или неправильно измеренные данные могут привести к консервативным допущениям в ходе инженерной оценки. Примером недостаточных данных, влияющих на потенциальную или воспринимаемую конструктивную целостность МНГС, может быть отсутствие:
- знаний о конструкции, которые могут помешать ввиду дополнительных объектов обустройства, если дополнительная мощность не может быть использована;
- информации о глубине и нахождении вмятины, которая требует допущения о том, что вмятина расположена в том месте, где она вызовет наибольшее снижение прочности.
А.8.8 Управление данными
Данные о предшествующих периодах являются фундаментальным элементом обеспечения конструктивной целостности и представляют собой системы для ссылки и архивирования документов, относящихся к процессу УКЦ, являясь средствами для соединения различных заинтересованных сторон.
А.9 Анализ
А.9.1 Общие сведения
По мере сбора новых данных (например, посредством периодических инспекций, в результате случайных событий, после плановых реконструкций) должен быть выполнен инженерный анализ данных.
Если анализ определяет, что риск эксплуатации МНГС или ответственной конструкции увеличился, то должна быть выполнена техническая оценка указанного уровня, чтобы определить готовность к эксплуатации МНГС или ответственной конструкции либо необходимость принятия мер по ослаблению риска.
Результаты анализа используют для разработки и реализации стратегии инспекции. Программа представляет собой реализацию объемов работ инспекции, технического обслуживания и ремонта, как это определено в стратегии УКЦ.
Оценка, как правило, включает в себя анализ системы конструкций (или самую последнюю оценку), который сводит к минимуму характерный консерватизм, используемый в проекте. Консервативный подход может быть результатом неопределенности, использованной для установления параметров проектирования, которые с учетом знаний, полученных при эксплуатации МНГС или технологических усовершенствований, могут быть обоснованно удалены.
Анализ является постоянным процессом, в котором рассматривается нынешнее состояние МНГС по сравнению с тем, которое было на момент предыдущей оценки, а также других параметров, влияющих на конструктивную целостность и уровни риска, для подтверждения, что уровни эффективности работы в отношении конструктивной целостности соответствуют требованиям. В ходе этого процесса выявляются требования к проведению ремонта или технического обслуживания с целью достижения уровней эффективности работы в отношении конструктивной целостности. При анализе риск, связанный с эксплуатацией МНГС, должен быть выявлен и дифференцирован между опасностями, которые могут привести к полному или частичному обрушению МНГС.
Анализ УКЦ представляет собой использование инженерного обеспечения для оценки эффекта новой информации/данных на пригодность к эксплуатации МНГС. Методы на основе оценки рисков могут быть целесообразными в ходе анализа, который позволяет вычислять риски и оказывать обратное действие на приемлемые значения. Это может обеспечить обоснование будущих мероприятий, приоритетов и сроков реализации.
По следующим аспектам можно различить оценку и анализ:
a) анализ - это постоянный процесс, в то время как оценка выполняется по инициативе определенных лиц;
b) анализ, как правило, является качественным, основанным на технических решениях, и иногда поддерживается простыми или приблизительными вычислениями;
c) анализ может содержать опыт эксплуатации, а также ссылку на исследовательские данные, качественный скрининговый анализ и прогнозные методики для оценки эффекта новых данных на стратегию конструктивной целостности.
Скрининговый анализ является обследованием конструкций МНГС на наличие дефектов (трещин, недопустимых прогибов, изменений геометрической формы конструкций), способных снизить несущую способность и ухудшить состояние МНГС в целом;
d) после получения данных инспекции выполняется анализ, даже если дефектов не обнаружено;
e) когда обнаруживают повреждения, дефекты или ухудшение качества, то выполняют анализ с целью определения необходимости проведения срочной дополнительной инспекции, чтобы точнее установить степень повреждения;
f) потенциальные преимущества осуществления мер по устранению недостатков могут быть качественно определены за счет анализа или, при необходимости, количественно определены с помощью оценки на основе одного из аналитических методов;
g) оценка позволяет использовать восстановительные меры вместо дополнительных более детальных анализов.
Анализ выполняется на протяжении всего срока службы МНГС и используется для подтверждения конструктивной целостности МНГС, стратегий ослабления и установленных уровней риска с точки зрения их действительности для достижения уровня эффективности работы. Анализ рассматривает всю конструкцию МНГС или ее частей в случае возникновения повреждения или неблагоприятных условий.
Выводы анализа используют в качестве основы для поддержки или корректировки стратегии целостности и программы целостности, которые могут быть учтены при заключении о том, что:
- МНГС или ответственная конструкция, годная к эксплуатации в период между инспекциями, требует проведения текущего планового технического обслуживания мониторинга/инспекции (с конкретным объемом работ);
- требуется проведение восстановительных мер (немедленных или долгосрочных).
А.9.2 Факторы
Некоторые факторы, которые должны быть проанализированы с целью определения показателей прочности и усталости МНГС, приведены в таблице А.2.
Таблица А.2 - Факторы оценки
Фактор |
Анализ |
Возраст, состояние МНГС, первоначальные расчетные условия и критерии и сравнение с нынешними расчетными ситуациями и критериями |
Возможность продлить оставшийся срок службы МНГС. Консультация с эксплуатационным персоналом и персоналом технического обслуживания для определения условий (например, подтверждение коррозии, перемещение направляющих или водоотделяющей колонны/опор кессона, деформации или отклонения, необычные вибрации, изменение отклика МНГС на качку из-за волнения), которые требуют проведения анализа |
Результаты анализа и допущения в отношении первоначального проекта или предыдущего анализа |
Вычисленные коэффициенты использования и усталостной стойкости. Первоначальные нормы проектирования и версия. Уровень сложности и консерватизм в анализах проекта/оценки. Степень консерватизма, используемая в проекте, по сравнению с необходимым уровнем эффективности работы. Намеренное проектирование с запасом на усталость, чтобы уменьшить требования к периодическим инспекциям. Спецификация материала |
Запас прочности конструкции и резервирование конструкции |
- |
Чувствительность к усталости |
- |
Степень консерватизма или неопределенности в указанных аномальных опасностях |
Источник данных. Степень определенности или консерватизма в условиях аномальных опасностей (волны, течение, ветер) и проектные допущения (обрастание, спектр землетрясений). Чувствительность воздействий штормов к повторяемости. Например, разница в величине воздействия между событиями с повторяемостью 10, 100 и 1000 лет. Относительная степень серьезности состояний моря в отношении усталости и экстремальных/аномальных условий, поскольку усталость может быть важной в тех случаях, когда действующие состояния моря чуть слабее экстремальных/аномальных условий. Тип обрастания (жесткий, мягкий), процент охвата, толщина, вариация по глубине, шероховатость |
Объем инспекции в ходе изготовления и после транспортировки и монтажа |
- |
Качество изготовления и случаи доработок или повторной сварки |
Необычные или особые обстоятельства, доработки/повторная сварка, вибрация/усталость из-за ветра. Объем инспекции в ходе изготовления. Качество изготовления. Процедуры и спецификации сварки |
Повреждение (включая усталостное повреждение) в ходе транспортировки или монтажа |
Объем инспекции после транспортировки. Суровость условий транспортировки и фактическое воздействие (например, трансокеанская по сравнению с местной буксировкой). Возникновение повреждений в ходе монтажа. Объем инспекции после монтажа. Объем отклонений от проектных допущений (например, клиренс между палубой и средним уровнем моря) |
Эксплуатационный опыт, включая результаты и опыт предыдущих инспекций в ходе эксплуатации других МНГС |
Степень внимательности при отчете/анализе случайных событий. Размер отклонений от проектных допущений (например, состояния моря, обрастания, предназначение МНГС). Модификации и добавления водоотделяющих колонн, ОЧ, ВС и т.п. Возникновение повреждения. Абсолютное количество лет эксплуатации. Срок эксплуатации по сравнению с расчетным сроком службы. Погружение. Объем работ предыдущих инспекций. Использованные инструменты и методы. Выявленные аномалии. Выявленные тенденции. Случившиеся отказы или возникшие проблемы с конкретными элементами конструкции в определенных условиях. Эффективное использование аналогичных МНГС в той же местности/регионе |
Модификации, добавления, а также ремонты или упрочнения |
Указанные ниже причины обуславливают проведение ремонта или упрочнения. Выполнение ремонта или упрочнение в ходе эксплуатации |
Возникновение случайных, экстремальных и аномальных событий |
- |
Важность конструкции для других операций |
- |
Местоположение сооружения (географическая область, глубина воды) |
Опыт конкретного региона |
Данные по мониторингу конструкции, если имеются |
- |
Намерение потенциального повторного использования или демонтаж |
- |
Для более устаревших версий МНГС возраст конструкции информирует о наличии возможных недостатков или консерватизма проектных решений, которые помогают в разработке программы инспекции. По мере развития морской технологии получен опыт решения эксплуатационных проблем, а также новые экспериментальные данные и аналитические возможности, которые включены в обновленные версии различных норм проектирования. Например, выполнены усовершенствования по таким аспектам, как:
- проектные требования в отношении приемных труб;
- выбор материала;
- процедура расчета гидрометеорологического воздействия;
- кривые S-N.
Образование трещин, как правило, не происходит. Если образуются трещины, то, скорее всего, они возникнут:
- в стыках горизонтального крепления направления ниже уровня водной поверхности (как правило, возникает от усталости);
- основных стыках на участке раскосов, идущих к опорам вертикального крепления пространства между рамными шпангоутами выше дна моря (как правило, в результате экстремальных или аномальных гидрометеорологических/сейсмических событий);
- элементах по периметру вертикального крепления на первом уровне ниже уровня воды (как правило, результат столкновения);
- плохо спроектированных соединениях элементов конструкции, в которых доступность и количество металла сварного шва, необходимого для обеспечения качества шва, трудно обеспечить.
Степень определенности установления расчетных характеристик в отношении состояний моря, течения, ветра, обрастания, сейсмичности и интенсивности коррозии не является единой. Доля консерватизма, которая использовалась для учета возможного недостатка знаний, может варьироваться в различных регионах, даже среди разных эксплуатирующих организаций указанного региона. Специалисты по планированию инспекций должны понимать эти неопределенности и консерватизм.
Некоторые эксплуатирующие организации, осуществляющие операции в Северном море, приняли стратегию намеренного проектирования с запасом элементов конструкции в отношении усталости (таким образом, что расчетные сроки наступления усталости в 10 раз больше, чем проектный срок службы) с целью, чтобы снизить/исключить требование о проведении подводных обследований ВО и/или НК. Такие стратегии являются законной попыткой свести к минимуму стоимость инспекции на протяжении срока службы. Тем не менее обследования ВО и/или НК должны выполняться в отношении новых концепций конструкций, по крайней мере пока не будет получен опыт работы. Стратегия проектирования с запасом по параметру усталости не устраняет требования по проведению периодического надводного и подводного обследований общей визуальной инспекции.
Качество изготовления сооружения и объем инспекции в ходе изготовления и монтажа напрямую влияют на стратегию проведения инспекций в процессе эксплуатации. Одной из главных побудительных причин для проведения инспекции в ходе эксплуатации является обнаружение неизвестных дефектов изготовления (как правило, в сварных соединениях) либо повреждений при монтаже. Если сфера распространения таких дефектов может быть сужена посредством более частой инспекции в ходе изготовления/монтажа, использования материалов более высокого качества и более совершенных процедур сварки, то требования к инспекции в ходе эксплуатации могут быть снижены. У эксплуатирующей организации есть возможность принять более жесткие практики в этих сферах и тем самым снизить требования к инспекции в ходе эксплуатации.
Инспекции могут быть более эффективными и рентабельными, если спланированы на основе истории эксплуатации и с учетом особенностей проектирования/изготовления МНГС.
На требования к инспекции в ходе эксплуатации может положительно или отрицательно влиять опыт работы других МНГС. Такое знание формирует стимул у эксплуатирующей организации сотрудничать и совместно использовать технический опыт инспекций.
А.9.3 Опасности
Указания отсутствуют.
А.9.4 Ответственная конструкция
А.9.4.1 Общие сведения
Национальные надзорные органы требуют, чтобы были указаны основные элементы конструкции в отношении опасностей возникновения крупномасштабных аварий (MAHs), когда определяется МАН как событие, включающее серьезное повреждение конструкции установки с потенциальной возможностью привести к пяти или более смертельным травмам либо к происшествию, которое может или станет причиной серьезных негативных последствий для окружающей среды.
Часть конструкции платформы, чей отказ может вызвать либо существенно осложнить последствия крупной аварии, однако, является важным элементом для безопасности и охраны окружающей среды, так как это та часть, которая предназначена для предотвращения или ограничения воздействия крупной аварии.
Некоторые региональные регулятивные органы определяют это как одно из SECE-платформы. Региональный регулятивный орган, как правило, требует наличия схемы верификации для инспекции, технического обслуживания и ремонта каждого SECE.
А.9.4.2 Крупная авария
Примерами ответственных конструкций, которые могут подвергнуться обрушению и аварии (пять смертельных случаев травматизма или более), являются:
- ОЧ и свайный фундамент (отдельные элементы или стыки в ОЧ не являются ответственной конструкцией);
- основные стальные конструкции ВС, которые напрямую обеспечивают поддержку и устойчивость жилых помещений или временных убежищ (отдельные элементы или стыки ВС не являются ответственной конструкцией);
- временное убежище;
- вертолетная площадка и опорная конструкция вертолетной площадки;
- мостки и опорная конструкция мостков;
- площадки для самоходных спасательных капсул (TEMPSC) и опорная конструкция;
- проходы в места сбора и опорная конструкция.
А.9.4.3 Крупное экологическое событие
Примерами ответственных конструкций, которые могут привести к отказу и крупному экологическому событию, являются:
- направляющие;
- центраторы направлений;
- направляющие рамы направлений.
А.9.4.4 Предотвращение или ослабление крупной аварии
Примерами ответственных конструкций, которые предназначены для предотвращения или ограничения воздействия крупных аварий непосредственно или путем утраты барьеров по предотвращению или ослаблению, являются:
- путем прямого распространения:
- водоотделяющие колонны, хомуты водоотделяющих колонн, направляющие водоотделяющих колонн и опоры клапана системы аварийного останова,
- опорные устройства углеводородной трубной обвязки,
- крепления технологического оборудования;
- путем распространения аварии при утрате барьера ослабления:
- защитные рамы водоотделяющей колонны и направления,
- пожарная перегородка и опорные устройства пожарной перегородки,
- взрывозащитная стенка и опорные устройства взрывозащитной стенки,
- кожухи пожарных насосов,
- кессоны и опорные устройства (или направляющие) пожарных насосов,
- защита от падающих объектов.
А.9.4.5 Безопасность персонала
Примерами ответственных конструкций, которые могут выйти из строя и привести к одному или нескольким смертельным случаям, являются:
- переходные мостки (включая их опорные конструкции), поручни и ступени лестниц;
- буровые установки (и мачты), подвышечное основание, крепления и рельсы буровой установки;
- вышки связи и опорные конструкции;
- моторные отсеки крана и опорная конструкция;
- дымовая труба и опорная конструкция;
- кран-балки, а также их соединения.
А.9.4.6 Финансовые потери
Примерами ответственных конструкций, которые могут выйти из строя и привести к серьезным финансовым потерям для эксплуатирующей организации, являются:
- факельная стрела и опорная конструкция;
- кессоны и опоры (иные, чем кессон пожарного насоса);
- основная конструкция ВС.
А.9.5 Риск
А.9.5.1 Общие положения
При разработке стратегии инспекций для флота одним из методов является отнесение к категориям на основе риска для эксплуатирующей организации каждой МНГС. Вероятность отказа - это функция конструктивных характеристик МНГС, в то время как последствия отказа - это функция воздействия на безопасность для жизни, окружающую среду, а также прерывание коммерческой деятельности.
В качественном подходе определение вероятности отказа предусматривает наличие информации по конфигурации конструкций МНГС для определения его "изначальной" подверженности возникновению отказа, а также его действительного состояния на основе инспекции, которая может воздействовать на изначальную вероятность (например, поврежденные элементы). Более новые модели МНГС проектируют в соответствии с улучшенными стандартами (например, включают приемные трубы) и имеют изначальную конфигурацию конструкций с многочисленным дублированием, поскольку у них 8 опор и Х-образные раскосы. Тем не менее если в программе конструктивной целостности обнаруживается запись о повреждении у более нового МНГС (например, коррозия или усталостное растрескивание), то категория МНГС меняется на МНГС "с высокой вероятностью отказа".
Последствия отказа могут относиться к безопасности, окружающей среде и финансовым аспектам, которые могут возникнуть, если МНГС выйдет из строя позже. Это стандартные последствия, рассматриваемые в оценках рисков. В качестве примера обслуживаемое буровое и эксплуатационное МНГС будут иметь более серьезные последствия отказа для кустового бурения, чем необслуживаемое МНГС.
А.9.5.2 Последствие отказа
А.9.5.2.1 Общие сведения
Наиболее важными последствиями отказа являются категория последствий для безопасности для жизни, а затем последствия для окружающей среды или финансовые последствия.
А.9.5.2.2 Последствие для жизни-безопасности
А.9.5.2.2.1 Общие сведения
Категория последствий "безопасность для жизни" относится к персоналу на МНГС, а также к вероятности того, что персонал будет находиться на МНГС в момент возникновения опасного события.
А.9.5.2.2.2 Категория обслуживаемых МНГС
В местах, где принята стратегия эвакуации персонала до наступления прогнозируемого события, категория обслуживаемых МНГС по-прежнему может применяться в отношении тех МНГС, на которых есть возможность размещать персонал посуточно, который будет находиться в зоне риска от возникновения события, которое невозможно предсказать и/или при котором невозможно эвакуировать персонал.
А.9.5.2.2.3 Категория МНГС с обслуживающим персоналом и эвакуацией
В отрасли необходимо включать категорию "МНГС с обслуживающим персоналом и эвакуацией (L-2)" и использовать это для установления уровней эффективности работы и стратегий инспекций. Тем не менее использование категории "с обслуживаемым персоналом и эвакуацией" свидетельствует о том, что стратегия уже введена в действие с целью ослабления последствий в ходе опасного события, и это требует выполнения процедур эвакуации персонала.
Так как в варианте "МНГС с обслуживающим персоналом и эвакуацией" используются процедуры вместо прочностных характеристик МНГС для ослабления возможных последствий для безопасности для жизни, категория "МНГС с обслуживающим персоналом и эвакуацией" не рассматривается в настоящем стандарте для категоризации риска для МНГС, а устанавливаются уровни эффективности работы и/или стратегии инспекции.
А.9.5.2.2.4 Категория МНГС без обслуживающего персонала
Непродолжительное нахождение персонала на МНГС (т.е. лишь на непродолжительное время для проведения технического обслуживания, строительства, операций по капитальному ремонту, бурению или выводу из эксплуатации) может быть отнесено к категории "без обслуживающего персонала". Однако пребывание персонала на МНГС должно планироваться лишь на короткое время и полагаться на прогнозы, когда не прогнозируется возникновение аномальных гидрометеорологических событий.
А.9.5.2.3 Последствие - загрязнение окружающей среды
А.9.5.2.3.1 Общие сведения
Конструктивный отказ, который приводит к загрязнению окружающей среды, может возникнуть по следующей причине, если не установлен внутрискважинный клапан-отсекатель:
- полное или частичное разрушение, которое приводит к отрыву водоотделяющих колонн, закрепленных на ОЧ, водоотделяющие колонны, опирающиеся на нижнюю палубу МНГС или направления;
- из-за отрыва водоотделяющих колонн или направлений из-за нагрузок, прикладываемых непосредственно.
А.9.5.2.3.2 Хранимая продукция на ВС
В случае обрушения МНГС внезапный выброс жидких углеводородов из сосудов и труб невозможен. Из-за постоянной герметичности под давлением большинства сосудов, труб и клапанов наиболее вероятно, что небольшая часть запаса подвергнется выбросу наружу.
Так как лишь небольшая часть продукции может выйти наружу, то считается, что выброс значительного количества жидких углеводородов может стать проблемой в том случае, когда запас верхних строений включает большое количество герметизирующих сосудов.
А.9.5.2.3.3 Скважины
Выброс жидких углеводородов или сернистого нефтяного газа из скважин зависит от нескольких переменных. Основной переменной является надежность предохранительного внутрискважинного клапана-отсекателя, который приводится в действие иным образом, когда возникает аномальная ситуация с добычей.
Когда нормативные документы предусматривают использование и техническое обслуживание внутрискважинного клапана-отсекателя, то принимается решение о том, что неконтролируемый приток из скважин, как правило, не является критичным для оценки МНГС. Когда внутрискважинный клапан-отсекатель не используется и скважины могут свободно фонтанировать (т.е. без использования насосов), поток из скважин становится существенной проблемой. Жидкие углеводороды или сернистый нефтяной газ выше внутрискважинного клапана-отсекателя могут быть потеряны со временем аналогично разрыву трубопровода. Тем не менее количество пластовой продукции, скорее всего, будет небольшим и вряд ли окажет серьезное негативное воздействие на окружающую среду.
А.9.5.2.3.4 Трубопроводы
Потенциальный выброс жидких углеводородов или сернистого нефтяного газа из трубопроводов или водоотделяющих колонн является основной проблемой, поскольку существует большое количество возможных причин разрыва (например, разрушение МНГС, перемещение нижнего слоя грунта, недопустимая неподдерживаемая длина пролетов, а также непредвиденное препятствие для якоря). Обрушение МНГС, скорее всего, приведет к разрыву трубопроводов или водоотделяющих колонн вблизи или в границах конструкции. Применительно к гидрометеорологическим событиям, когда линии не фонтанируют, максимальный выброс жидких углеводородов или сернистого нефтяного газа, скорее всего, будет значительно меньше, чем количество в трубопроводе.
Количество выброшенной пластовой продукции зависит:
- от размера трубопровода;
- остаточного давления в трубопроводе;
- загазованности в жидком углеводороде;
- неровности трассы трубопровода;
- других вторичных параметров.
А.9.5.2.3.5 Смежные объекты
Смежными объектами являются объекты, расположенные относительно близко к МНГС, и существует высокая вероятность столкновения при обрушении МНГС.
В случае рассмотрения смежных объектов есть вероятность, что они были спроектированы с учетом более высокой категории загрязнения окружающей среды, чем было нужно. В таких случаях рассматриваемое МНГС может быть отнесено к такой категории, как у смежного объекта.
Вероятность серьезного непреднамеренного выброса углеводородов из скважин или соседних транспортных трубопроводов и/или объектов хранения считается серьезным последствием.
А.9.5.2.3.6 Последствие - серьезное загрязнение окружающей среды
Последствие при серьезном загрязнении окружающей среды относится к категории отказа и включает бурение и/или добычу, хранение или другие МНГС без ограничений по типу объекта. Большие глубоководные МНГС, а также МНГС, которые обеспечивают основные объекты обустройства, или трубопроводы с высоким расходом, как правило, относят к этой категории. Отнесение к категории последствий для окружающей среды включает МНГС, расположенные там, где невозможно или нецелесообразно останавливать скважины перед наступлением опасных событий (например, на участках с высокой сейсмичностью).
А.9.5.2.3.7 Последствие - незначительное загрязнение окружающей среды
Последствие, выражающееся в незначительном загрязнении окружающей среды, категории отказа включает стандартное бурение средних размеров и/или добычу, жилые помещения на МНГС или другие МНГС.
Хранение ограничивается технологическим запасом и резервуарами для перекачки по трубопроводам.
У МНГС этой категории очень низкий потенциал фонтанирования из скважин, и в случае возникновения отказа сработает внутрискважинный клапан-отсекатель перед проектным событием.
А.9.5.2.4 Финансовые последствия
А.9.5.2.4.1 Общие сведения
Серьезность негативных последствий, возникающих в результате обрушения МНГС, представляет собой оценку, которая помимо последствия безопасности для жизни основывается на важности МНГС для операций, репутации и уровня финансовых потерь эксплуатирующей организации, которые можно выдержать в результате обрушения МНГС. Кроме обрушения МНГС и сопутствующего оборудования, повреждений подсоединенных трубопроводов в категорию негативных последствий также включена утечка запасов, если впоследствии месторождение будет утрачено.
Расходы по ликвидации объекта включают реализацию обрушения МНГС, повторный вход в скважину и тампонажные работы в поврежденных скважинах, а также очистку морского дна на площадке. Если не планируется ликвидировать площадку, то включаются затраты на восстановление (например, замена конструкции и оборудования и/или повторный вход в скважины). Другие затраты включают ремонт, прокладку нового маршрута или подсоединение трубопровода в другом месте к новому МНГС. Кроме того, стоимость ослабления загрязнения окружающей среды и/или экологического ущерба включается в этих случаях там, где существует высокая вероятность выброса жидких углеводородов или сернистого нефтяного газа.
Когда подсчитывается стоимость ослабления загрязнения и экологического ущерба, то учитываются углеводороды, которые хранятся в технологических емкостях ВС, и возможная утечка из поврежденных скважин или трубопроводов, а также близость МНГС к береговой линии или к экологически чувствительным участкам. Потенциальное количество жидких углеводородов или нефтяного газа в выбросе из этих источников может быть меньше имеющегося запаса из каждого источника.
А.9.5.2.4.2 Значительные финансовые последствия
Указания отсутствуют.
А.9.5.2.4.3 Незначительные финансовые последствия
Указания отсутствуют.
А.9.5.3 Вероятность возникновения отказа
А.9.5.3.1 Общие сведения
Вероятность возникновения отказа учитывает следующее:
- характеристики опасного воздействия;
- уязвимость в отношении случайного нагружения;
- нынешнее состояние конструкций;
- механизмы ухудшения;
- историю обслуживания;
- запас прочности;
- структурное резервирование и альтернативные пути нагружения;
- чувствительность к усталости.
Конфигурация конструкций является фактором способности МНГС выдерживать повреждение элемента конструкции без потери конструктивной прочности системы. Допускаемое повреждение - это фактор при разработке стратегии инспекции/мониторинга УКЦ и связанных программ УКЦ.
Х-образная или ХН-образная конфигурация упрочняющей арматуры, как правило, обеспечивает эксплуатационную надежность по отношению к повреждению компонентов, когда они подвергаются аномальному воздействию по многим альтернативным путям передачи нагружения на фундамент. При отсутствии случайного нагружения эта конфигурация часто может позволить эксплуатирующей организации действовать более гибко при разработке и реализации программы инспекций за счет большой приемлемости повреждений элементов конструкции и/или перегрузки.
В отличие от этого D- или К-образная конфигурация упрочняющей конструкции не обеспечивает альтернативных путей нагружения, и она менее пластичная, когда подвергается аномальному воздействию. По существу, эта упрочняющая арматура МНГС не обеспечивает такой гибкости для разработки и реализации программы инспекции.
А.9.5.3.2 Качественный метод
Указания отсутствуют.
А.9.5.3.3 Полуколичественный метод
Указания отсутствуют.
А.9.5.3.4 Количественный метод
Указания отсутствуют.
А.9.5.4 Представление риска
Указания отсутствуют.
А.9.6 Уровень эффективности работы
А.9.6.1 Общие сведения
Минимальные уровни эффективности работы, представленные в настоящем стандарте, могут использоваться для подтверждения приемлемого ограничения риска для обеспечения безопасности жизни и риска загрязнения окружающей среды. Уровни эффективности работы для ограничения риска по обеспечению безопасности жизни и риска загрязнения окружающей среды не зависят от оставшегося срока службы (т.е. эти риски измеряются, как риски в год). Финансовый риск может измеряться в год или в течение оставшегося срока службы.
Использование низкого уровня экологической результативности (т.е. воздействие с повторяемостью 100 лет) может оставить МНГС, которое близко к этому уровню результативности, уязвимым к обрушению в ходе умеренного события. Уровень результативности с повторяемостью 100 лет указывает на то, что у МНГС будет примерно 10 %-ная вероятность возникновения отказа в течение срока службы, равного 10 годам. Хотя последствия для обеспечения безопасности жизни и окружающей среды были ослаблены, однако эксплуатирующей организации необходимо оценить экономический риск при этом уровне эффективности работы.
Использование повторяемости в 2500 лет установлено в качестве базового уровня эффективности работы безопасность для жизни. Этот уровень эффективности работы согласуется в отношении аномальных сейсмических событий согласно ГОСТ Р 57123.
Использование повторяемости гидрометеорологической опасности для подтверждения соответствия уровню эффективности работы может быть упрощением, когда пытаются установить надежную оценку истинной вероятности обрушения. Доказательство представлено в [11] по неожиданным и ожидаемым отказам платформы в ходе экстремальных гидрометеорологических нагружений, и авторами предлагается, чтобы историческая практика проектирования платформ нашла свое отражение в тех платформах, которые имеют характерное смещение в сторону чрезмерной прочности. Такое смещение позволяет использовать повторяемость гидрометеорологических опасностей, а не повторяемость потери прочности на смятие платформы. Это противоречит сейсмической опасности, когда уровень эффективности работы противопоставляется вероятности потери прочности на смятие платформы. Поскольку при сейсмической опасности не было возможности анализировать ожидаемые и неожиданные отказы МНГС в ходе экстремального нагружения, чтобы выяснить возможное смещение отраслевой практики, разница в двух подходах к проектированию МНГС сохраняется.
В инженерной практике было известно, что, хотя существующие платформы не всегда отвечают современным стандартам проектирования, тем не менее сооружение по-прежнему может быть адекватным и эксплуатироваться. Примеры этого не только включают стационарные морские платформы, но также здания, мосты, дамбы и береговые установки подготовки.
Согласно требованиям ГОСТ Р 54483 подход к проектированию на основе частного коэффициента, присущий проектированию по предельным состояниям, не был разработан для каждого аспекта МНГС, и, следовательно, могут использоваться другие методы. Согласно требованиям ГОСТ Р 54483 подход на основе надежности можно применять для следующих целей:
- для определения частных коэффициентов воздействия и коэффициентов сопротивления в процессе, идентифицируемом как калибровка;
- подтверждения проектирования, обеспечивающего согласованность анализом конструктивной надежности с приемлемыми методиками проектирования.
А.9.6.2 Безопасность для жизни
А.9.6.2.1 Общие сведения
Уровень эффективности работы "безопасность для жизни", как правило, учитывает индивидуальные риски и групповые (или социальные) риски. Индивидуальные риски в год включают опасности, которым может подвергнуться персонал, и сумму эксплуатационных рисков (например, вертолетные перевозки, взрыв углеводородов и риск пожара) вместе с риском отказа конструкций в определении допустимого уровня эффективности работы.
В некоторых регионах эксплуатирующая организация и федеральные регулирующие органы имеют стратегию конструктивной целостности, которая предусматривает эвакуацию с конкретных МНГС при наличии прогноза о состоянии моря, превышающего предварительно определенную величину. В этих ситуациях эксплуатирующая организация подтверждает, что годовая вероятность не достигла уровня эффективности работы "безопасность для жизни" при нахождении персонала на МНГС меньше уровня эффективности работы, указанного в таблице 5.
Риск в год может быть измерен с помощью частоты повреждений временного убежища и включает те опасности, которым может быть подвержен персонал во временном убежище (или в жилых помещениях), включая поступление дыма и газа, тепловой нагрузки, а также величины разрушения временного убежища (или жилых помещений) за счет полного обрушения МНГС.
Сценарии, которые могут привести к смертельным случаям, следующие:
- смертельные случаи из-за разрушения временного убежища (или жилых помещений) в результате внезапного обрушения МНГС (ВС, подвышечное основание или фундаменты) в ходе опасного события;
- смертельные случаи из-за разрушения временного убежища (или жилых помещений) в результате внезапного обрушения МНГС (ВС, подвышечное основание, или фундаменты) в результате серьезного повреждения в ходе опасного события, за которым последовали поступательные отказы элементов конструкции;
- смертельные случаи из-за разрушения временного убежища (или жилых помещений) в результате сдвига или опрокидывания при внезапном обрушении ВС в ходе опасного события;
- смертельные случаи из-за разрушения временного убежища (или жилых помещений) вследствие расширения выброса углеводородов в результате отказа конструкции водоотделяющих колонн, трубной обвязки, или направлений, или их опорных конструкций, идущих от подвышечного основания, нижней палубы или ВС;
- смертельные случаи из-за расширения вследствие утраты барьера от пожара и/или взрыва;
- смертельные случаи из-за расширения вследствие утраты защитных барьеров от столкновения с судами или от падающих/раскачивающихся объектов;
- смертельные случаи из-за утраты опорных конструкций для эвакуации и спасения.
А.9.6.2.2 Регулирующие органы
Федеральные регулирующие органы в настоящее время требуют различных уровней эффективности работы "безопасность для жизни". Тем не менее рекомендуют обязательную оценку мер ослабления риска, например:
a) в [12] указано, что в отношении гидрометеорологических опасностей минимальная повторяемость воздействия RP A, имеющая годовую вероятность превышения на уровне 1/RP A, вызывает обрушение МНГС на основе средних значений параметров сопротивления;
b) в [13] в отношении сейсмических опасностей определен необходимый минимум повторяемости в отношении обрушения МНГС RP C. В вычислении RP C учитывают неопределенность параметров сопротивления путем конволюции кривой опасности с наклоном кривой недолговечности. Если Е 2500 является воздействием с годовой вероятностью превышения 1 в 2500 лет, то минимальное необходимое условие составляет на основе средних значений параметров сопротивления;
c) в [14] указывают минимальную повторяемость воздействия RP A, имеющую годовую вероятность превышения на уровне 1/RP A, которая вызывает обрушение МНГС на основе характерных значений параметров сопротивления.
Если обрушение МНГС не происходит, но остается повреждение при противодействии воздействию с периодом повторяемости RP A, то дальнейший уровень эффективности работы должен подтвердить, что МНГС не подвергнется обрушению в течение оставшегося времени опасного события, в котором произошло воздействие с повторяемостью RP A.
Это подтверждает то, что поврежденное МНГС не обрушается в ходе 2-го, 3-го и т.д. от сильного воздействия в течение оставшегося времени опасного события (например, гидрометеорологического или сейсмического) и включает требование о том, что учитывается последующее повреждение из-за отказов компонентов в ходе 2-го, 3-го и т.д. от сильного воздействия, а также из-за малоцикловой усталости в течение оставшегося времени опасного события. Минимальное необходимое условие составляет на основе средних значений параметров сопротивления и примерно равно требованию E RP с учетом характерных значений параметров сопротивления. Поэтому указания [14] совместимы с требованиями ГОСТ Р 57123 и [13];
d) в [14] требуется, чтобы процедура останова и эвакуации определялась таким образом, чтобы верифицировать то, что конструктивная надежность объекта с персоналом на борту была не менее, чем на МНГС с персоналом [14], а также целесообразно присваивать уровень эффективности работы в соответствии с требованием ALS [15];
e) британский регулятивный орган требует, чтобы риски для жизни и безопасности отдельных лиц и групп на МНГС были менее 1/1000 в год.
IRPA (см. [16]) - это вероятность смертельного исхода для отдельных лиц в год, и она учитывает сумму вероятностей гибели в результате следующих опасностей:
- обрушения МНГС или локального обрушения конструкции, которое ведет к опрокидыванию временного убежища (или жилых помещений) в момент нахождения отдельных лиц на МНГС,
- взрыва углеводородов в момент нахождения отдельного лица на МНГС,
- полета на вертолете отдельного лица на МНГС или с МНГС, а отдельное лицо выполняет свои функции на МНГС (профессиональный риск).
- TRIF (см. [16]) - это вероятность летального исхода в год группы лиц на МНГС, и она учитывает сумму вероятностей смертельного случая из-за следующих опасностей:
- обрушения МНГС, приводящего к затоплению временного убежища (или жилых помещений) или локальному разрушению конструкции, приводящему к обрушению временного убежища (или жилых помещений),
- поступления дыма или газа во временные убежища (или жилые помещения);
- теплового воздействия на персонал во временном убежище (или жилых помещений),
- смятия из-за столкновения судов со временным убежищем (или жилым помещением) упавших объектов или опрокидывания буровой вышки либо факельной стрелы.
А.9.6.2.3 Кривая FIN
Кривая FIN (см. рисунок А.2) показывает недопустимую совокупную вероятность смертельных исходов F как функцию количества летальных исходов N. Кривая FIN МНГС по смертельным случаям из-за опасностей, не имеющих отношения к конструкции, суммируется с кривой FIN МНГС в отношении опасностей, приводящих к смертельным случаям из-за обрушения МНГС, а затем сравнивается с требованиями FIN эксплуатирующей организации и/или федерального регулирующего органа. Недопустимые F, F int указаны как , постоянная величина, когда включено избегание риска m более 1,0 (как правило, m = 1,5), как показано на рисунке А.6.5.3.2-1 [17]. Если происходит обрушение в аномальный шторм, то количество летальных случаев N, вероятно, равно количеству персонала на борту, так как маловероятно спасение персонала в воде.
- граница неприемлемого социального риска для рабочих;
- граница неприемлемого социального риска для широкой публики;
N - летальные исходы; F - совокупная частота N больше летальных исходов (1/год)
Рисунок А.2 - Кривая FlN уровня "безопасность для жизни"
А.9.6.2.4 Ослабление риска за счет эвакуации
Если стратегия конструктивной целостности МНГС включает эвакуацию персонала при получении прогноза, то влияние неопределенности в прогнозировании погоды учитывают при установлении порогового значения H s, которое инициирует эвакуацию. Пороговое значение H s, которое инициирует эвакуацию, определяют путем учета финансовых затрат по останову, эвакуации персонала, повторной доставке персонала и повторному пуску в дополнение к требованию соответствия, по крайней мере, минимальному уровню эффективности работы.
А.9.6.3 Загрязнение окружающей среды
Когда известно, что на МНГС имеется емкость для хранения нефти, которая может вылиться в ходе события, то эксплуатирующая организация должна подтвердить, что ответственная конструкция, поддерживающая трубы с нефтью (например, водоотделяющие колонны, которые опираются на нижнюю палубу, или подвышечное основание, клапаны аварийного останова, опирающиеся на нижнюю палубу, трубная обвязка, опирающаяся на палубу или направления), достигает минимального экологического уровня эффективности работы.
Разрыв труб, содержащих нефть, может быть вызван воздействием от действующей трубы непосредственно на трубу опасности или может быть следствием больших деформаций их креплений либо из-за обрушения МНГС.
А.9.6.4 Финансовые потери
Указания отсутствуют.
А.9.7 Усталость
Если возникают трещины, то, скорее всего, они будут встречаться на стыках в первой горизонтальной упрочняющей арматуре направления ниже уровня воды как результат усталостного разрушения. Усталостное растрескивание в сварных швах в первой горизонтальной упрочняющей арматуре ниже уровня воды может возникнуть от вертикального волнового нагружения. Это исторически обнаружено там, где обшивка лестницы направления не была учтена при проектировании или где высота рамы направления была смонтирована ближе к водной поверхности (т.е. из-за отсутствия прогнозируемого проникновения бетонной подготовки при монтаже или ошибочного измерения глубины моря).
Усталостные трещины могут возникнуть на основном раскосе, идущем к стыкам основных стоек в вертикальной упрочняющей арматуре на первом отрезке между двумя рамными шпангоутами выше границы ила, как правило, из-за гидрометеорологического воздействия (т.е. малоцикловой усталости). Усталостные трещины в упрочняющей арматуре направления образуются из-за вертикальных "пульсирующих" нагрузок от воздействия волн на арматуру направления (т.е. рама ведет себя как элемент, в котором напряжения не перераспределяются).
Расчетная проектная усталостная стойкость основных конструктивных рамных элементов, как правило, консервативная из-за гибких стыков. Кроме того, историческая практика оценки усталостной прочности конструктивных элементов конструкции и/или опор принадлежностей (т.е. кессоны и/или водоотделяющие колонны) традиционно не была консервативной. Отказ таких элементов не приведет к общему обрушению конструкций, но может вызвать негативные последствия, которые могут стать причиной потенциального происшествия (т.е. разрыва трубопровода или водоотделяющей колонны), либо возможного прерывания операций (т.е. утрате работоспособности пожарного кессона с водой).
Общепринято, что спектральный анализ усталости дает наиболее точные и менее консервативные результаты. Для обеспечения точности спектральный анализ усталости должен соответствовать установленным процедурам и учитывать следующее:
- локальную гибкость стыков;
- реалистичные, а не консервативные нагрузки для элементов конструкции в зоне периодического смачивания;
- приложение гидродинамической нагрузки на элементы, находящиеся возле поверхности воды с помощью множественных сегментов, чтобы точно моделировать быстрое затухание гидродинамического нагружения с глубиной;
- использование метода Макками-Фукса [8] для определения С m для основных стоек большого диаметра;
- кривая S-N и вероятность отказа (см. рекомендации [5], [19] и/или [20]).
При выполнении усталостного анализа предпочтительно моделировать конструктивные элементы с целью минимизации консерватизма, присутствующего в типичных анализах усталости проектного типа. Изменения в модели для исследования конструкции (для учета гибкости локальных стыков) могут значительно уменьшить момент изгиба на стыках, как это показано на рисунке А.3.
- гибкий стык; - жесткий стык; х - положение вдоль элемента; y - изгибающее напряжение, МПа
Рисунок А.3 - Изгибающее напряжение
Пример консоли представлен на рисунке А.4 и показывает жесткий стык, который имеет напряжение изгибающего момента на подсоединенном конце и не имеет напряжения на свободном конце. Аналогичное распределение напряжения наблюдается для смоделированного гибкого стыка, а единственным различием являются расчетные отклонения.
- гибкий стык; - жесткий стык; х - положение вдоль элемента; y - изгибающее напряжение, МПа
Рисунок А.4 - Изгибающее напряжение
Небольшое уменьшение в номинальном напряжении на стыке может привести к существенному улучшению усталости стыка. На рисунке А.5 иллюстрируется влияние на усталостную стойкость при 50 %-ном уменьшении напряжения. Кроме того, выполнение пространственно-временного усталостного анализа для более суровых состояний моря может уменьшить расчетный консерватизм.
- кривая S-N; а - 50 %-ное уменьшение диапазона напряжения; b - 2660 %-ное увеличение допустимых циклов (усталостная стойкость 10 лет > 266-летней усталости); N - допустимые циклы нагружения; S - диапазон циклического напряжения местного перегрева, МПа
Рисунок А.5 - Напряжение по сравнению с усталостной стойкостью
А.9.8 Оценка
А.9.8.1 Общие сведения
Оценка пригодности к эксплуатации МНГС определяет способность конструкции и сравнивает его с необходимыми уровнями эффективности работы.
Оценка может состоять из сравнения фактически выдерживаемой нагрузки или экстремальных/аномальных воздействий с уровнем эффективности работы. Однако это часто возможно только тогда, когда преобладает финансовый риск и требование уровня эффективности работы с повторяемостью обрушения порядка 100 лет. МНГС с требованием уровня эффективности работы с повторяемостью обрушения порядка нескольких 1000 лет, вероятнее всего, не испытывали необходимую максимальную допускаемую нагрузку с момента их монтажа.
Существует много методов, которые получили развитие и могут использоваться для выполнения оценки, будучи доступными в применении. Тем не менее надо быть осторожными при использовании таких методов, включая предварительное тестирование, верификацию метода для подтверждения подхода и применимости метода для оценки.
А.9.8.2 Побудительные причины проведения оценки
Указания отсутствуют.
А.9.8.3 Инициаторы проведения оценки
А.9.8.3.1 Общие сведения
Указания отсутствуют.
А.9.8.3.2 Изменения в состоянии
Указания отсутствуют.
А.9.8.3.3 Изменения в нагрузке
Несоответствующая высота второй палубы считается инициирующим фактором, поскольку многие исторические отказы МНГС связаны с воздействием волн на вторую палубу МНГС, что приводило к сильному последовательному повышению нагружения. В ряде подобных случаев это заключение основано на ураганных волнах, результатах ретроспективного прогноза штормовых нагонов волн, указывающих на условия на МНГС, которые включают расчетную высоту гребня волны, превышающую нижнюю поверхность основных балок второй палубы МНГС.
Вторая палуба имеет массивную конструкцию, вынуждающую существенно повышать волновое нагружение ступенчато после того, как волна достигнет палубы.
Несоответствующая высота второй палубы может привести к возникновению следующих обстоятельств:
- высота второй палубы МНГС обусловлена ограничениями по оборудованию;
- высота второй палубы МНГС определена только для противостояния расчетной волне, которая ниже по высоте;
- вторая палуба морского основания смонтирована в полевых условиях;
- МНГС смонтировано на более глубоководном участке, чем указано в первоначальном проекте;
- к осадке фундамента.
В некоторых случаях высота второй палубы может превышать рекомендуемую высоту гребня для уровня эффективности работы. Однако меньшие по размеру палубы ниже второй палубы, такие как эстакада, котлован или спайдерная палуба, тоже могут испытывать воздействие волн. У этих палуб будет небольшой профиль, и прогнозируемое волновое нагружение не прогнозируется на уровне, достаточном, чтобы вызвать отказ МНГС.
Тем не менее в анализе следует учитывать гидродинамическое нагружение на эти палубы и связанное оборудование для анализа DLM или USM.
А.9.8.3.4 Изменение критериев
Указания отсутствуют.
А.9.8.3.5 Изменение последствий
Указания отсутствуют.
А.9.8.3.6 Изменение использования
Указания отсутствуют.
А.9.9 Меры ослабления последствий
А.9.9.1 Общие сведения
Ослабление последствий может помочь продлить срок службы МНГС или повысить его шансы на выживание при возникновении аномального или случайного события, если принять меры на раннем этапе. Ослабление, как правило, включает в себя уменьшение нагрузок на конструкцию и может представлять собой удаление неиспользуемых водоотделяющих колонн, залитых раствором, и демонтированных направлений, принадлежностей, а также увеличить высоту палубы либо прочность МНГС.
Ослабление может включать активные программы минимизации последствий повреждения или отказа, такие как установка пробок и ликвидация неиспользуемых скважин, либо удаление бездействующего технологического оборудования. Ослабление может состоять из переноса критического оборудования и систем для минимизации последствий повреждения или отказа.
Для тех МНГС, которые не достигают минимального уровня эффективности работы, а также пригодности к эксплуатации, требуется ослабление и/или снижение вероятности последствий. Это может включать в себя реконструкции или эксплуатационные процедуры, которые уменьшают нагрузки, повышают способность либо снижают последствия возникновения отказа. Ослабление последствий и уменьшение вероятности могут рассматриваться на любом этапе процесса анализа.
Меры ослабления риска могут включать:
- изменение эксплуатационных процедур (например, рабочих процедур для судна снабжения);
- критерии эвакуации персонала;
- инспекцию других компонентов или аналогичных конструкций;
- более подробную или частую инспекцию дефектов или повреждений;
- ремонтное шлифование признаков трещин;
- ремонт выявленных повреждений или дефектов;
- снижение нагрузок (например, удаление обрастания);
- упрочнение.
А.9.9.2 Уменьшение последствий
А.9.9.2.1 Безопасность для жизни
Указания отсутствуют.
А.9.9.2.2 Окружающая среда
Указания отсутствуют.
А.9.9.2.3 Готовность к аномальному шторму
Примерами готовности к аномальному шторму могут быть:
a) планирование эвакуации, включая приоритетную эвакуацию МНГС, у которых высокий риск возникновения отказа и которые дальше расположены от берега. Начальная эвакуация персонала, не являющегося ключевым для МНГС, должна начаться заранее;
b) планирование эвакуации применительно к экстремальным штормам, возникающим внезапно, которое может включать эвакуацию с наиболее надежных находящихся в эксплуатации МНГС;
c) разработка опережающих планов по доступу на МНГС после шторма, если из-за повреждения отсутствует нормальный доступ к системам безопасности;
d) установление рекомендаций и процедур по анализу для зависящей от обстоятельств безопасной доставки персонала на борт поврежденного МНГС. Должен быть установлен минимальный уровень эффективности работы для доступа на МНГС;
e) выявление ответственных за конструктивную целостность элементов и стыков для проведения инспекций после окончания шторма.
А.9.9.3 Уменьшение вероятности
А.9.9.3.1 Общие сведения
Указания отсутствуют.
А.9.9.3.2 Усиленные инспекции и/или мониторинг
Указания отсутствуют.
А.9.9.3.3 Упрочнение, модификация и/или ремонт
А.9.9.3.3.1 Общие сведения
Тип ремонта, как правило, используемый на МНГС, варьируется от сварки в водной среде или сварки в кессоне, цементной заливки, а также зажимов и до шлифования и сброса гидростатического давления. Цементную заливку применяют для усиления элементов и стыков, а также для предотвращения локального искривления из-за вмятин и отверстий; шлифование - как правило, для улучшения усталостной стойкости и удаления трещин. Используется несколько типов зажимов, таких как фрикционные, цементируемые и зажимы с болтовым соединением. Упрочнение МНГС может быть достигнуто путем добавления боковых раскосов, чтобы улучшить способность нагружения основных элементов конструкции, а также путем добавления твердосплавных пластин или консольных свай для улучшения свайного фундамента.
А.9.9.3.3.2 Устранение повреждения
Удаление элемента конструкции
Удаление повреждения путем выреза поврежденного элемента конструкции. Если можно, то это стоит показать в ходе анализирования того, что элемент больше не нужен для поддержки состояния сооружения по месту.
Удаление трещин
Удаление трещин можно выполнить восстановительной шлифовкой. Если трещины вызваны только усталостными нагрузками (т.е. не в совокупности с дефектами изготовления), то включаются другие методы упрочнения, модификации и/или ремонта в дополнение к шлифовке.
А.9.9.3.3.3 Уменьшение гравитационной нагрузки
В процессе эксплуатации МНГС фактическое нагружение ВС может быть меньше, чем нагрузки, использованные в проекте МНГС. Эксплуатационные процедуры могут быть реализованы для уменьшения и контроля нагрузок на ВС, например, посредством:
- удаления ненужного оборудования и/или конструкций;
- процедур управления массой на основе определенных ограничений массы;
- использования легких буровых установок или операций без применения буровых установок;
- использования самоподъемного основания с консолью для выполнения буровых операций.
В результате снижения нагрузок будут уменьшены напряжения на основные стойки и сваи, а также реакции свай. Уменьшенная масса, как правило, благоприятно отражается на динамике МНГС (не обязательно для отклика на землетрясение), хотя во многих случаях этот эффект, скорее всего, будет незначительным. В отношении МНГС с наконечниками свай, закладываемыми в песчаные слои, прочность на растяжение свай верифицируется. Одним потенциальным преимуществом удаления оборудования является возможное уменьшение поверхности, подверженной ветровой нагрузке.
А.9.9.3.3.4 Уменьшение гидродинамических нагрузок
Удаление компонентов
Уменьшения нагрузки можно достигнуть за счет удаления предметов, которые притягивают гидрометеорологические нагрузки. Такое уменьшение нагрузки будет наиболее выгодным в верхнем столбе воды, где кинематика волн наивысшая.
Удаление неосновных или неработающих элементов конструкции (например, защитные брусья баржи, посадочные площадки, сходни, лестницы или водоотделяющие колонны) может уменьшить нагрузку. Посадочные площадки, переходные мосты, сходни и лестницы можно удалять только после верификации, так как они больше не являются частью путей эвакуации на МНГС.
Удаление направлений может уменьшить нагрузку. Однако направления могут влиять на несущую способность фундамента МНГС. Это подтверждено в ходе оценки. Если направления увеличивают несущую способность фундамента МНГС, то удаление верхней части с целью уменьшения гидродинамических нагрузок может быть вариантом.
Удаление или перенос оборудования на нижнюю (по высоте) палубу может уменьшить нагрузки на МНГС в случае затопления волнами палубы.
Удаление обрастания
Снижения нагрузки можно достигнуть за счет удаления участков аномального обрастания. Тем не менее требуемую величину снижения нагрузки оценивают до реализации. Снижение нагрузки может быть достаточным (в сочетании с мерами по снижению других нагрузок), чтобы МНГС могло соответствовать уровню эффективности работы оценки.
Принимают меры для подтверждения того, что возврат обрастания не вызывает превышения гидродинамического нагружения сверх уровня эффективности работы, который требуется в оценке. Такие меры могут включать установку скользящей системы защиты от обрастания и/или добавление периодического удаления обрастания в программу УКЦ для МНГС.
Увеличение клиренса
Для тех МНГС, где гребень волны по прогнозам затопит палубу, увеличение клиренса для превышения гребня волны может снизить основное гидродинамическое нагружение. Тем не менее оценивают конструктивную устойчивость увеличенных по длине опор палубы.
Вследствие стоимости и эксплуатационного эффекта от подъема высоты палубы рентабельность такой операции определяют исходя из конкретного случая. Альтернативой поднятия палубы являются удаление и перенесение оборудования, а также неосновных конструкций с палуб, расположенных ниже. Это приводит к меньшим гидродинамическим нагрузкам и может снизить уровень повреждения оборудования от прямого воздействия волн.
Использование палубного решетчатого настила вместо обшивки может иметь преимущества при снижении вертикальных нагрузок на внутреннюю сторону палубы за счет рассеивания наступающей воды и захваченного воздуха.
В определенных местах оседание месторождений привело к общему проседанию морского дна. Альтернативные варианты ослабления в этом случае часто опираются на методы регулирования пластового давления (например, закачка воды или газа в пласт). Тем не менее этот подход не восстанавливает утраченной высоты, но может использоваться для замедления осадки в будущем.
Некоторые МНГС с низкими палубами упрочнены за счет прямого придания жесткости современным сооружениям. Это позволяет размещать технологическое и контрольное оборудование на новой, более высокой палубе.
Гидродинамическая блокировка и экранирование
Для МНГС с интенсивной упрочняющей арматурой могут быть использованы гидродинамические исследования для обоснования более слабых гидродинамических сил, чем те, которые указаны в первоначальном проекте. Интенсивная упрочняющая арматура способствует выработке внутреннего экранирования элементов и может приводить к более низким основным нагрузкам.
А.9.9.3.3.5 Локализованное упрочнение или ремонт
Цементирование элементов конструкции
Цементирование элементов конструкции, которое включает заполнение трубных элементов цементным раствором, может использоваться для усиления его осевой сжимающей способности.
Эта процедура не является надежной, если только не обеспечивается цементирование элемента конструкции по его длине (т.е. избегая пустот на конце элемента). Для прочности на изгиб, которая увеличивается вблизи средней части, наличие небольших пустот на концах элемента не критично.
Кроме того, испытания показали, что способность, равная первоначальной, может быть получена цементированием помятой части от всей длины помятого элемента конструкции. Тем не менее влияние увеличенных гравитационных нагрузок и динамической массы, а также возможное влияние вывода из эксплуатации оценивают перед цементированием.
Цементирование стыков
Заполнение цементным раствором трубных хордовых элементов конструкции может быть использовано для улучшения статической прочности стыка и, при необходимости, может повысить усталостную выносливость соединений на стыке. Преимуществом метода ремонта является отсутствие привнесения дополнительных гидрометеорологических нагрузок на МНГС.
Тем не менее увеличившаяся жесткость пояса ограничивает овализацию стыка и таким образом увеличивает несущую способность стыка в отношении сжимающих и растягивающих нагрузок. В некоторых случаях цементирование может увеличить момент на стыках, и это должно оцениваться.
Цементирование может быть контрпродуктивным для сейсмически нагруженных конструкций, где цементирование приводит к жесткости стыка и уменьшению его податливости. Тем не менее влияние возросших гравитационных нагрузок и динамической массы, а также воздействие возможного вывода из эксплуатации следует оценивать перед цементированием.
Конструктивные зажимы
Конструктивные зажимы могут быть использованы:
- для ремонта элементов раскосов или стыков конструкции ОЧ;
- соединения внешних раскосов с дополнительными сваями в схеме полного упрочнения;
- добавления новых элементов в конструкциях для увеличения резервируемости;
- увеличения несущей способности существующих элементов конструкции или стыков;
- восстановления способности поврежденных элементов конструкции или стыков.
Напряженные зажимы опираются на натяжение болтов для создания кольцевого напряжения вокруг элемента конструкции или стыка для сопротивления осевым и изгибающим нагрузкам в конструкции. Во многих случаях зажим изготавливается большим по размеру для адаптации к допускам недостаточной подгонки, а также к кольцевому пространству между зажимом и конструкцией и заполняется раствором; перед затягиванием болта цементный раствор действует как среда передачи нагрузки. Ненапряженные залитые раствором зажимы могут использоваться для неповрежденных или поврежденных элементов раскосов для увеличения осевой и несущей способности, а также стойкости элемента конструкции к изгибу.
Конструкция конструктивного болта требует наличия контроля прочности болта, длины болта, расчета на усталость и деталировки, чтобы избежать потери обжима под давлением на срок службы ремонта. Крепко затянутые допуски при изготовлении нужны для того, чтобы избежать проблем с подгонкой в ходе изготовления и монтажа, и они способствуют продолжительности работы.
Сварка под водой
Сварка часто считается наилучшим методом упрочнения или ремонта и будет использоваться даже чаще, чем раньше, если не будет эксплуатационных препятствий для этого. Существует несколько методов сварки под водой, которые можно использовать:
- сварка сухим способом на водной поверхности или под водой при одной атмосфере с использованием кессона или прочной камеры;
- сварка в кессоне с использованием естественной среды;
- сварка в водной среде.
Ремонт с помощью сварки с использованием кессона или гипербарической обитаемой сварочной камеры доказал свою эффективность и способен обеспечить высококачественные сварные соединения. Недостатками обоих методов являются высокая стоимость и удлиненный график выполнения, связанный с проектированием, изготовлением и развертыванием кессона или гипербарической сварочной камеры, а также сопутствующие опасные водолазные работы.
Сварка в водной среде - это подводная сварка, когда дуга работает в непосредственном контакте с водой. Принципиальным преимуществом этого вида сварки по сравнению с обычными видами является способность сваривания под водой без использования кессона или сварочной камеры. При условии, что сварной шов предназначен для низкого напряжения, соединение под сварку может быть обеспечено, а основной металл испытывается для подтверждения совместимости, поэтому сварка в водной среде может быть соответствующим решением.
Болтовое соединение
Болты являются неотъемлемой частью стальных ремонтных зажимов, и их можно увидеть в водоотделяющей колонне и других опорных конструкциях для труб на МНГС.
Они используются для ремонта ВС, где болтовые соединения могут быть установлены на опасных участках без необходимости останова операций на МНГС.
Поддержание длительного натяжения болтов критично для безопасной конструкции болта. Доказательство приложенного натяжения во время установки болта является типичным стандартом приемки и указывается с помощью приложенного давления в гидравлическом оборудовании. Рациональная инженерная практика предусматривает расчет потери натяжения болтом посредством передачи нагрузки и упругой релаксации. Дополнительные долгосрочные потери натяжения болтом могут возникнуть путем ползучести в напряженных, залитых раствором и покрытых эластомерами зажимах.
Физические ограничения накладывают на размер болта, расстояние друг от друга и номер группы, когда используются натяжные устройства. Кроме того, коррозия материалов, из которых изготавливаются болты, стала проблемой, и должен оцениваться выбор материалов для болтов на МНГС.
Удаление элемента конструкции
Удаление конструктивного элемента может представлять собой этап в схеме более крупного ремонта или самостоятельный ремонт. В любом случае анализируют структурную обстановку, чтобы годность к эксплуатации в условиях предлагаемого нагружения и пересмотренной структурной конфигурации была обеспечена.
Затопление элемента конструкции
Намеренное затопление конструктивных элементов, которые подвержены комбинированному конструктивному и гидростатическому нагружениям, может быть использовано в качестве метода для увеличения несущей способности нагрузки элемента конструкции. Тем не менее влияние увеличенных гравитационных нагрузок и динамической массы, а также возможного вывода из эксплуатации оценивают перед затоплением элементов.
Связующие вещества и эпоксидные растворы
Смолы могут использоваться в качестве:
- связующих веществ;
- раствора;
- вяжущего материала в композитных материалах;
- холодной гибки.
Существуют две широкие категории методов холодной гибки: механические соединители и обжим. Обжатое соединение между двумя концентрическими трубными элементами формируется, когда внутренний элемент расширяется (за счет внутреннего давления) и пластически деформируется в обработанные канавки другого элемента. Метод использовался для изготовления соединений свая-втулки.
Преимущества обжатых или механических соединений, которые потенциально могут быть использованы в УКЦ, следующие:
- соединения могут быть выполнены быстро;
- полная прочность достигается непосредственно при монтаже;
- они удобны для постоянного или временного упрочнения, модификации или ремонта (некоторые соединители многократного использования);
- они могут быть установлены с помощью дистанционно управляемого аппарата.
А.9.9.3.3.6 Усиление, восстановление и/или ремонт
Цементирование кольцевого пространства нога - свая
Цементирование кольцевого пространства между ногами опорного основания и сваями представляет собой метод, используемый для повышения несущей способности сооружения. Цементный раствор заставляет сваю и ногу опорного основания действовать как нечто составное. Эффект четко виден на опорном основании, которое имеет окаймляющие сваи, поскольку увеличенная жесткость ноги будет стремиться забрать нагрузку от окаймляющих свай и перенести ее на основные сваи опорного основания.
Цементирование кольцевого пространства между ногами опорного основания и сваями имеет дополнительное преимущество, которое заключается в локальном упрочнении стыков опорного основания в отношении скрепляющих нагрузок. Цементный раствор, по существу, мобилизует профиль сваи и заставляет ногу опорного основания и сваю действовать в качестве составных частей одного целого в противовес овализации стыка, тем самым увеличивая способность стыка на сжатие и растяжение.
Монтаж может быть трудным, если участок между ногой опорного основания и сваей не герметизирован. Кроме того, цементационные головки могут быть герметизированы, чтобы не допустить утечки. Однако воздействие увеличившихся гравитационных нагрузок и динамической массы, а также возможный вывод из эксплуатации оценивают перед цементированием основных свай.
Установка внешних раскосов
Небольшие платформы, особенно консольные устьевые кессоны, могут быть полностью упрочнены путем добавления наружных раскосов к дополнительным сваям. Внешние раскосы могут крепиться к сооружению с помощью сварных соединений или зажимов. Этот метод может применяться и на более крупных сооружениях с помощью дополнительных внешних раскосов и свай или иногда путем установки новой смежной конструкции с собственным свайным фундаментом для придания жесткости имеющемуся сооружению.
А.9.9.3.4 Факторы
Указания отсутствуют.
А.10 Стратегия
А.10.1 Общие сведения
Две различные стратегии конструктивной целостности могут быть использованы как часть процесса УКЦ, а именно:
- предписывающий подход на основе последствий отказа на МНГС;
- подход на основе оценки рисков с учетом вероятности отказа на МНГС и последствий отказа.
Каждый подход действителен при различных обстоятельствах, и выбор стратегии зависит:
а) от законодательных требований;
b) корпоративной политики эксплуатирующей организации;
c) характеристики оборудования на конструкциях эксплуатирующей организации;
d) инженерной оценки;
e) гибкости планирования, включая:
- интервалы между периодическими инспекциями,
- своевременность инспекций после события и после происшествия,
- возможности корректировки инспекций на смежных МНГС;
f) стоимости, способности и наличия оборудования и услуг, включая:
- инструменты и специальное оборудование,
- персонал,
- развертывание вспомогательных судов и оборудования,
- сезонные погодные окна;
g) региональных отличий, включая:
- суровость и частоту штормов,
- условия для формирования усталости,
- уровни сейсмичности,
- скорости ветра и/или наличие льда и айсбергов;
h) надежности и применимости методов инспекций (например, вероятность обнаружения и точность определения размеров).
А.10.2 Стратегия инспекции
А.10.2.1 Общие сведения
Разработка стратегии инспекции обеспечивает основу для гибкости в отношении объема и планирования программы периодических инспекций для указанного МНГС. Проверка объемов работ, инструментов и методик, а также процедур выполнения может обеспечить согласованное качество и отчетность.
Стратегия инспекций учитывает состояние МНГС посредством проведения анализа имеющихся данных по инспекциям, а также анализа тенденций вместе с результатами прочностного и усталостного анализа. Стратегия, как правило, достаточно обширная по объему для учета непредсказуемых аномалий (например, повреждения от упавших предметов).
Предназначение структурной инспекции в ходе эксплуатации - определить с приемлемой степенью уверенности наличие и степень ухудшения, дефекты или повреждения. Данные, собранные в ходе инспекции, должны верифицировать конструктивную целостность МНГС.
Две различные стратегии инспекции могут быть использованы как часть стратегии конструктивной целостности с подходом, который действителен в следующих отличных друг от друга обстоятельствах:
- ориентация на постоянное проведение инспекций в ходе эксплуатации с целью уменьшения вероятности проведения крупных ремонтов (замена зажимов, элементов конструкции) в будущем. Этот подход основан на раннем обнаружении повреждения и дефектов с быстрой реализацией сравнительно недорогих ремонтов и профилактических мер. Раннее обнаружение дефектов, как правило, требует более активного использования методов НК;
- минимизация объема инспекций в ходе эксплуатации, когда принимаются меры по снижению риска повреждения, дефектов и порчи, которые потребуют проведения крупных ремонтов в будущем. Этот подход предполагает, что инспекция в ходе эксплуатации без использования методов НК сможет обнаружить повреждение, дефект до появления угрозы конструктивной целостности, а также может применяться для прочных конструкций, которые способны выдержать повреждение и перегрузку.
А.10.2.2 Устойчивость к разрушению
Каждое МНГС имеет запас и/или остаточную прочность, которые напрямую относятся к способности МНГС обеспечивать дополнительные пути нагружения после отказа элемента конструкции. Такая резервируемость в конструктивной системе, прежде всего, связана с расположением раскосов в системе. Снижение способности элемента конструкции не обязательно свидетельствует о том, что прочность системы не соответствует уровню эффективности работы, рекомендованному в настоящем стандарте. Это зависит от того, участвует или не участвует элемент конструкции в последовательности отказа, которая создает разрушение системы, либо нужен механизм конструктивной целостности элемента конструкции, чтобы высвободить механизм отказа.
Применительно к надежной конструкции повреждение может привести к небольшому немедленному риску для МНГС. Для других менее надежных конструкций даже небольшое событие, связанное с повреждением, может серьезно ухудшить несущую способность МНГС, которая приводит к высокорискованной ситуации, оправдывая немедленный отклик (например, эвакуация людей с МНГС, останов МНГС или аварийный ремонт). Эксплуатационная надежность полезна для планирования инспекций. Прочные конструкции, как правило, не требуют проведения большого количества инспекций, как этого требуют другие конструкции, поскольку они более устойчивы к повреждениям. Информация по эксплуатационной надежности МНГС может использоваться для выявления участков МНГС, которые критичны с точки зрения вторичных путей нагружения. На этих участках должно быть сосредоточено внимание инспекций.
В течение срока службы МНГС на эксплуатационные расходы и уровни риска может оказывать существенное влияние конфигурация упрочняющей арматуры, которая принята на начальном этапе. Например, МНГС с минимальным количеством раскосов, как правило, не имеет альтернативных путей нагружения для перераспределения усилий, если возникнет повреждение элемента конструкции либо если приложенные нагрузки выше, чем предполагалось вначале. Как следствие, отказ отдельного элемента конструкции может быть критичным для общей конструктивной целостности, поэтому может потребоваться сравнительно интенсивная инспекция для мониторинга конструктивного состояния критичных путей нагружения, и объем работ по реконструкции МНГС для усиленных объектов обустройства может быть очень маленьким на более поздней стадии, если только негативно не влиять на уровни безопасности. В то же время надежная конструкция с альтернативными путями нагружения может быть более устойчивой к повреждению или увеличенным нагрузкам, обеспечивая большую эксплуатационную гибкость и менее частые инспекции для обеспечения того же уровня безопасности. Упрочняющая арматура поэтому напрямую влияет на безопасность и экономические параметры на протяжении жизненного цикла конструкций ОЧ.
А.10.2.3 Принадлежности МНГС
Процесс УКЦ применим к компонентам МНГС, которые необходимы для эксплуатации МНГС. Эти компоненты включают:
- систему защиты от коррозии;
- пожарные кессоны;
- экспортные водоотделяющие колонны и направления.
Подтверждения на основе обследований или аналитических исследований по этим компонентам могут предложить другую стратегию УКЦ для МНГС. Например, рабочие характеристики пожарного кессона в ходе эксплуатации могут выявить усталостную слабость в компоненте, в отношении которого требуется более частый мониторинг и нужны изменения в стратегии УКЦ для МНГС или групп МНГС.
А.10.2.4 Обследования МНГС
В эффективной стратегии УКЦ используются выводы обследований выше и ниже уровня водной поверхности. Повреждение компонентов выше уровня водной поверхности может свидетельствовать о структурном повреждении ниже уровня воды. Кроме того, обследование выше уровня водной поверхности можно использовать для определения эффективности подводной системы защиты от коррозии.
А.10.2.5 Усталостные аспекты
По мере приобретения опыта эксплуатации МНГС становится очевидным, что количество обнаруженных появившихся усталостных трещин на МНГС не такое большое, как ожидалось по результатам анализа. Изучение опыта осуществления проектов в Северном море и Мексиканском заливе США привело к документальному оформлению результатов более чем 3200 подводных инспекций. Результаты показывают, что существующее усталостное разрушение изолировано известными подверженными усталости элементами. Причина недостатка взаимодействий между прогнозируемыми и наблюдаемыми усталостными показателями МНГС является степенью консерватизма обычной процедуры проектирования с учетом усталости. Такой консерватизм сослужил хорошую службу в отрасли и позволил и дальше безопасно эксплуатировать многие МНГС после окончания проектного срока службы.
Стандартные методы проектирования с учетом усталости занижают ресурс МНГС по сравнению с опытом, полученным на основе инспекций. Исторически это означало, что МНГС более устойчивы к повреждению, их реальный ресурс больше, в итоге изменения пользования или повторного использования отличаются от предполагавшихся вначале.
Результаты усталостного разрушения в первую очередь возникают от колебательных гидрометеорологических нагрузок в результате волнения, которое воздействует на МНГС, а также от нагрузок кранов и вращающегося оборудования. Напряжения в результате волнового нагружения и соответствующего структурного динамического отклика, как правило, носят случайный характер, включая усталостную прочность металла в конструктивных элементах. Поэтому усталостное прогнозирование МНГС - очень сложная задача, включающая многочисленные факторы, такие как неопределенности, связанные:
- со статистическим разбросом гидрометеорологических данных;
- прогнозированием волновой нагрузки;
- прогнозированием отклика номинального рабочего напряжения в элементах конструкции;
- оценкой факторов концентрации локального максимума напряжений в сварных соединениях;
- операциями по изготовлению и сборке;
- моделями усталостного разрушения и роста трещин.
Поэтому в ходе проектирования МНГС, как правило, учитывают неопределенности и некоторые консервативные варианты. Номинальную усталостную стойкость вычисляют на основе кривых усталости S-N, которые прогнозируют с точки зрения безопасности характерную усталостную прочность, оцениваемую как "средняя прочность" на основе лабораторных исследований минус два стандартных отклонения.
При использовании теоретической усталостной стойкости при установлении объема и частоты проведения объединенной инспекции следует учитывать фактические рабочие параметры соединения обследуемого элемента/стыка, влияние общей гибкости на усталостную стойкость, а также влияние каждого соединения на общую безопасность МНГС. Исторические данные по инспекциям показывают, что объединенная усталость не является общей для сложных многоплоскостных соединений более старых МНГС. Однако усталость может быть более распространенной в стационарных МНГС с более жесткими соединениями на стыках.
А.10.2.6 Побудительные причины инспекции
В таблице А.3 даны примеры побудительных причин инспекций (основные причины проведения инспекций).
Таблица А.3 - Примеры побудительных причин инспекции
Побудительная причина |
Описание предельного состояния |
Дефекты изготовления или повреждение при монтаже |
Дефекты сварки (серьезные или незначительные), брак материала, вмятины, деформации |
Ухудшение свойства или износ |
Коррозия, усталость, обнажение, оседание, неустойчивость морского дна |
Неопределенности или ошибки при проектировании |
Приближения (например, океанографические и сейсмические данные), неопределенности анализа (например, усталость), проектирование с недостаточным запасом прочности, обрастание |
Перегрузка по условиям окружающей среды |
Шторм, землетрясение, грязевой оползень, цунами, льды |
Случайные события |
Столкновение с судном, падающие объекты, взрыв, истирание, плавающий мусор, повреждение водоотделяющей колонны волочением якоря по трубопроводу |
Модификации на основе первоначального предназначения |
Добавление персонала, оборудования ВС, вспомогательной упрочняющей арматуры, водоотделяющих колонн или направлений, продление срока службы конструкций |
Ремонтные работы |
Зажимы, сварные швы в водной среде, болтовые соединения, связующие вещества |
А.10.2.7 Тип инспекции
А.10.2.7.1 Общие сведения
Плановые инспекции используют для рассмотрения побудительных причин инспекций, однако имеется гибкость в отношении изменения объема работ при обнаружении неожиданных повреждений или износа. Внеплановые инспекции выполняют в минимально целесообразные сроки после наступления происшествия или события. В таблице А.4 представлено, как различные типы инспекции решают ситуацию с побудительными причинами инспекций.
Стратегия инспекции признает, что появление дефектов имеет тенденцию следовать по классической U-образной кривой (т.е. концентрированная в начале срока службы, затем затишье, а за ним постоянно увеличивающиеся эффекты ухудшения). Тем не менее может быть трудно определить, где на U-образной кривой сооружение находится и как региональные отличия влияют на кривую.
Таблица А.4 - Функции типов инспекций
Побудительная причина инспекции |
Тип инспекции |
||||
Проверка исходных данных |
Периодическая |
Специальная |
после события |
после происшествия |
|
Обнаружение ухудшения свойств |
S |
S |
- |
- |
- |
Обнаружение дефектов изготовления или монтажа |
S |
Р |
Р |
Р |
- |
Обнаружение повреждения из-за неопределенностей или ошибок проектирования |
Р |
Р |
Р |
Р |
- |
Обнаружение повреждения из-за перегрузки по условиям окружающей среды |
- |
S |
- |
Р |
- |
Обнаружение повреждения из-за случайного события |
- |
S |
- |
- |
Р |
Изменение функции МНГС или в постоянных воздействиях из-за модификаций |
- |
Р |
- |
- |
- |
Мониторинг известных дефектов или эффективности ремонта |
- |
Р |
- |
- |
- |
Изменение права собственности |
- |
- |
Р |
- |
- |
Повторное использование |
- |
- |
Р |
- |
- |
Вывод из эксплуатации |
- |
Р |
Р |
- |
- |
Федеральные или региональные нормативные акты |
По мере необходимости |
||||
Примечание - Р - основная цель инспекции; S - второстепенная цель инспекции. |
А.10.2.7.2 Плановые инспекции
А.10.2.7.2.1 Общие сведения
Указания отсутствуют.
А.10.2.7.2.2 Инспекция проверки исходных данных
Когда отсутствуют данные по инспекции проверки исходных данных для разработки долгосрочной стратегии инспекции, то могут быть применены штрафные санкции. Поэтому должны быть выполнены анализ, сохранение и передача данных инспекции по проверке исходных данных и данных изготовления.
Для того чтобы способствовать мониторингу трендов конструктивных условий, инспекция по проверке исходных данных устанавливает следующее оборудование для последующих периодических инспекций:
- измерительные станции катодных потенциалов;
- станции измерения кавитационной эрозии;
- станции измерения обрастания.
А.10.2.7.2.3 Периодическая инспекция
Основными механизмами ухудшения свойств и износа являются коррозия и усталость. Коррозия, как правило, не представляет проблему при условии, что система катодной защиты спроектирована и поддерживается. Усталостные трещины могут возникнуть в случае циклических воздействий (например, в точках концентрации напряжения). Такие трещины можно обнаружить с помощью методов НК или с использованием обнаружения заводненного элемента конструкции (когда образуются сквозные трещины, которые открыты для затопления).
Улучшение качества посредством хорошей осведомленности и эффективности может быть достигнуто, когда разработана стратегия периодических инспекций для группы конструкций. Когда группа конструкций обладает аналогичными характеристиками и историей инспекций, то уменьшенные объемы работ могут быть обоснованы (сопоставлены с теми, которые необходимы, если бы конструкции инспектировались по отдельности). Самое большое преимущество реализуется, когда интервалы между инспекциями и объемами работ периодически рассматриваются и корректируются на основе выводов последних инспекций для группы конструкций, а также общего отраслевого опыта.
Основными целями настоящего стандарта являются охрана жизни и защита окружающей среды. Требования инспекции по умолчанию основаны на реализации двух указанных целей. Однако у эксплуатирующей организации есть обязанность и исключительное право отстаивать экономические и имущественные интересы при решении вопроса о том, нужна ли дополнительная инспекция для достижения необходимого уровня структурной надежности и задач управления рисками. Такие экономические интересы могут включать предотвращение потерь добычи углеводородов в результате останова МНГС.
Национальные стандарты и/или законодательные требования могут предусматривать более жесткие требования к инспекциям, которые отражают особые федеральные или региональные интересы либо приоритеты по защите человеческой жизни и окружающей среды, минимизацию растрачивания природных ресурсов, предотвращение общего экономического спада и т.п.
А.10.2.7.2.4 Специальные инспекции
Специальные инспекции по выводу из эксплуатации и повторной эксплуатации используют для подтверждения состояния основных структурных элементов и существующих точек подъема, кранов и других конструкций ВС, а также жилых отсеков, и, как правило, они включают:
- обследование ВС и подвышечного основания для определения состояния точек подъема и проушин;
- обследование МНГС для выявления оставленного мусора;
- обследование морского дна вокруг МНГС с целью определения объема очистки площадки;
- обследование состояние кранов МНГС и жилых отсеков.
А.10.2.7.3 Внеплановые инспекции
Инспекции после возникновения событий используются для определения степени повреждений, в основном посредством общего визуального осмотра. Отсутствующие элементы могут быть выявлены с помощью смежных элементов конструкции, которые обследованы на предмет попутного ущерба. Степень повреждения соединений количественно определяется аналитическими методами. Если поврежден элемент конструкции, то инспектируют его соединительные элементы и последующие элементы конструкции. Иногда место повреждения может быть установлено при обследовании участков соединений конструкции в водной среде.
Инспекции после происшествий сосредоточены на участках, которые являются локальными по отношению к участкам фактических или возможных столкновений (например, инспекция элементов на пути упавшего объекта либо участков выше и ниже поверхности воды на участке удара). В случае столкновения судна может возникнуть скрытое повреждение на обратной стороне элементов, когда судно поднято волной или морским валом.
Стратегия инспекции после события должна:
- установить порог для запуска инспекции;
- определить номинальный объем работ инспекции или объем работ по умолчанию (в соответствии с модификацией на основе начального анализа при возникновении события);
- указать метод для измерения или оценки величины и суровости природного события, учитывая необходимую точность и скорость предоставления информации.
Эти пункты должны быть выполнены перед началом операций на МНГС и основаны на инженерной оценке УКЦ.
Типичные методы определения величины или степени природного события включают в себя:
- в целом на основе наблюдений персонала на МНГС или с соседних МНГС и результатов ретроспективного анализа;
- для волнения от отметок полной воды, волномеров, судовых наблюдений;
- ветра от анемометров;
- землетрясения от акселерометров по шкале Рихтера и расстояния от эпицентра до МНГС;
- течения от измерителей течений.
Пороговые значения и объемы работ для событий/происшествий на конкретном МНГС должны быть установлены заранее (предпочтительно в ходе проектирования), чтобы избежать ненужных инспекций и реализовать быстрое выполнение мероприятий инспекции. Стратегия инспектирования должна обеспечивать гибкость сочетания объемов работ инспекций после события и регулярных инспекций, а также корректировать интервал в отношении следующей периодической инспекции.
Стратегия инспекций после происшествий должна включать следующее:
- быстрый доклад о происшествиях - эксплуатирующие организации должны установить форму и процедуру уведомления;
- раннее привлечение персонала для оценки потенциальной важности происшествия и разработки объема работ инспекции;
- консультации с персоналом в ходе выполнения инспекции на море, рассмотрение результатов и оценку требований к проведению ремонта, ослабления последствий, мониторинга в будущем и т.п.
Для МНГС с обслуживающим персоналом происшествия, как правило, регистрируют и докладывают оператору. Однако для МНГС без обслуживающего персонала происшествия в определенных случаях не регистрируют и не докладывают. Эта возможная разница в докладе о происшествиях может потребовать уметь отличать стратегии для МНГС с обслуживающим персоналом от стратегии для МНГС без обслуживающего персонала (например, установка датчиков с автоматическим докладом или более частые периодические инспекции на МНГС без обслуживающего персонала).
Более вероятно, что в ходе инспекции будут более эффективно выработаны данные, необходимые для анализа, если персонал УКЦ знаком с МНГС и сможет интегрировать объем работ после происшествия с другими мероприятиями по инспекции для МНГС или группы аналогичных МНГС.
А.10.2.8 Метод инспекции
А.10.2.8.1 Общие сведения
Стратегия инспекции учитывает диапазон методов инспекции, методы развертывания и цель каждой инспекции. В таблице А.5 показано, как методики могут выполнить требование различных типов инспекции. В таблице А.6 перечислены ряд методик инспекции и применимые системы развертывания.
Таблица А.5 - Побудительные причины проведения инспекции
Таблица А.6 - Возможности инспекций и методы развертывания
Способ инспекции |
Пригодность |
Возможные методы развертывания |
||||
Использование на поверхности |
Водолазные работы |
Дистанционно управляемый аппарат |
||||
Воздушное погружение |
Погружение насыщением |
Водолазный костюм с поддержанием атмосферного давления |
||||
Измерение клиренса |
Когда инструменты для измерения клиренса правильно настроены, откалиброваны и обслужены, то непрерывные измерения высоты волн и прилива могут предоставить очень полезную информацию по условиям окружающей среды. Когда это можно сочетать с данными по направленности и с методом оценки воздействия (например, тензометры), то данные могут использоваться в анализе и оценке дефектов и оставшегося ресурса, возможно уменьшив консерватизм. Способы наблюдения со спутников часто могут использоваться для определения уровней |
X |
- |
- |
- |
- |
Регистрация обрастания |
Обрастание имеет разные формы, в целом подразделяясь на жесткое (в общем смысле животные, такие как моллюски и усоногие) и мягкое (водоросли и ламинарии). Жесткие обрастания в целом тоньше (менее эффективно увеличивают диаметр элемента), но грубее (увеличение коэффициента сопротивления C d), чем мягкие обрастания. Измерения обрастаний слишком ненадежные, особенно мягких обрастаний и для отдельных оценок крупных элементов. Обрастание варьирует в зависимости от места и глубины (см. ГОСТ Р 57148). Требования по оценке длины, типа и степени обрастания зависят от устойчивости сооружения к дополнительным воздействиям обрастания. У некоторых сооружений есть противообрастающая обшивка, которая надежно проработала более 20 лет |
- |
X |
X |
X |
X |
Визуальная инспекция без удаления обрастания |
Пригодна для обнаружения общего повреждения (например, значительные деформации, оторванные соединения, отсутствующие элементы), косвенных признаков общего повреждения (например, зазоров или отслаивания обрастания либо защитного слоя) и мусора. Когда выполняется работа с помощью дистанционно управляемого аппарата, разрешение должно быть таким, чтобы различать линию 20/20 на видеоизображении. Фотокамера, предпочтительно цифровая, и стереофотограмметрия обеспечивают максимальную детализацию и точность |
X |
X |
X |
X |
X |
Визуальная инспекция с удалением обрастания |
Как правило, используется после обнаружения повреждения без очистки (например, коррозия, видимые трещины, вмятины, выемки, истирания, деформации) или как целевая инспекция выбранных мест. Обычно степень очистки ограничена тем, что нужно для инспекции. Когда выполняется работа с помощью дистанционно управляемого аппарата, разрешение должно быть таким, чтобы различать линию 20/20 на видеоизображении. Фотокамера, предпочтительно цифровая, и стереофотограмметрия обеспечивают максимальную детализацию и точность |
X |
X |
X |
X |
X |
Линейные измерения |
Обычно используются для измерения толщины обрастания, глубины размыва на морском дне, размера вмятины, непрямолинейности, длины трещины, размера коррозионной язвы и т.п., как правило, выполняются водолазами с помощью измерительной ленты или дистанционно управляемого аппарата, масштабной линейки и камеры или фотограмметрии |
- |
X |
X |
X |
X |
Показания катодных потенциалов |
Измеряются параметры работы системы катодной защиты. Имеются два типа датчиков (бесконтактные датчики близости и контактные датчики). Для обоих типов нужна калибровка по месту. Датчики близости позволяют быстро и эффективно снимать показания. Для оценки эффективности катодных потенциалов часто дополнительно проводится визуальная инспекция для определения изношенности анода и его взаимозависимости с измерениями потенциалов |
- |
X |
X |
X |
X |
Обнаружение заводненного элемента конструкции |
Может определять затопление элемента. Пригодно для обнаружения сквозных трещин или других повреждений. Сквозное повреждение на стороне основной стойки соединений, где основная стойка намеренно затоплена или зацементирована. Эффективность зависит от глубины, размера трещины и пористости трещины, т.е. какую часть времени трещина открыта и как долго занимает ее затопление. Трещина открыта лишь несколько секунд в каждый шторм и может расти без существенного затопления элемента, особенно для элементов на небольшой глубине. Обнаружение причины затопления требует дальнейших исследований с помощью других способов инспекции. Процедура довольно быстрая, особенно с помощью дистанционно управляемого аппарата. Процедура является отличным инструментом для быстрого отбора конструктивных элементов применительно к общему повреждению |
- |
X |
X |
X |
X |
Обнаружение заводненного элемента конструкции |
Ультразвуковой способ со сравнительно большим объемом водолазных операций требует точного размещения датчиков для получения надежных показаний. Может использоваться для определения уровня воды в элементах и обеспечивает доказательство причины затопления |
- |
X |
X |
X |
- |
Радиография, которая быстро развертывается даже с небольших дистанционно управляемых аппаратов и позволяет быстро охватить много компонентов. Источник и детектор смонтированы на U-образной раме, чтобы обеспечить быструю и точную установку |
- |
- |
- |
- |
X |
|
Ультразвуковой: - Р-волна |
В основном используется для измерения толщины стенок и обнаружения расслоения. Способ простой и ясный, а также надежный для такого применения. Обычно выполняется водолазом, хотя можно использовать дистанционно управляемый аппарат |
X |
X |
X |
- |
X |
- S-волна, ползучая волна и обнаружение времени пробега (TOFD) |
Используется для обнаружения внутренних объемных признаков, а также трещин, применяется для признаков размеров, обнаруженных другими (поверхностными) способами НК. Для проведения требуется квалифицированный инспектор ультразвукового испытания, если операция выполняется дистанционно (например, если датчик управляется водолазами с помощью манипуляторов, квалифицированный инспектор НК осуществляет мониторинг на экране дисплея, и это сильно повышает надежность) |
X |
X |
X |
- |
- |
Порошковая магнитная дефектоскопия |
Используется для обнаружения дефектов нарушения поверхности. Обычно требуется очистка поверхности или удаление защитного слоя перед началом процедуры порошковой магнитной дефектоскопии. Тем не менее очистка до белого металла не всегда требуется под водой. Имеются различные типы оборудования порошковой магнитной дефектоскопии, включая поворотные держатели, постоянные магниты, катушки и электроды. Поворотные держатели считаются наиболее быстрыми и точными |
X |
X |
X |
X |
- |
Падение напряжения |
В целом используется для определения размеров дефектов, обнаруженных другими способами НК, вдоль длины трещины требуются множественные измерения, которые разнесены (как правило, 5-10 мм) в зависимости от необходимого разрешения. Требуется очистка до чистого металла и обученный водолаз |
- |
X |
X |
X |
- |
Эксплуатационные измерения переменного тока |
Используются для определения местоположения и размера (длины и глубины) поверхностных дефектов. Очистка до белого металла не нужна, может работать через защитный слой. Требуется обучение, чтобы избежать низкой надежности. Эксплуатационные измерения переменного тока не могут находить признаки в некоторых геометрических формах, таких как грани углового крепления, из-за краевого эффекта, создаваемого такой геометрией |
- |
X |
X |
X |
- |
Токи Фуко (также обозначаемые как ET) |
Используются для определения местоположения и размера (длины поверхностных трещин). Очистка до белого металла не нужна, может работать через защитный слой. Может применяться для инспекции подводных сварных швов. Операция выполняется водолазом и техником по инспекции на поверхности для определения показаний на экране. Требуется обучение |
- |
X |
X |
- |
- |
Радиографическая дефектоскопия |
Используется для обнаружения внутренних дефектов. Не является стандартным средством проведения подводной инспекции МНГС из-за рисков для здоровья и безопасности |
X |
X |
X |
- |
- |
Варианты размещения инструментов и способов инспекции рассматриваются при разработке программы инспекции. Имеющиеся системы используют, где показательные глубины погружения водолазов могут варьироваться с отраслевыми критериями, применяемыми регионально, как то:
a) использование на поверхности
Методы проведения инспекции на поверхности, которые постоянно используются для проведения инспекций выше уровня водной поверхности;
b) погружение на малые и средние глубины
Большинство систем и инструментов инспекции и НК имеются в конфигурациях с использованием водолазных работ. Тренированные водолазы адаптированы и имеют навыки реализации сложных заданий, а также могут выполнять оценки на основе осязательной обратной связи и стереоскопического зрения, которого лишены операторы дистанционно управляемого аппарата. Вес и размеры систем инспектирования не являются основополагающим аспектом, поскольку водолазы, при необходимости, могут оснащаться средствами поддержания плавучести.
Большинство инструментов может быть сконфигурировано для работы на глубине. Водолазные работы для малых и средних глубин осуществляются на глубине не более 50 м (пусть даже время работы и уменьшается с глубиной из-за требований декомпрессии) и имеют достаточно простые требования по поддержке. Подаваемая с поверхности газовая смесь может увеличивать глубину погружения. Водолазное дело является опасной профессией, и водолазы могут ощущать ухудшение здоровья длительное время. При работе в холодной воде сложность оборудования повышается, поскольку требуется использовать системы водяного обогрева.
Ограничениями водолазных работ являются их высокая стоимость (особенно со вспомогательным водолазным судном) и лимит времени работы из-за усталости водолазов;
c) глубоководное погружение
Аналогично погружению на малые средние глубины, за исключением того, что водолазы работают при давлении рабочей глубины значительное время (не более 28 дней) и живут в камерах с поддерживаемым давлением, за исключением времени работы. Водолазы, работающие с использованием газовой смеси, погружаются на глубину от 16 до 300 м и нормально работают с автономным дыхательным аппаратом. Длительное воздействие на здоровье увеличивается, а варианты помощи водолазу в нештатной ситуации крайне ограничены;
d) жесткий водолазный скафандр
Жесткий водолазный скафандр для одного человека доставляет человека на площадку, но требуется, чтобы пилот управлял манипуляторами. Жесткий водолазный скафандр имеет два манипулятора для развертывания инструментов. Системы нормально сконструированы либо для ориентации на дне, либо для работы на средней глубине. Интерфейсы инструментов сконструированы или адаптированы для согласования с манипуляторами. Жесткий водолазный скафандр в нормальных условиях выбирается для монтажа, технического обслуживания, вспомогательных операций бурения, а не для программ инспекции. Его основным ограничением является то, что манипулятор не может всегда работать между элементами с маленькими углами.
Преимуществами жесткого водолазного скафандра являются быстрое использование на глубине, возможность работы на глубине не более 750 м, а также то, что оператор (пилот) не подвержен гипербарическому воздействию и поэтому отсутствует долговременное воздействие на здоровье. Жесткий водолазный скафандр часто можно транспортировать по воздуху, а также использовать с некоторых МНГС. Однако в наличии таких систем немного;
e) дистанционно управляемый аппарат
Дистанционно управляемый аппарат не оказывает действия на здоровье человека и его безопасность, как у водолазов под водой. Дистанционно управляемый аппарат может использоваться для оказания помощи водолазам за счет обеспечения дополнительного света и камер, однако такой аппарат должен быть достаточно маленьким, чтобы не стать серьезной опасностью для водолазов. Продолжительность работы практически не ограничена, за исключением необходимого технического обслуживания, а ограничения по глубине начинаются свыше 900 м. Двигательные возможности и адаптируемость ограничены по сравнению с водолазами, в то время как инструменты для специальных задач часто разрабатывают до использования.
Самые маленькие системы дистанционно управляемого аппарата могут доставляться в район работ на вертолетах. Эти системы могут использоваться для размещения радиологического оборудования обнаружения заводненного элемента конструкции и других специальных систем в зависимости от полезной нагрузки. Дистанционно управляемые аппараты предпочтительны для радиологических исследований обнаружения заводненного элемента конструкции, так как меры радиологической защиты упрощены.
Более крупные системы могут быть оборудованы устройством контроля кабеля дистанционно управляемого аппарата, подводными доковыми станциями, манипуляторами, всасывающими манипуляторами или захватными приспособлениями для устойчивости на рабочей площадке, бортовыми гидравлическими силовыми блоками, возможностями удаления обрастания и очистки (гидромониторами высокого давления, вращающимися металлическими щетками). У более крупных дистанционно управляемых аппаратов могут возникать трудности при движении в замкнутых пространствах МНГС, и опыт пилота может быть решающим в таких ситуациях.
Дистанционно управляемые аппараты могут иметь возможность проведения НК сварных швов (например, порошковая магнитная дефектоскопия), а также возможность выполнения восстановительной шлифовки.
А.10.2.8.2 Общая визуальная инспекция
Указания отсутствуют.
А.10.2.8.3 Визуальная инспекция с близкого расстояния
Указания отсутствуют.
А.10.2.8.4 Неразрушающий контроль
Имеются различные методы НК, которые используются для инспекции сварных швов на наличие признаков поверхностного растрескивания. Эксплуатационные изменения переменного тока и дефектоскопия методом вихревых токов являются широко распространенными методами, которые дают возможность проведения инспекции сварных швов с покрытиями и легкой поверхностной пленкой. Для поверхностей без покрытия приемлемо легкое окисление, однако наросты нужно удалить. Эксплуатационные изменения переменного тока могут использоваться над поверхностью воды и под водой. Для подводных инспекций поверхность должна быть очищена от обрастания и отложений.
Когда эксплуатационные изменения переменного тока и дефектоскопия методом вихревых токов выявляют признаки трещины, порошковая магнитная дефектоскопия может использоваться для подтверждения и полной характеристики аномалии, для обнаружения трещин, а также предоставления полного описания размера трещин. Порошковая магнитная дефектоскопия имеет больше возможностей в ручном режиме, чем методы эксплуатационного изменения переменного тока и дефектоскопии методом вихревых токов, и для него нужен чистый оголенный металл. Для конструкций с покрытием покрытие должно быть удалено на рассматриваемом участке. Порошковая магнитная дефектоскопия может использоваться над и под водой.
Порошковая магнитная дефектоскопия, как и эксплуатационные изменения переменного тока и дефектоскопия методом вихревых токов, может лишь обнаруживать поверхностные трещины и не может предоставить информацию по глубине или простиранию трещин внутри. Имеются другие способы (например, ультразвуковое исследование на поперечных волнах), которые могут предоставить больше информации по трещинам ниже поверхности, но их трудно эффективно использовать, особенно в морской среде, где доступ затруднен.
А.10.2.9 Интервалы проведения инспекций
А.10.2.9.1 Общие сведения
Разработка на основе оценки рисков позволяет адаптировать стратегию инспекции к специальным свойствам МНГС, согласовывая обследование с выявленными рисками.
Риск может использоваться в качестве основы для разработки программы инспекции в процессе эксплуатации. Подход на основе оценки рисков позволяет эксплуатирующей организации определить приоритеты и оптимизировать использование ресурсов инспекции. Стратегия на основе оценки рисков для разработки объемов работ по инспекциям требует понимания состояния МНГС к повреждению и устойчивости к повреждениям.
А.10.2.9.2 Инспекция по проверке исходных данных
Указания отсутствуют.
А.10.2.9.3 Периодическая надводная инспекция
Указания отсутствуют.
А.10.2.9.3.1 Общие сведения
Указания отсутствуют.
А.10.2.9.3.2 Интервал инспекции на основе последствий
Указания отсутствуют.
А.10.2.9.3.3 Интервал проведения инспекций на основе оценки рисков
Концепция риска является основополагающей для установления интервалов инспекции ответственных конструкций ВС. Следует отметить, что риск определяется как произведение вероятности и последствий отказа. На этап организации методологии инспекции на основе оценки рисков для каждой МНГС оценка рисков выполняется для каждой структурной системы ВС. Этот метод основан на оценке вероятности отказа и последствиях такого отказа. Он используется прежде всего для определения планов инспекции для всех конструктивных элементов, однако также может использоваться как инструмент отбора для выбора элементов конструкции с более глубоким рассмотрением при появлении дополнительных данных.
Для некоторых более важных аспектов с большим объемом имеющихся данных могут использоваться более сложные методы анализа для количественной оценки вероятности возникновения отказа. Считается, что со временем, по мере появления дополнительных данных по анализу и инспекциям, может потребоваться использовать более сложные методы оценки в отношении других конструктивных систем.
Процесс планирования инспекции ответственных конструкций ВС может быть разбит на следующие мероприятия:
- выявление опасностей возникновения крупномасштабных аварий;
- выявление ответственных конструкций;
- определение стандартов эффективности работы;
- выявление механизмов ухудшения свойств элементов конструкции;
- оценка вероятности отказа для каждого элемента конструкции;
- оценка последствий отказа для каждого элемента конструкции;
- оценка категории риска и определение интервалов и способов инспекции;
- по мере получения данных по инспекции возвращение к началу цикла, чтобы скорректировать анализ.
В идеальном варианте для каждой ответственной конструкции в реестре рисков будет выполнен анализ с учетом следующих аспектов:
- режимов отказа и механизмов ухудшения свойств;
- оценки состояния;
- базы данных по ремонту и техническому обслуживанию;
- отраслевого опыта;
- эксплуатационной надежности и резервируемости;
- основ проектирования;
- результатов усталостного и прочностного анализа.
Когда отсутствует соответствующая информация или нецелесообразно проводить отдельное рассмотрение каждой ответственной конструкции в реестре рисков, то может быть выполнен анализ аналогичной "общей системы" для установления "стандартных параметров" для оценки риска и разработки последующих режимов инспекции.
А.10.2.9.4 Периодическая подводная инспекция
А.10.2.9.4.1 Общие сведения
Существуют следующие причины выбора планирования инспекций на основе оценки рисков:
- системный анализ МНГС достигается вместе с разбивкой рисков МНГС, который показывает определяющие факторы риска и действия по ослаблению риска;
- инспекция сфокусирована на аспектах, где риски в отношении безопасности, окружающей среды, а также финансовые риски определены как высокие и усилия направлены на снижение рисков;
- вероятностные методы могут использоваться в прогнозировании скорости и степени ухудшения качества, включая вариации и неопределенности при контроле параметров;
- последствия отказа учитываются, поэтому инспекция сфокусирована на том, где мероприятия будут иметь максимальный эффект. Неопределенности результатов могут моделироваться путем исследования различных вероятностей с использованием подхода "дерева событий";
- содействие инициативного подтверждения того, что общий риск МНГС не превышает границ допустимого риска, которые установлены органами власти и/или эксплуатирующей организацией;
- выявление оптимальных методов инспекции или мониторинга, которые необходимы для установления механизмов ухудшения свойств и износа.
А.10.2.9.4.2 Интервал инспекций на основе оценки последствий
Указания отсутствуют.
А.10.2.9.4.3 Интервал инспекции на основе оценки рисков
Указания отсутствуют.
А.10.2.9.5 Специальная инспекция
Указания отсутствуют.
А.10.2.9.6 Внеплановая инспекция
Указания отсутствуют.
А.10.2.10 Объем работ инспекции
А.10.2.10.1 Общие сведения
Указания отсутствуют.
А.10.2.10.2 Объем работ инспекции по проверке исходных данных
Указания отсутствуют.
А.10.2.10.3 Объем работ инспекции выше уровня водной поверхности
Цель указанной надводной периодической инспекции - обнаружение или верификация следующих аспектов:
- признаков перегрузки, износа систем защитных покрытий, коррозии и изгиба отсутствующих или поврежденных элементов конструкции в зоне периодического смачивания, а также выше уровня водной поверхности;
- повреждений или ухудшения принадлежностей и безопасности персонала, а также устройств покидания и эвакуации.
А.10.2.10.4 Объем работ подводной периодической инспекции
Задачей периодической инспекции является обнаружение ухудшения свойств, которое может снизить резервную пропускную способность МНГС в интервале между инспекциями. Отраслевой опыт показывает, что способы проведения общего визуального обследования адекватны в отношении стандартных стационарных стальных МНГС, которые инспектируются с интервалами, характерными для инспекций на основе оценки рисков. Общий визуальный подход следует использовать для подтверждения того, что МНГС не получило общего конструктивного повреждения (например, получило сильную деформацию или утратило конструктивные элементы). Общая стратегия визуальных инспекций должна включать обследования для подтверждения того, что система катодной защиты работает эффективно, т.е. степень коррозии, степень обрастания и степень размыва морского дна на предварительно размещенных участках находятся в пределах нормы.
МНГС, которые не годятся для применения общего визуального подхода, могут включать те, которые подвержены усталостному разрушению и/или не обладают достаточной эксплуатационной надежностью, чтобы безопасно противостоять незначительным повреждениям. В этом случае стратегия инспекции должна быть направлена на то, чтобы обнаружить наличие таких незначительных повреждений посредством детального визуального обследования, сопоставимого с пригодными способами НК.
В некоторых случаях обследования заводненного элемента конструкции могут быть альтернативой детальным визуальным обследованиям (например, рама направляющей направления и соединения принадлежностей, которые чувствительны к усталостному повреждению). Ставка на более широкое использование заводненного элемента конструкции вместо детальных визуальных обследований может быть спорным подходом в отношении некоторых МНГС (например, тех, которые имеют одиночное диагональное армирование с помощью раскосов, идущих к основным стойкам МНГС с помощью элементов, которые намеренно затопляются). В первом случае усталостные трещины, которые здесь возникают, часто характерны для стороны хорды (ноги) соединения. Эксплуатационный опыт показывает, что эти элементы, как правило, не затапливают раскос, даже после отделения раскоса, и будут сухими после исследования заводненного элемента конструкции.
Основными механизмами ухудшения свойств и износа морских ОЧ являются коррозия и случайные повреждения. Отраслевой опыт показывает, что для многоплоскостных стыков в ОЧ с большим количеством основных стоек эксплуатационное усталостное растрескивание не может качественно прогнозироваться аналитическими способами. Усталостное растрескивание произошло в более старых ОЧ, в основном из-за плакированных горизонтальных пролетов направления, но может возникнуть на МНГС из-за дефектов изготовления, повреждений в ходе монтажа, а также на соединениях принадлежностей, которые неправильно спроектированы (например, кессоны, колодцы, J-образные трубы). В этом качестве вероятностные методы на основе усталости могут обеспечить дополнительные средства для определения частоты инспекций и требований в отношении мест проведения инспекции сварных швов, но могут быть очень консервативными в прогнозировании трещин на концевых соединениях основных элементов в более новых конструкциях.
Коррозия под водой, как правило, не является проблемой при условии, что система катодной защиты надлежащим образом спроектирована и обслужена. Коррозия в зоне периодического смачивания широко распространена, т.к. краска и другие защитные покрытия изнашиваются и/или повреждаются.
А.10.2.10.5 Объем работ специальной инспекции
Указания отсутствуют.
А.10.2.10.6 Объем работ внеплановой инспекции
Указания отсутствуют.
А.10.2.11 Предварительно отобранные участки для инспекции
Эффективность каждого обследования зависит от выбора достаточного количества мест проведения инспекции, чтобы предоставить репрезентативные данные по состоянию всего сооружения конструкции.
Элементы ВС, отобранные для инспекции, могут основываться:
- на критичности элемента или стыка;
- влиянии на конструктивную целостность;
- последствии отказа;
- степени резервируемости;
- сложности напряженного состояния;
- уровнях прочности;
- степени пластической деформации;
- подверженности нагрузке, вызывающей усталость;
- рабочей температуре.
Компоненты ВС, которые часто предварительно выбирают для инспекции, включают в себя:
- опоры рабочей палубы;
- переходные элементы к подвышечному основанию;
- переходные рамы к бетонным гравитационным основаниям;
- балочные фермы модуля и опорные конструкции;
- жилой модуль;
- буровые установки;
- мостки;
- факельные стрелы и вентиляционные стояки;
- краны;
- вертолетные площадки;
- спасательные суда и другое оборудование эвакуации, покидания и спасения;
- площадки складирования;
- соединения корпуса с палубой;
- изменения в весе оборудования и места точек опор, а также нагрузку на палубу;
- ограждения для стояков.
А.10.3 Стратегия технического обслуживания
Указания отсутствуют.
А.10.4 Стратегия мониторинга
Указания отсутствуют.
А.10.4.1 Общие сведения
Указания отсутствуют.
А.10.4.2 Контроль нагрузки масс
Факторы частичного воздействия охватывают вариации интенсивности прямого воздействия указанных репрезентативных значений и, насколько это возможно, учитывают при прогнозировании внутренних сил.
Факторы частичного воздействия не допускают наличия серьезных ошибок в весе или неточности определения массы. Для снижения неопределенности в показаниях массы необходимо учитывать следующее:
- постоянную и переменную массу ВС с включенными буровыми модулями и находящимися в составе бурового оборудования;
- отсутствие серьезных постоянных или переменных погрешностей либо неточностей массы либо центра тяжести;
- отсутствие несогласованного консерватизма в оценке массы изделий.
Процесс контроля массы включает сбор данных из многих источников, включая входные данные по массе от главного подрядчика, подрядчика по бурению, подрядчика по размещению, а также продавцов оборудования. По существу, у одного человека не хватит времени, фоновой информации или умений в одиночку управлять всем процессом. Как правило, для эффективной реализации контроля массы нужна группа, обладающая необходимыми навыками и знаниями. Инженер или группа инженеров, вовлеченные в процесс, должны:
- быть знакомы с принципами и процедурами контроля массы;
- обладать знаниями о многопрофильных массовых характеристиках;
- знать об извлечениях и загрузке CAD;
- иметь представление о способах бурения и нагрузках;
- иметь представление о требованиях к складированию и хранению;
- знать требования к массе оборудования и модуля;
- знать требования контроля массы для морских инженеров по конструкциям.
А.10.4.3 Мониторинг высоты палубы
Указания отсутствуют.
А.10.4.4 Мониторинг естественной частоты
Мониторинг в режиме онлайн имеет преимущество обеспечения непрерывного анализа по конструктивной целостности и может дополнить инспекцию по месту. Способ основан на том принципе, что у конструкций с низкой резервируемостью в годовой вероятности отказа преобладают несколько критичных элементов. Существенное влияние критичных элементов на конструктивную прочность предполагает, что их отказ будет иметь сильное влияние на конструктивную жесткость и, как следствие, на отклик конструкции на периодическое нагружение (т.е. волновое нагружение). Отказ критичных элементов может быть обнаружен схемой мониторинга в режиме онлайн. Это позволит провести целевую оценку при повреждении, как только оно возникнет, и это снизит время, необходимое для ремонта, и таким образом сведет к минимуму повреждение смежных элементов из-за перераспределения нагрузки.
Включение мониторинга в режиме онлайн в УКЦ имеет многочисленные потенциальные преимущества. Для ВС эта методология может быть эффективной в зависимости от расчетной конфигурации и способности выявления, а также мониторинга критичных откликов.
Конструктивная целостность стационарных морских ОЧ может быть определена на базе измерений их характеристик конструктивного отклика. На основе измерений можно выявить и количественно определить естественные частоты, а также связанные формы колебаний фундаментальных нормальных режимов МНГС (т.е. по крайней мере двух независимых друг от друга поперечных колебаний и одной крутильной формы колебаний).
Мониторинг характеристик отклика можно выполнять непрерывно или путем повторяющихся измерений с регулярными интервалами. Изменение характеристик отклика со временем может указывать на ухудшение конструктивной целостности, поскольку такие изменения возникают по следующим причинам:
- отделение (например, сильные трещины в опорных основаниях с низкой резервируемостью) элемента ОЧ;
- снижение жесткости фундамента (например, из-за размыва);
- изменение массы или распределение массы на палубе МНГС.
Отклик МНГС может быть измерен с использованием датчиков, которые реагируют на динамическую силу или движения, чаще всего это акселерометры или тензометры. Сигналы могут записываться и сохраняться в компьютере для анализа и обработки данных. При настройке устройства мониторинга необходимо учитывать параметры шума, синхронизацию и калибровку сигналов. Частота замеров, при которой сигналы преобразуются в цифровой формат, должна быть установлена, чтобы позволить выполнить захват частот.
Чтобы избежать искажения и интерференции, нужна рациональная практика. Поскольку волновое воздействие на ОЧ, как правило, является доминирующей нагрузкой, то стоит регистрировать данные по высоте волн вместе с данными по отклику. Это обеспечивает дополнительные преимущества по обнаружению проседания МНГС вместе со смещением палубы на единицу волны.
А.10.4.5 Мониторинг защиты от коррозии
Указания отсутствуют.
А.10.4.6 Гидрометеорологический мониторинг
Указания отсутствуют.
А.10.5 Стратегия эвакуации
Стратегия эвакуации устанавливает процедуры по временному перемещению персонала с МНГС с обслуживающим персоналом на соседние МНГС или на берег до наступления прогнозируемого события (т.е. тайфуна или урагана, столкновения с проходящим судном, гидрометеорологического состояния моря).
На МНГС может быть в наличии стратегия эвакуации, если выполняются следующие требования:
- надежный прогноз превышения предварительно определенного гидрометеорологического порогового значения возможен с технической и эксплуатационной точек зрения, и погода в интервале между прогнозом и возникновением гидрометеорологического порогового значения вряд ли помешает эвакуации;
- введены в действие процедуры по получению прогнозов и проведению эвакуации до превышения предварительно определенного гидрометеорологического порогового значения, и эти процедуры включены в руководство по эксплуатации МНГС.
С учетом прогноза о превышении предварительно определенного гидрометеорологического порогового значения в имеющееся время и с помощью доступных ресурсов эвакуируется персонал с МНГС и смежных конструкций, на которые может отрицательно повлиять отказ МНГС, а также посредством других запросов на эти ресурсы (например, эвакуация с других МНГС с персоналом в данной местности).
При определении времени, которое нужно для проведения эвакуации, как правило, учитывают следующее:
- расстояния перемещения;
- количество персонала;
- способность и эксплуатационные ограничения оборудования для эвакуации;
- тип и размер швартовочных устройств/площадок для посадки и высадки персонала, дозаправки, объектов для эвакуации с МНГС;
- прогнозируемые гидрометеорологические условия в ходе проведения эвакуации.
А.10.6 Геотехнические исследования
Указания отсутствуют.
А.11 Программа
А.11.1 Общие сведения
Программа представляет собой выполнение мониторинга, инспекции и технического обслуживания, разработанных на основе стратегии конструктивной целостности. Подводные работы - это, как правило, только реакция на возникшие обстоятельства, как отклик на выводы инспекции, которые могут предусматривать упрочнение МНГС. Как правило, проведение регулярного технического обслуживания под водой не требуется из-за незначительной скорости коррозии.
А.11.2 Программа инспекции
А.11.2.1 Общие сведения
Программа инспекции содержит два основных элемента: ее спецификацию и исполнение. Необходимые квалификационные требования для элементов различаются, но дополняют друг друга.
Специалисты должны:
- консультировать при разработке объема работ и графика проведения работ;
- устанавливать спецификации по задачам инспекции;
- устанавливать процедуры обеспечения качества, контроля качества и валидации данных.
В отношении реализации программы инспекции сертификат сварщика представляет собой пример комплексной схемы проверки знаний и умений, а также сертификации отдельных лиц. Комитет по подводным инспекциям "Системы аттестации сварщиков и инспекторов" имеет представителей эксплуатирующих организаций МНГС, подрядчиков по водолазным работам, классификационных обществ и академии. В схеме рассматривается персонал для проведения подводных инспекций и инспекций ВС. Применяют следующие категории сертификации подводной инспекции:
a) категория 3.1U "Подводный (водолаз) инспектор" (визуальная, катодной защиты и ультразвуковая);
b) категория 3.2U "Подводный (водолаз) инспектор" (как и 3.1 U плюс порошковая магнитная дефектоскопия, шлифование пяты сварного шва);
c) категория 3.3U "Инспектор ROV";
d) категория 3.4U "Подводный инспектор-контролер".
В [16] представлен еще один пример уровней квалификации для лиц, ответственных за морские инспекции, а также за инспекции НК.
А.11.2.2 Спецификации
Наряду с планом инспекций целесообразно предоставить дополнительное подробное руководство по полевым операциям для каждого обследования. Дополнительное руководство по полевым операциям может состоять из пакетов работ (или контрольных перечней) по детальной инспекции, которые определяют каждое место проведения отдельных инспекций, методы инспекции обеспечивают средство документального оформления наблюдений. В полевом руководстве должна содержаться подробная информация в отношении необходимого доступа, очистки и оборудования, которое нужно для успешного проведения каждой инспекции в рамках обследования. Подробное полевое руководство эффективно передает ожидания эксплуатирующей организации группе инспекции, указывая, где и как инспектировать, и предоставляет согласованные средства для документального оформления наблюдений в ходе инспекции.
А.11.2.3 Метод инспекции
А.11.2.3.1 Общие сведения
Указания отсутствуют.
А.11.2.3.2 Общая визуальная инспекция
Основной задачей общей визуальной инспекции является подтверждение наличия элемента/компонента, а также его инспекции на предмет наличия дефектов, деформации или повреждения. Для проведения общей визуальной инспекции не требуется предварительной очистки от обрастания, или удаления краски с компонента, и они, как правило, выполняются в качестве первого шага программы инспекции и с наилучшего места.
Требования к инспекции в зоне периодического смачивания (уровень поверхности воды вплоть до опорной рамы модуля), как правило, изложены в стратегии инспекции ВС. Хотя имеются различные способы проведения инспекции на этом участке в отличие от методов подводной инспекции, общий процесс соответствия требованиям инспекции конструктивных элементов такой же, как и для подводных конструктивных элементов.
Режимы структурных нарушений и механизмы ухудшения свойств для элементов, находящихся в зоне периодического смачивания, которые могут потребовать проведения сфокусированной инспекции, включают в себя:
- повреждение в результате столкновения с судами, мусором и упавшими объектами;
- нарушение слоя краски и коррозию;
- разрушение элементов ОЧ вследствие усталости, а также разрушение принадлежностей из-за воздействия волновой нагрузки;
- защитные устройства (например, защитные ограждения водоотделяющей колонны);
- состояние опор водоотделяющей колонны и кессона;
- состояние устройств для спасения на море.
МНГС обычно проектируют с запасом на коррозию в зоне периодического смачивания. Защитный слой, который наносят в ходе изготовления конструкции, предотвращает быстрое изнашивание запаса на коррозию. Когда защитный слой начинает разрушаться, то необходимо осуществлять мониторинг конструкции в зоне смачивания, а также должна быть определена скорость коррозии. Это помогает определить риск для МНГС и оценить время, когда будет необходимо подготовить и осуществить ремонт.
А.11.2.3.3 Обследование защитного слоя (включая пассивную противопожарную защиту)
Указания отсутствуют.
А.11.2.3.4 Обследование подводной системы катодной защиты
Указания отсутствуют.
А.11.2.3.5 Обследование принадлежностей и устройств безопасности персонала
А.11.2.3.5.1 Общие сведения
Указания отсутствуют.
А.11.2.3.5.2 Визуальное обследование направления
Указания отсутствуют.
А.11.2.3.5.3 Обследование водоотделяющей колонны
Указания отсутствуют.
А.11.2.3.5.4 Изолирование фланцев трубопровода
Указания отсутствуют.
А.11.2.3.5.5 Точки крепления устройств
Указания отсутствуют.
А.11.2.3.5.6 Пути покидания
Указания отсутствуют.
А.11.2.3.6 Обследование высоты палубы
Указания отсутствуют.
А.11.2.3.7 Детальное визуальное обследование сварных швов/стыков
Указания отсутствуют.
А.11.2.3.8 Обследование повреждения
Указания отсутствуют.
А.11.2.3.9 Дополнительные обследования
А.11.2.3.9.1 Общие сведения
Указания отсутствуют.
А.11.2.3.9.2 Инспекции болтовых соединений
Указания отсутствуют.
А.11.2.3.9.3 Обследование неравномерной осадки
Неравномерная осадка МНГС может вызывать напряжения на палубе.
А.11.2.3.9.4 Обследования с воздуха
Указания отсутствуют.
А.11.3 Программа технического обслуживания
Указания отсутствуют.
А.11.4 Программа мониторинга
Указания отсутствуют.
А.12 Требования к оценке
А.12.1 Общие положения
Оценка является общей и формирует одну часть процесса УКЦ. Она включает в себя:
- сбор известных фактов о конфигурации, состоянии и нагружении МНГС;
- анализ МНГС на основе проверенных методов;
- сравнение результатов анализа с доказательствами, полученными в ходе обследования МНГС;
- корреляцию, уточняющий анализ и обследование.
Эта информация может использоваться для составления инженерной оценки по конструктивной целостности МНГС и ее пригодности к эксплуатации. Как следует из определения, оценка имеет отношение к реальным ситуациям в отличие от нового проекта, который имеет отношение к будущим, а также еще непостроенным объектам.
Краткая информация по процедуре соответствия требуемым уровням эффективности работы представлена в таблице А.7.
Таблица А.7 - Краткий обзор соответствия уровню эффективности работы пригодности к эксплуатации
Стандарт эффективности работы |
Безопасность для жизни |
Окружающая среда |
Метод |
Набор параметров |
Соответствие |
Утрата актива Этот уровень используется для определения полного отказа объекта, которого следует избегать, запаса прочности МНГС по отношению к условиям перегрузки, которые возникают очень редко в течение срока службы МНГС. Цель - ограничить повреждение до возникновения отказа, чтобы не подвергать опасности жилые отсеки, системы спасения и эвакуации, а также критичные для безопасности системы, т.е. эти системы должны оставаться функциональными достаточное время, чтобы позволить произвести эвакуацию и последовательно остановить скважины |
С персоналом |
Высокий или низкий |
Метод расчетного уровня |
Повторяемость - 2500 лет. Характерный минимальный предел прочности SMYS LF = 1,0; RF = 1,0; MF = 1,0 |
Все UR 1,0 |
Метод расчета по предельным нагрузкам |
Повторяемость - 2500 лет. Среднее сопротивление, средний предел текучести |
LF 1,0 |
|||
Анализ конструктивной надежности |
В соответствии с набором параметров в А.12.3.3.3.4 |
P f |
|||
Снижение добычи Этот уровень используется для определения полезной прочности МНГС для экстремальных/предельных состояний проектных условий. Применяется к условиям, которые возникают в течение срока службы МНГС. МНГС спроектировано, чтобы оставаться исправным в таких условиях без проведения крупного ремонта |
Без персонала |
Высокий |
Метод расчетного уровня |
Повторяемость - 1000 лет. Характерный минимальный предел прочности SMYS LF = 1,0; RF = 1,0; MF = 1,0 |
Все UR 1,0 |
Низкий |
Метод расчетного уровня |
Повторяемость - 100 лет. Характерный минимальный предел прочности SMYS LF = 1,0; RF = 1,0; MF = 1,0 |
Все UR 1,0 |
А.12.2 Информация по оценке
А.12.2.1 Общие сведения
Указания отсутствуют.
А.12.2.2 Требования к информации
Качество оценок конструктивной целостности определяется качеством имеющихся данных. Ниже кратко указаны данные, которые могут потребоваться и должны быть в наличии на основе данных УКЦ (см. раздел 8).
a) Общая информация:
- первоначальная и нынешняя эксплуатирующая организации МНГС;
- первоначальная и нынешняя функция и использование МНГС;
- местонахождение, глубина моря и ориентация;
- тип МНГС;
- количество слотов под скважину, водоотделяющих колонн и дебит добычи;
- другая информация по конкретной скважине, количество персонала и т.п.;
- рабочие параметры в ходе последнего экстремального или аномального опасного события.
b) Первоначальная проектная информация:
- проектный подрядчик и дата проектирования;
- проектные чертежи и спецификации материалов;
- нормы проектирования и основы проектирования;
- расчетные гидрометеорологические, сейсмические или ледовые критерии;
- высота клиренса палубы;
- эксплуатационные данные (постоянные и переменные воздействия и схема размещения оборудования);
- данные грунтов;
- количество, размер и расчетная глубина погружения свай и направлений;
- принадлежности (перечень и местонахождение, как это спроектировано).
c) Строительная информация:
- подрядчики по изготовлению и монтажу, а также дата монтажа;
- исполнительные чертежи;
- спецификации на изготовление, сварку и строительство;
- записи по отслеживаемости материалов;
- записи по забивке направлений и свай;
- записи по цементированию свай, если это применимо.
d) Историческая информация по сооружению:
- история гидрометеорологического, сейсмического или ледового воздействия (например, тропические циклоны, сейсмические события);
- история оперативного воздействия (например, столкновения и другие случайные воздействия);
- записи об обследованиях и техническом обслуживании;
- ремонты (описания, анализы, чертежи и даты);
- модификации (описания, анализы, чертежи и даты).
e) Информация о нынешнем состоянии:
размер, местонахождение и высота палуб;
- постоянные и переменные воздействия, а также схема размещения оборудования на палубах в настоящее время;
- текущие гидрометеорологические, сейсмические или ледовые критерии;
- измеренная в полевых условиях высота клиренса палубы;
- добытые и хранимые запасы;
- принадлежности (перечень, размеры и местонахождение);
- скважины (количество, размер и местонахождение существующих направлений);
- актуальная "надводная" инспекция;
- последняя инспекция подводной конструкции.
А.12.2.3 Ограниченная или отсутствующая информация
Если отсутствуют первоначальные проектные данные или исполнительная документация, то аналитические данные могут быть получены в результате полевых измерений габаритов и размеров конструктивных элементов и принадлежностей. Толщина трубных элементов может быть определена в результате ультразвукового обследования для всех элементов, кроме свай. Если толщина стенок и погружение свай определить невозможно, а фундамент является критичным элементом оценки пригодности к эксплуатации МНГС, то не всегда можно провести оценку. В этом случае может потребоваться понизить категорию МНГС применительно к последствиям отказа за счет снижения риска.
А.12.2.4 Информация по "надводной" ситуации
Когда чертежи отсутствуют или они неточные, то можно провести дополнительную обходную инспекцию конструкции ВС, объектов обустройства и корпуса, чтобы собрать необходимую информацию (например, фактическая компоновка и конфигурация ВС, подробная информация по упрочняющей арматуре конструкций, местонахождение оборудования и его масса). Сбор дополнительной надводной информации будет более эффективным при взаимодействии с морским эксплуатационным персоналом. Морской персонал часто способен ликвидировать пробелы в информации, а также предоставить фоновую информацию по потенциальным наблюдаемым нестыковкам.
А.12.2.5 Информация по "подводной" ситуации
В некоторых случаях инженерная оценка может вызвать необходимость проведения дополнительных подводных инспекций для верификации предполагаемого повреждения, ухудшения свойств из-за старения, крупных реконструкций, отсутствующих или неточных, чертежей конструкций, некачественных записей по инспекциям или аналитических выводов.
А.12.2.6 Геотехническая информация
Многие методы отбора проб и процедуры лабораторных испытаний использовались годами для разработки параметров прочности грунта. С учетом качественной инженерной оценки параметры, разработанные на основе менее актуальных методов, могут быть уточнены на основе опубликованных корреляций. Например, расчетные недренированные профили предела прочности на сдвиг, разработанные для многих МНГС, установленных до 1970 г., основывались на испытаниях на неограниченное сжатие образцов диаметром 57 мм (2,25 дюйма), отобранных на каротажном тросе. В сущности, испытания на неограниченное сжатие дают более низкие значения прочности и более высокий разброс значений, чем неконсолидированные недренированные испытания при сжатии, которые в настоящее время считаются отраслевым стандартом. Исследования показали, что пробоотборник диаметром 57 мм (2,25 дюйма) создает более высокое смещение, чем тонкостенный вдавливаемый пробоотборник диаметром 76 мм (3,0 дюйма), который в настоящее время используется в морских операциях.
Поэтому в зависимости от типа отбора проб и испытаний, связанных с имеющимися данными, целесообразно скорректировать соответствующим образом значения недренированной прочности на сдвиг.
Данные по забивке свай могут использоваться в качестве дополнительной информации по профилям грунта в каждом месте, где установлена свая, и делается вывод о высоте пород, вмещающих концы свай.
А.12.3 Метод оценки
А.12.3.1 Общие сведения
Оценка может быть выполнена последовательно по мере усложнения, и это приводит к уменьшению уровней консерватизма, когда наиболее простые методы являются наиболее консервативными, а методы расчета по предельным нагрузкам, а также методы обеспечения надежности наименее консервативные. Если МНГС не достигает уровня эффективности работы на основе простых методов, то оценку МНГС необходимо выполнять на основе метода DSM. Аналогичным образом если МНГС не достигает уровня эффективности работы на основе метода DSM, то должен использоваться метод расчета по предельным нагрузкам. В отличие от этого если МНГС достигает уровня эффективности работы на основе простых методов, то дальнейшая оценка не требуется, и это касается других уровней. В большинстве случаев отсутствует необходимость инициировать процесс оценки конструктивной целостности с метода оценки самого низкого уровня.
Исходя из опыта становится очевидным, что МНГС не достигнет уровня эффективности работы на основе использования более консервативного метода расчетного уровня, поэтому с самого начала следует применять метод расчета по предельным нагрузкам. Например, эксплуатирующая организация должна начать процесс с метода расчета по предельным нагрузкам, когда ясно, что МНГС не может достичь уровня эффективности работы с помощью других более консервативных подходов.
Схема процесса, которая может использоваться для выбора метода оценки, представлена на рисунке А.6.
Рисунок А.6 - Выбор метода оценки
А.12.3.2 Полуколичественные методы
А.12.3.2.1 Упрощенная процедура
Указания отсутствуют.
А.12.3.2.2 Предыдущая оценка
Указания отсутствуют.
А.12.3.2.3 Предшествующее воздействие
Предварительное воздействие шторма может быть использовано при условии, что МНГС выдержало нагрузки без существенных повреждений. Процедура заключается в определении на основе измерений или калиброванного ретроспективного прогноза ожидаемой максимальной силы в основании, которую выдержало МНГС, затем следует подтвердить, что она превысила максимальную силу в основании, которая необходима для достижения уровня эффективности работы системы.
Допускаемый предел зависит от неопределенности волнового воздействия в ходе предварительного воздействия, предела прочности МНГС, а также от степени, до которой испытано самое слабое направление МНГС путем воздействий. Источники неопределенности (т.е. естественная изменчивость и неопределенность моделирования) следует учитывать. Допускаемый предел может быть обоснован расчетами, чтобы показать, что он соответствует требованиям уровня эффективности работы. Могут использоваться аналоговые процедуры для анализа существующих МНГС на основе предварительного воздействия сейсмической или ледовой нагрузки.
Предварительное воздействие полезно для сравнительно коротких периодов повторяемости (например, МНГС без персонала с незначительными последствиями для окружающей среды, когда рабочие показатели определяются финансовым риском). Это происходит из-за ошибочного круга в рассуждениях о том, что МНГС не подвергнется обрушению из-за опасного воздействия с некоторым периодом повторяемости, так как потребуется смонтировать МНГС на определенный период, чтобы это событие произошло.
При выполнении оценки по предварительному воздействию следует учитывать специальные гидрометеорологические условия в ходе экстремального события, как правило, определенные в ходе ретроспективного прогноза, а также то, как это соотносится с критериями уровня эффективности работы анализа. Должна рассматриваться направленность волн, ветра и течений и как это согласуется с каждым основным направлением сопротивляемости МНГС. Например, если МНГС испытывает воздействие волн выше, чем уровень эффективности работы категории "безопасность для жизни" в одном из ортогональных направлений, то это не означает, что МНГС прошло "контрольную проверку" в ходе предварительного воздействия. Направление нагружения должно согласовываться с самым слабым направлением сопротивляемости МНГС. Также нужно учитывать течения и ветер при анализе предварительного воздействия.
Таким образом, предварительное воздействие может быть полезным методом оценки, если оно выполняется тщательно и точно с учетом специального нагружения, действующего на МНГС в ходе урагана, а также конкретных характеристик прочности МНГС, включая ориентацию.
А.12.3.2.4 Сходство
Результаты анализа метода расчетного уровня или метода расчета по предельным нагрузкам конкретного МНГС могут использоваться для вынесения заключения о пригодности к эксплуатации аналогичных МНГС при условии, что их упрочняющая арматура, опоры фундамента, история работы, состояние конструкций и воздействия не сильно отличаются от проанализированного МНГС. Следующие критерии могут применяться для верификации того, что два МНГС "идентичны" с точки зрения оценки того, что:
- между ними не более 25 км;
- располагаются на одной и той же глубине;
- условия окружающей среды и сейсмические условия на площадке анализируемого МНГС не более суровые, чем условия на месте расположения проанализированного МНГС;
- компоновка ВС идентична, и масса ВС анализируемого МНГС не больше, чем масса проанализированного МНГС;
- МНГС имеют идентичную конструкцию (т.е. одинаковое количество основных стоек и аналогичную схему раскосов);
- свайный фундамент аналогичен (т.е. одинаковое количество и диаметр свай с одинаковым погружением в пределах 2,5 м);
- анализируемое МНГС не получило случайного повреждения;
- материалы и прочность сварных швов, а также пластичность оцениваемого МНГС, выше или равна тому МНГС, которое проанализировано;
- размер компонентов (диаметры, толщина и длина) у анализируемого МНГС равен размерам компонентов на МНГС, которое проанализировано, за исключением того, что они должны быть больше у анализируемого МНГС;
- грунтовые условия в месте установки анализируемого МНГС не менее прочные, чем условия на месте установки проанализированного МНГС;
- возраст МНГС отличается не более чем на 5 лет.
А.12.3.3 Количественные методы
А.12.3.3.1 Метод расчетного уровня
Гидрометеорологические критерии метода расчетного уровня откалиброваны для тех МНГС, у которых не было волнового нагружения на палубах. Поэтому отсутствует консерватизм и не стоит определять волновое нагружение на палубы на основе метода расчетного уровня, а нужно использовать метод расчета по предельным нагрузкам вместо него.
В целом более эффективно начинать с метода расчетного уровня, поскольку он, как правило, проще при реализации, чем метод расчета по предельным нагрузкам. Может существовать компьютерная модель МНГС, которая использовалась для проектирования, усовершенствования или других модернизаций, которые могут быть без всяких сложностей обновлены для оценки МНГС.
Если используется продолжающееся исследование для определения прочности элементов, то результаты исследования должны быть тщательно оценены, чтобы обеспечить применимость в отношении типа элемента и фактического состояния по месту, его уровня напряжения и уровня и степени уверенности в результатах. Например, использование меньших значений в отношении коэффициентов эффективной длины (К) может быть уместным для элементов, развивающих значительные концевые моменты и высокие уровни напряжения, но они могут не подходить для более низких уровней напряжения.
В результате наличия стали в ходе строительства и, возможно, по другим причинам, не относящимся к строительству, у трубных элементов может быть сталь с пределом текучести выше, чем указанный минимум. Если такие данные отсутствуют, то могут использоваться образцы для испытания на разрыв, чтобы определить фактический предел текучести. В ходе объединенных отраслевых исследований показано, что более высокие пределы текучести могут быть обоснованы статистически. Тем не менее это должно быть обосновано с учетом конкретного случая для конкретного МНГС или группы МНГС с аналогичными историями изготовления. Использование испытаний вдавливанием для определения предела текучести неприемлемо из-за более существенного разброса при корреляции значений предела прочности образцов для испытаний на разрыв.
Стыки считаются жесткими в основной конструктивной модели. Значительное перераспределение усилий элементов может произойти, если учитывается гибкость стыков, особенно для коротких раскосов, а также для основных стоек большого диаметра, где использованы окаймляющие сваи. Гибкость стыков может определяться на основе метода конечных элементов. Стальные стыки обладают более высокой прочностью, чем те, которые учтены в проекте. Аналогичным образом анализ прочности зацементированных стыков, а также оценка жесткости и прочности цементного раствора могут учитывать повышенные значения, а не те, которые обычно используются для проектирования. Должны использоваться валидированные методы для определения повышенной прочности стыков.
А.12.3.3.2 Линейно-упругий метод резервируемости
Указания отсутствуют.
А.12.3.3.3 Метод расчета по предельным нагрузкам
А.12.3.3.3.1 Общие сведения
В методах расчета по предельным нагрузкам конструктивные элементы моделируются так, чтобы они выдерживали нагрузки, которые соответствуют их предельным способностям, и даже свыше этого, в зависимости от их пластичности и поступругого поведения. Такие элементы могут показывать признаки повреждения, достигнув или превысив пределы скручивания, текучести или растяжения. В данном контексте имитируемое повреждение может считаться приемлемым, если основная прочность конструкции не ставится под угрозу.
Расчет предельной прочности конструктивных элементов представляет собой сложную задачу. Воздействие ухудшения свойств из-за циклического нагружения, а также эффекты ослабления в конструктивных элементах и грунтах, подпирающих фундамент, должны учитываться. Может использоваться увеличение прочности из-за уплотнения грунта, если его обосновать.
Имеется несколько методов нелинейного анализа для оценки конечной прочности конструктивных систем. В анализе МНГС широко используются два метода: статический нелинейный анализ (или анализ на предельную прочность), а также динамический нелинейный анализ (или анализ во временной области). Важно отметить, что вне зависимости от используемого метода дополнительный анализ не требуется, если в ходе анализа указывается, что МНГС достигает рекомендуемого уровня эффективности работы (т.е. анализ вплоть до обрушения не требуется).
Вне зависимости от аналитического метода необходимо точно моделировать все конструктивные элементы. Перед тем как выбрать тип элемента, рекомендуется выполнить детальный анализ результатов оценки метода расчетного уровня, чтобы выявить те элементы с очень высокими коэффициентами напряжения, которые, как предполагается, будут испытывать перегрузку. Так как обычно элементы выдерживают осевые усилия и двухосные изгибающие моменты, тип элемента должен быть основан на преобладающих напряжениях. Некоторые виды программного обеспечения будут отслеживать напряжения элементов по мере увеличения нагрузок и автоматически преобразовывать элемент в нелинейный элемент, чтобы отражать нелинейные рабочие характеристики при высоких нагрузках.
А.12.3.3.3.2 Статический нелинейный анализ
Статический нелинейный анализ (или анализ на предельную прочность) наиболее востребован при статическом нагружении, анализе пластичности или динамическом нагружении, который может быть обоснованно представлен эквивалентным статическим нагружением. Примерами такого нагружения являются волны, действующие на жесткие конструкции с естественными периодами менее 3 с, имеющие малые динамические эффекты или ледовое нагружение, которое не усиливается за счет возбуждения резонанса МНГС. Анализ отслеживает рабочие параметры МНГС, по мере того как уровень усилия возрастает, пока не достигает указанной предельной нагрузки.
По мере того как нагрузка неуклонно возрастает, конструктивные элементы, такие как элементы, стыки или сваи, проверяют на предмет неупругой деформации, чтобы валидировать моделирование. Этот метод широко используют для анализа землетрясения в пределах пластичности путем оценки резервной пластичности МНГС или для подтверждения того, что прочность МНГС превышает максимальное нагружение при экстремальных землетрясениях. Хотя циклический и гистерезисный эффекты не могут быть четко смоделированы на основе этого метода, тем не менее их эффекты можно распознать в модели в основном тем же способом, как эти эффекты оценивались в отношении отклика головки сваи на неупругое сопротивление грунта. Конструктивная модель должна распознавать потерю прочности и жесткости за пределами конечных значений.
А.12.3.3.3.3 Динамический нелинейный анализ
Динамический нелинейный анализ наиболее востребован при подробном динамическом анализе, в котором функция циклического нагружения может пошагово согласовываться с циклическим поведением сопротивления - деформации элементов. Примерами динамического нагружения, которое подходит для рассмотрения на основе метода во временной области, являются землетрясения или волны, воздействующие на МНГС с периодами 3 с или выше.
Этот метод позволяет точно включать нелинейные параметры, такие как сопротивление перемещению и гашению колебаний, в модель анализа. Выявление механизма обрушения или подтверждение, что оно не произойдет, может потребовать серьезного обоснования на основе данной оценки.
А.12.3.3.3.4 Анализ конструктивной надежности
Целью анализа конструктивной надежности является определение вероятности обрушения МНГС, которое возникает в ходе указанного базового периода, как правило, ежегодно, в отношении риска для безопасности для жизни, а также риска загрязнения окружающей среды. Может потребоваться выполнить анализы обеспеченности, чтобы помочь принять такие решения.
Анализ конструктивной надежности обычно выполняется как часть нового проекта, но может использоваться на начальном этапе процесса проектирования для предоставления сравнимых данных и в калибровке (повторной) коэффициентов частичного воздействия, а также коэффициента сопротивления применительно к специальным и нестандартным обстоятельствам, в анализах решений для поддержки программ инспекции и мониторинга и при оценке нынешних конструкций.
Анализ конструктивной надежности предусматривает выполнение нескольких нелинейных анализов с целью определения обрушения МНГС как функции гравитационной силы (пассивное и переменное воздействие), усилия волн на палубу и волн в ОЧ. Обрушение МНГС является функцией изменчивости способности элементов, участвующих в механизме обрушения (т.е. изменчивость способности из-за дефектов при изготовлении, прочности материала и несущей способности грунта). Моделирование методом Монте-Карло, методом обеспечения надежности 1-го порядка (FORM) или методом обеспечения надежности 2-го порядка (SORM) может использоваться для вычисления повторяемости обрушения МНГС.
Анализ конструктивной надежности зависит от точности статистических распределений для каждой переменной, которая достигает максимума неопределенности применительно к вероятности превышения опасности и воздействий в результате опасности, а также неопределенности в способностях критичных компонентов конструкций МНГС.
Вычисление анализа конструктивной надежности выполняется путем определения функции предельного состояния, которая представляет поверхность "отказа". Предельное состояние является функцией нескольких случайных переменных, которые определяют воздействия и способность и которые описаны их статистическими распределениями. Отказ определяется как обрушение МНГС, инициированное одним из следующих аспектов:
- разрушением ответственного элемента или стыка из-за сочетания сжимающего и изгибающего воздействий;
- разрывом ответственного элемента или стыка из-за сочетания растягивающего и изгибающего воздействий;
- выдергиванием или погружением сваи.
Первый прогиб в статическом нелинейном анализе, как правило, возникает в элементах ОЧ из-за осевой силы в сочетании с паразитными изгибающими моментами вследствие воздействия рамы с раскосами. Паразитные изгибающие моменты рассеиваются по мере нарастания воздействий, но способность МНГС сохраняется из-за эффективного поведения осевой несущей опоры и набора элементов рамы с раскосами. После смятия ответственного элемента перераспределение усилий, как правило, инициирует механизм потери обрушения МНГС.
Функция предельного состояния для гидрометеорологического анализа конструктивной надежности определяется как:
,
(А.1)
где g (R (R J, R S, ) - функция предельного состояния с g (R (R J, R s, ) 0, представляющего разрушение ответственного элемента, стыка или сваи, которая инициирует механизм обрушения МНГС;
G - постоянное воздействие, определенное нормальным распределением со смещением 1 на среднее постоянное воздействие и CoV = 8 %;
Q - переменное воздействие, определенное нормальным распределением со смещением 1 на среднее переменное воздействие и CoV = 14 %;
E - гидрометеорологическое воздействие, определенное кривой гидрометеорологической опасности (МН) для штормов направления ;
МН - кривая гидрометеорологической опасности (WiJA, ветер и, если применимо, WiDA), включая гносеологическую неопределенность:
a) по гидрометеорологической модели,
b) статистической экстраполяции в отношении необходимой повторяемости,
c) коэффициенту обрастания и гидродинамическому коэффициенту,
d) WiDA из-за гносеологической неопределенности по высоте гребня и кинематике.
Должна быть включена гносеологическая неопределенность в измеренной высоте палубы по отношению к среднему уровню поверхности воды (например, волноводного радара VORF v ЕМ97 v). Должен использоваться "хвост" экспоненциального распределения или "хвост" логарифмического нормального распределения для представления кривой гидрометеорологической опасности с изменением уклона повторяемости, соответствующего периода повторяемости, где гребень является высотой стали палубы;
R - способность, которая определяется наименьшим из значений способности ОЧ и способности грунта для направления ;
,
(А.2)
где R J - срединная способность конструкции ОЧ;
X R - случайно выбранный множитель для учета гносеологической неопределенности предела текучести и способности изготовленного трубного элемента - логарифмически нормального распределения с медианой = 1 и следующего CoV:
CoV R = 5 %;
CoV R = 10 %, если механизм МНГС прогибается из-за ноги с D/T< 60;
CoV R = 15 %, если механизм МНГС прогибается из-за ноги с D/T 60.
CoV S могут быть уменьшены до 5 % и 10 % соответственно, если имеются в наличии сертификаты на материалы, и они прослеживаются до той пластины, из которой был ответственный стык или трубный элемент изготовлен;
X Rmodel - разница между моделью и действительностью. Тем не менее поскольку смятие платформы, как правило, определяется смятием конкретного элемента или сваи (в указанном направлении шторма), то способность ответственного элемента или сваи может быть откалибрована до срединного значения результатов тестов и X Rmodel не нужен;
,
(A.3)
где R S - срединная способность грунта;
X soil - случайно выбранный множитель для учета гносеологической неопределенности по способности грунта логарифмически нормального распределения с медианой, равной 1, и CoV = 15 % (см. [21]).
Форма функции предельного состояния основана на наблюдении, что если сопротивление уменьшено с помощью указанного пропорционального множителя, приложенного одинаково к элементам, участвующим в механизме отказа, то вся поверхность смятия МНГС сжимается радиально с помощью того же самого множителя. Это четко предполагает, что имеется только один механизм отказа и что надежность системы, влияющая на сопротивление материалов, связанное с альтернативными режимами обрушения, которые возможны для различных комбинаций, небольшая.
Это было показано как вариант для стационарных стальных МНГС, в которых воздействия штормов преобладают над надежностью, и когда оценивается одно направление волны за один раз.
А.12.3.4 Усталостный анализ
На рисунке А.7 иллюстрируется вычисленная совокупная вероятность усталостного разрушения в отношении неопределенности данных S-N, которые соответствуют стандартному отклонению 0,20 по шкале логарифма N. Предполагается нормальное распределение по логарифмической шкале. Неопределенность суммирования Майнера описывается как логарифмически нормальное с медианой 1,0 и СоV 30 %. Другие неопределенности по нагрузке и отклику принимаются как нормально распределенные с СоV от 15 % до 20 %, а образование локального максимума напряжений - как нормально распределенное с CoV от 5 % до 10 %.
Неопределенности, связанные с расчетом усталостной стойкости, подразумевают, что потребуется выполнить инспекцию в процессе эксплуатации на предмет наличия усталостных трещин в ходе срока службы в зависимости от последствий усталостного разрушения и расчетной усталостной стойкости. На рисунке А.7 представлена первая оценка периода времени до первой инспекции на основе нижнего графика на этом рисунке, если нормальные неопределенности связаны с расчетом усталостной стойкости. Рисунок А.7 создан для расчетной усталостной стойкости, равной 20 годам. Для других вариантов расчетной усталостной стойкости L calc числа на оси абсцисс могут быть масштабированы с помощью коэффициента f = L calc/20 для расчета времени до проведения первой необходимой инспекции.
Если усталостная трещина не приводит к серьезным отрицательным последствиям, то совокупная вероятность, равная 10 -2, может быть приемлемой и инспекция не потребуется в течение первых 6 лет в соответствии с рисунком А.7. Если последствия появления усталостной трещины существенные, то совокупная вероятность усталостного повреждения будет менее 10 -4 и потребуется инспекция после 2 лет в соответствии с рисунком А.7 в том случае, если расчетная усталостная стойкость L calc составляет 20 лет.
После первой инспекции временной интервал до следующей инспекции может быть определен на основе механики трещины и вероятностного анализа с учетом неопределенности метода инспекции.
- неопределенность только в кривой S-N
- неопределенность в кривой S-N, Майнер, напряжение CoV norm = 0,15, CoV hs = 0,05;
- неопределенность в кривой S-N, Майнер, CoV norm = 0,20, CoV hs = 0,05;
- неопределенность в кривой S-N, Майнер, напряжение CoV norm = 0,15, CoV hs = 0,10;
- неопределенность в кривой S-N, Майнер, напряжение; CoV norm = 0,20, CoV hs = 0,10;
х - срок эксплуатации, лет;
y - совокупная вероятность усталостного повреждения
Рисунок А.7 - Совокупная вероятность сквозной усталостной трещины по сравнению с расчетной усталостной стойкостью 20 лет (см. [19])
А.12.4 Модель оценки
А.12.4.1 Общие сведения
Указания отсутствуют.
А.12.4.2 Трубные элементы
А.12.4.2.1 Упругие элементы
Предполагается, что большинство элементов конструкции МНГС имеют напряжения ниже предела текучести и не должны достигнуть своей способности в ходе нелинейного анализа. Эти элементы должны моделироваться так же, как и на основе метода расчетного уровня, и необходимо отслеживать, чтобы их напряжения оставались в упругом диапазоне. Примерами таких элементов служат палубные балки и балочные фермы, которые контролируются гравитационным нагружением, а также имеют небольшое нагружение за счет гидрометеорологического воздействия, позволяя существенно его увеличивать перед достижением способности.
А.12.4.2.2 Элементы, нагруженные в осевом направлении
Элементы, нагруженные в осевом направлении, являются неповрежденными элементами с высокими отношениями KI/r и доминантными высокими осевыми нагрузками, которые, как предполагается, достигнут своей способности по мере того, как МНГС будет нагружено до своего предела прочности. Эти элементы должны моделироваться с использованием несущих опор. Примером таких элементов могут служить основные раскосы в горизонтальных уровнях и вертикальные торцы ОЧ, а также основной раскос палубы. Несущие опоры должны распознавать уменьшение изгибания и сопротивления после изгибания из-за прикладываемой инерции или гидродинамических изгибающих нагрузок. Эффекты вторичных (возбуждаемых рамой) моментов можно игнорировать, когда выбирается этот тип элемента. Некоторые элементы ОЧ, такие как горизонтали, не выдерживают высоких осевых нагрузок только после изгибания или существенной потери прочности основного раскоса вертикальной рамы.
А.12.4.2.3 Элементы сопротивления моменту
Предполагается, что элементы с низкими отношениями KI/r и доминантными высокоизгибающими напряжениями будут формировать пластичные шарниры при экстремальных нагрузках. Примерами могут быть секции палубы без раскосов и ноги ОЧ, а также сваи.
А.12.4.3 Соединения
В объединенной модели должно быть определено, может ли стык создавать шарнир или не может, в зависимости от его отношения D/t и геометрии, и должна быть определена его характеристика деформации под действием нагрузки после создания шарнира. Уравнения конструкции соединения, которые приведены в [20], 22-е издание, с удаленным коэффициентом безопасности являются обоснованной оценкой предела прочности соединения. Другие анализы прочности соединения могут быть приемлемыми, если они применимы и если подкрепляются соответствующей документацией.
А.12.4.4 Направления
Направления на участке ниже границы ила могут моделироваться с помощью соответствующих методов в отношении свай-грунта аналогично сваям. Испытания по выдергиванию направления предлагают альтернативное средство для оценки способности в состоянии забитой сваи "как смонтировано". В нелинейном анализе направления могут вносить свой вклад в боковое сопротивление МНГС после того, как ОЧ значительно отклонится, чтобы закрыть зазор между направляющими рамами направления и направлениями. Необходимо учитывать влияние близко расположенных смежных направлений на характеристики нагрузки и отклонения групп направлений аналогично группе свай.
А.12.4.5 Повреждение
А.12.4.5.1 Общие сведения
Морские стальные конструкции проектируются на основе традиционных методов проектирования строительных конструкций. Определяется совокупность нагрузок, которая действует на МНГС, а также внутренние силы в каждом раскосе. Каждый элемент и стык проверяют в отношении допустимых сопротивлений, указанных в нормах проектирования.
Считается, что МНГС достигло выбранных стандартов, если все отдельные компоненты удовлетворяют требованиям норм проектирования. Все нормы проектирования вне зависимости от того, основываются ли они на допустимом напряжении или на предельном состоянии, рассматривают конструкцию отдельных элементов и стыков с допустимым сопротивлением, которое в основном получено из обширной базы данных по испытаниям изолированных стыков и трубных сжато-изогнутых элементов. В рамках этой процедуры проектирования предполагается, что несоответствие одного элемента или стыка требованиям норм проектирования является невыполнением требований соответствующих норм проектирования. Тем не менее признается, что стационарные МНГС обычно имеют резервирование и ряд различных путей для нагрузки. Поэтому отказ одного элемента вряд ли приведет к катастрофическому обрушению конструкций при условии, что имеется адекватная резервируемость. Когда возникает повреждение, то в МНГС формируется новое распределение нагрузки. В зависимости от измененной формы, размеров и степени текучести (и соответственно жесткости) поврежденного участка и его отношения к оставшейся неповрежденной части конструкции пути нагружения в поврежденной части могут быть частично или полностью нарушены.
Дополнительная нагрузка, переданная из поврежденной зоны, будет действовать как новые нагружения в неповрежденной конструкции, уменьшая запас прочности неповрежденных компонентов. Это, в свою очередь, может уменьшить предельную несущую способность системы конструкций и потенциально привести к уменьшению усталостной стойкости МНГС.
Повреждение в зависимости от причины может представлять собой вмятины, изгибы, постоянные деформации, уменьшение толщины, выемки, трещины, срабатывания, отверстия и отрыв элементов. Эти виды повреждений могут возникать по одиночке или в сочетании. Повреждение может быть (а может и не быть) существенным для целостности МНГС. Это зависит от степени повреждения, нагрузок, которые несет поврежденный компонент, и степени резервируемости конструкции. Каждую ситуацию необходимо анализировать по отдельности, чтобы принимать взвешенные решения в отношении дальнейших действий (ремонта и/или упрочнения).
Тип повреждений МНГС начинается от вмятин, изгибов, отверстий, истираний и трещин до сильно корродированных или отсутствующих элементов и смятых стыков. Продолжаются теоретические исследования и экспериментальные работы для оценки влияния повреждений на конструктивную прочность и жесткость. Моделирование таких элементов должно обеспечить консервативную оценку их прочности даже за пределами их способности.
В [22] указаны рекомендации по определению остаточной способности поврежденных компонентов.
А.12.4.5.2 Помятые трубные элементы
Указания отсутствуют.
А.12.4.5.3 Равномерно корродированные трубные элементы
Указания отсутствуют.
А.12.4.5.4 Локально корродированные трубные элементы
Указания отсутствуют.
А.12.4.5.5 Трубные элементы с трещинами
Указания отсутствуют.
А.12.4.6 Отремонтированные и упрочненные элементы
Указания отсутствуют.
А.12.4.7 Модель фундамента
А.12.4.7.1 Общие сведения
Когда свайный фундамент определяет несущую способность МНГС в нелинейном анализе, то чувствительность несущей способности фундамента к боковой и осевой (опрокидывающей) способности свай должна проверяться по отдельности. Если режим отказа находится в боковом направлении, то имеется много структурных факторов, которые становятся важными. Это такие факторы, как предел текучести стали, горизонтальные раскосы и направляющая рама направления. Если режим отказа осевой, то становятся важными геотехнические факторы, такие как стратиграфия грунта.
А.12.4.7.2 Несущая способность грунта
Несущая способность грунта, определяемая нелинейными пружинами p-y, t-z и q-z, должна быть определена методом ICP или его производными, такими как метод Норвежского геотехнического института (NGI), метод университета Западной Австралии (UWA) и метод Фугро. Метод ICP и его производные обеспечивают более точную оценку несущей способности грунта, чем эмпирические методы.
При анализе конечной прочности должны использоваться статические по сравнению с циклическими кривые p-y для боковой несущей способности грунта. Конечная боковая прочность фундаментной системы достигается при забивке свай под наклоном в грунт с ненарушенной структурой. Это отличается от конструкции новых МНГС, где используются ухудшенные циклические кривые.
В течение многих лет использовались различные способы отбора проб и лабораторных испытаний с целью разработки параметров прочности грунта. На основе детальной инженерной оценки параметры, разработанные на базе более ранних методов, могут быть улучшены с помощью опубликованных корреляций. Например, расчетные профили недренированной прочности на срез, разработанные для многих МНГС, установленных до 1970 г., основывались на испытаниях на неограниченное сжатие образцов, взятых пробоотборником диаметром 57 мм (2,25 дюйма), спускаемым на тросе. Испытания на неограниченное сжатие дают меньшие значения способности грунта и более значительный разброс значений, чем неконсолидированные, недренированные испытания на сжатие.
Повышение прочности на срез грунта с течением времени предложено в качестве источника дополнительной несущей способности фундамента. Тем не менее использование этого фактора должно быть обосновано в зависимости от конкретной ситуации. Анализ существующих свайных фундаментов в сейсмически активных и арктических регионах должен учитывать некоторые аспекты, а также специальные вопросы, связанные с землетрясением или ледовым нагружением.
А.12.4.7.3 Инженерно-геологическое бурение
Указания отсутствуют.
А.12.4.7.4 Записи по забивке свай
Данные по забивке свай, а также журналы инженерно-геологического бурения могут помочь в оценке осевой несущей способности свай. Хотя эти данные не всегда имеются, однако они могут оказаться полезными там, где есть вопросы по стратиграфии грунта и окончательной глубине забивки свай.
А.12.4.7.5 Сваи
Указания отсутствуют.
А.12.4.7.6 Группы свай
Осевая гибкость группы свай может быть представлена, чтобы правильно визуализировать вертикальное смещение грунта вниз по длине сваи.
А.12.4.7.7 Донная плита
Оценка может включать несущую способность свайного фундамента, обеспечиваемую донной плитой и горизонтальными элементами границы ила в дополнение к несущей способности за счет свай; при условии, что инспекция подтверждает целостность донной плиты и что опора на грунт поддонной плитой и горизонталями не была подмыта в результате размыва. Горизонтальные элементы донной плиты и горизонтальных элементов границы ила могут рассматриваться как мелкие фундаменты (см. рекомендации [6]).
А.12.4.8 Прочность материала
Исследование (см. [23]) в отношении того, как другие морские и береговые нормы и стандарты рассматривают использование среднего предела текучести для анализа существующих МНГС. Мероприятия включали в себя сбор данных по испытаниям прочности стали от нескольких МНГС в Мексиканском заливе США, чтобы сформировать массив данных и определить соответствующий предел текучести стали. Исследование показало, что другие нормы и стандарты в целом рекомендуют использование средней прочности стали для анализа существующих МНГС. Данные по МНГС в Мексиканском заливе США показали четкое значение средней прочности на уровне 317 МПа (46 кфунт/дюйм 2), для стали с номинальной прочностью 248 МПа (36 кфунт/дюйм 2). Принципиальные рекомендации исследования обобщены ниже и могут использоваться для анализа конечной прочности:
a) должен использоваться фактически испытанный предел текучести для анализа в случае применения метода расчета по предельным нагрузкам. Наиболее эффективным подходом для анализа является использование реального предела текучести каждого элемента, поскольку это позволяет правильно установить путь нагружения, который определяет конечную прочность. Многие новейшие МНГС или старые МНГС с тщательно оформленной документацией по изготовлению имеют эти данные и должны их использовать;
b) если фактические значения прочности отсутствуют, то их можно аппроксимировать за счет использования расчетного предела текучести. Предлагаемый диапазон для стали с номинальной прочностью 248 МПа (36 кфунт/дюйм 2) составляет от 276 до 317 МПа (от 40 до 46 кфунт/дюйм 2). Более низкое значение, равное 276 МПа (40 кфунт/дюйм 2), составляет увеличение примерно на 10 % аналогично тому, что предлагают некоторые нормы для береговых сооружений в качестве минимального увеличения, и равно почти срединному значению минус одно стандартное отклонение данных по испытанию МНГС, или это означает, что около 85 % всей стали на МНГС должно иметь прочность на уровне 276 МПа (40 кфунт/дюйм 2) или более. Более высокое значение 317 МПа (46 кфунт/дюйм 2) представляет среднее значение данных по испытанию МНГС, или 50 % всей стали на МНГС должны обладать большей прочностью. Это примерно верхнее значение, предлагаемое некоторыми стандартами. Среднее значение 296 МПа (43 кфунт/дюйм 2) для среднего предела текучести обеспечивает пригодную аппроксимацию этого диапазона. Отсутствовали данные для материала со значением 345 МПа (50 кфунт/дюйм 2), и не дается специальных указаний. Тем не менее общеизвестно, что увеличение в процентах от номинального до срединного для стали с большей прочностью намного меньше, чем для материала со значением 248 МПа (36 кфунт/дюйм 2);
c) в некоторых структурных анализах конечная прочность МНГС может зависеть от предела текучести нескольких ответственных элементов конструкции, например стоек палубы. В этих случаях рекомендуется отобрать образец стали и определить ее предел текучести при условии, что образец может быть отобран эффективно и безопасно.
А.12.5 Оценка гравитационной опасности
А.12.5.1 Общие сведения
Кривые гравитационной опасности, как это показано на рисунке А.8, представляют графически величины постоянного и переменного воздействий как функции вероятности превышения для тех случаев, когда воздействия вычислены на основании показателей массы ВС, которые отсутствовали. Кривые гравитационной опасности могут вычерчиваться на основе вычисленных средних показателей массы с соответствующими значениями CoVs 8 % и 14 % по постоянным и переменным воздействиям соответственно, для которых коэффициенты частичного воздействия откалиброваны, или путем использования CoV по конкретным вариантам монтажа, где существует более высокая неопределенность по вычисленным массовым показателям ВС.
F - фактор средней массы ВС; P f - вероятность превышения
Рисунок А.8 - Пример кривой гравитационной опасности
А.12.5.2 Метод расчетного уровня
Указания отсутствуют.
А.12.5.3 Метод расчета по предельным нагрузкам (USM)
Указания отсутствуют.
А.12.6 Оценка гидрометеорологической опасности
А.12.6.1 Общие сведения
Кривые гидрометеорологической опасности, как это показано на рисунке А.9, графически отображают величину горизонтальной силы в основании МНГС или опрокидывающий момент как функцию повторяемости опасности. Формирование кривой гидрометеорологической опасности позволяет выполнить оценку в отношении различных периодов повторяемости, а также для периода повторяемости опасности, который нарушает уровень эффективности работы, который надо определить.
Примечание - Для конкретного сооружения и местоположения (палуба и естественный период) годовая вероятность превышения WiJF + WiDF, гидрометеорологическая неопределенность (H s и ) не включена.
Рисунок А.9 - Пример кривых направленной гидрометеорологической опасности
А.12.6.2 Гидрометеорологические критерии
Указания отсутствуют.
А.12.6.3 Высота волны
Указания отсутствуют.
А.12.6.4 Вектор гидрометеорологического воздействия - ОЧ
Указания отсутствуют.
А.12.6.5 Вектор гидрометеорологического воздействия - палуба
Повреждение МНГС и опыт возникновения отказов в Мексиканском заливе США показывает, что МНГС более подвержены повреждению, если волны затапливают палубу МНГС. Тем не менее расчет волновых сил на палубу и оборудование палубы - непростая задача.
Существует несколько методов расчета воздействия волн на палубу, и они могут быть использованы при выполнении гидрометеорологической оценки в соответствии с настоящим стандартом. Методы с учетом усложнения включают в себя:
- силуэтный метод;
- поток импульса;
- моделирование CFD;
- испытания в бассейне.
Выбор метода для определения воздействия волн на палубу должен быть основан на оценке побудительной причины анализа, а также выбранной методике оценки. Менее сложные методики могут быть использованы для отбора группы и региона расположения МНГС и могут обеспечить предварительную оценку, пригодную для определения стратегии УКЦ по инспекции и мониторингу. Более сложные методы можно применять, когда требуется точная вероятность отказа МНГС. Ограничение по каждому методу должно быть понятно перед тем, как указывать используемый метод.
Силуэтный метод является самым простым в применении, и он исторически использовался исключительно для анализа МНГС в Мексиканском заливе США. Подход был сопоставлен с ожидаемыми и неожиданными отказами МНГС, и результативность метода подтверждена исследованиями после события.
Были сделаны попытки модифицировать существующие методы анализа воздействия волн на палубу (ненаправленные регулярные волны с CFD), чтобы приспособить гребни волн, кинематику, ударные волны и эффекты площади распространения в простой манере.
Большие волны в реалистичных состояниях моря распространяются направленно, неединообразно и нелинейно. В результате по сравнению с регулярными волнами Стокса они, как правило, более крутые, с более высокими скоростями в гребнях волн, менее продолжительным воздействием и уменьшенным пространственным распространением воздействия. Кроме того, существует возможность того, что в морях с крутыми волнами самые большие волны могут быть ударными. Более того, критерии проектирования обычно определяются на основе статистических данных в одной точке, и поэтому может быть недооценена вероятность воздействия на палубу по всей площади палубы в плане ("эффект площади распространения"). В настоящее время единственным методом, учитывающим эти эффекты, являются испытания в бассейне. Поэтому если для анализа МНГС применяются другие методы с использованием риска для безопасности жизни, то результаты должны быть валидированы по сравнению с испытаниями в бассейне волновой нагрузки на аналогичные МНГС с аналогичными уровнями затопления при аналогичных состояниях моря. Кроме того, должно быть показано, что когда включены эффекты и неопределенности, то динамическое воздействие регулярной волны с конкретной высотой гребня эквивалентно воздействию реалистичной аномальной волны с такой же высотой гребня.
Когда затопление незначительное, воздействие всенаправленной регулярной волны приведет к намного большему объему воды, поступающей на палубу, чем то количество, которое будет в действительности, и даст консервативную оценку нагрузок волн на палубу. Тем не менее в тех случаях, когда происходит сильное затопление, скорости регулярной волны будут сильно занижены по сравнению с реальными скоростями больших крутых, возможно ударных, нерегулярных волн, и поэтому нагрузки будут недооценены.
Даже если не прогнозируется, что воздействие волн на палубу запустит оценку МНГС, воздействие волн может оказываться на другие участки палубы, такие как колодец и спайдерные палубы, и поэтому должно быть определено воздействие волн на эти участки. Может произойти локальное воздействие волн выше максимального гребня из-за влияния, которое не учитывается в анализе, и такие воздействия должны учитываться в локальном анализе конструктивной целостности.
А.12.6.6 Направленность гидрометеорологических опасностей
Там, где используются направленные вариации параметров, сектора, как правило, не должны быть менее 45°. Кроме того, гидрометеорологические условия должны быть масштабированы таким образом, чтобы комбинированное событие из всех секторов имело одинаковую вероятность превышения, как и у целевого периода повторяемости.
А.12.6.7 Метод расчетного уровня
А.12.6.7.1 Предельное состояние
Коэффициенты безопасности указываются посредством коэффициентов частичного воздействия и коэффициентов частичного сопротивления, применяемых в отношении характерных сопротивлений. Коэффициенты частичного воздействия определены с помощью анализа конструктивной надежности на основе типичных кривых опасности.
В ГОСТ Р 54483 указано определение предельного состояния как состояния, за пределами которого конструкция более не удовлетворяет соответствующим критериям проектирования, а также объясняется, что процедура проектирования на основе предельного состояния в сочетании с указаниями по строительству и эксплуатации должна привести к соответствию конструкции требованиям определенного уровня надежности.
Достижение уровня рабочих параметров для гидрометеорологической опасности, которая присуща предельному состоянию, подтвердит, что МНГС обладает вероятностью обрушения более низкой, чем уровень рабочих параметров, рекомендованных в таблице 5, и согласно методу расчетного уровня четко показан метод предельного состояния. Это предполагает, что не возникает воздействия волн на палубу в этом периоде повторяемости.
Анализ метода расчетного уровня на основе предельного состояния, как правило, используется для сравнительно новых МНГС, где не предполагается ухудшение свойств, а гидрометеорологические критерии такие же, как и в первоначальном проекте, однако предлагается увеличение нагрузок в ВС либо добавляются дополнительные направления или принадлежности. Как правило, в ходе проектирования метод расчетного уровня применяется в отношении предельных состояний применительно к нагрузке ВС, которая не должна превышать в рамках конверта CoG. При условии, что предлагаемое увеличение нагрузки ВС по-прежнему в рамках NTE и конверт CoG используется в ходе проектирования, это может быть документально оформлено в оценке, и поэтому анализ не требуется.
В работах [24] и [25] показано, что МНГС, спроектированное в соответствии с процедурой на основе предельного состояния, будет иметь уровень надежности с точки зрения годовой вероятности потери прочности на смятие из-за гидрометеорологических опасностей порядка 10 -5-10 -4 при условии, что есть клиренс для определенной высоты гребня.
А.12.6.7.2 Аномальное предельное состояние
Указания отсутствуют.
А.12.6.8 Линейно-упругий метод резервирования
Указания отсутствуют.
А.12.6.9 Метод расчета по предельным нагрузкам
А.12.6.9.1 Общие сведения
Указания отсутствуют.
А.12.6.9.2 Статический нелинейный анализ
Указания отсутствуют.
А.12.6.9.3 Динамический нелинейный анализ
Указания отсутствуют.
А.12.7 Оценка сейсмической опасности
А.12.7.1 Общие сведения
Кривые сейсмической опасности, как это показано на рисунке А.10, показывают величину доминантного спектрального ускорения МНГС как функцию повторяемости опасности. Формирование кривой сейсмической опасности позволяет выполнить оценку для различных периодов повторяемости, а также для повторяемости опасности, которая нарушает уровень эффективности работы, которые должны быть определены.
х - спектральное ускорение (1,0 = спектральное ускорение превысило n раз в 100 лет) - фактор средней массы ВС; y - годовая вероятность превышения
Рисунок А.10 - Пример кривой сейсмической опасности
При условии, что площадка МНГС не закрыта для контроля активных отказов, использование движений грунта в многочисленных возможных ориентациях не требуется, поэтому вполне приемлемо рассматривать одиночную произвольную ориентацию указанной горизонтальной пары компонентов ускорения. Например, анализ может быть выполнен с компонентом 1, который приложен в направлении +Х без учета последствий применения этого компонента в направлениях -X, +Y, -Y или других. Поскольку целью анализа является оценка "средних" количественных показателей отклика, то может стать целесообразным рассмотреть наличие нежелательного смещения направления в выбранных и масштабированных движениях грунта. Например, в общем случае, когда контролирующий источник не должен формировать сильно направленный отклик, записи могут быть ориентированы на практике, поэтому середина спектра компонента 1 аналогична середине спектра компонента 2. Требуется "рассредоточить" сейсмическую опасность в тех редких случаях, когда сильно направленный отклик ожидается на площадках, близких к контролю активных отказов.
Анализ отклика площадки распространяет горизонтальные движения грунта от уровня основной породы до границы ила. Вертикальные движения грунта не испытывают воздействия локальных грунтов из-за постоянной скорости Р-волны насыщенных грунтов.
А.12.7.2 Сейсмические критерии
Указания отсутствуют.
А.12.7.3 Вектор сейсмического воздействия
Указания отсутствуют.
А.12.7.4 Направленность сейсмических опасностей
Указания отсутствуют.
А.12.7.5 Метод расчетного уровня
= 0,9 представляет собой коэффициент частичного воздействия на векторе сейсмического воздействия и при умножении на коэффициент частичного сопротивления = 1,18 max дает совокупный коэффициент безопасности, близкий к единице, для компонентов с UR = 1 % и 100 %, используемый в сейсмическом воздействии. Коэффициент частичного воздействия, равный 1,1, дает совокупный коэффициент безопасности для элементов, 100 % используемых в постоянных воздействиях, и для элементов, 100 % используемых в переменных воздействиях.
А.12.7.6 Метод расчета по предельным нагрузкам
Указания отсутствуют.
А.12.7.6.1 Статический нелинейный анализ
Указания отсутствуют.
А.12.7.6.2 Динамический нелинейный анализ
Одной из причин неопределенности к обрушению является то, что спектральное ускорение, связанное с движением грунта, которому МНГС может противостоять без обрушения, как правило, зависит от других характеристик движения грунта. В пределе это будет зависеть от всего временного графика ускорения формы колебаний движения грунта.
Поскольку форма волны неопределенная, то аналогичным является соответствующее спектральное ускорение, которому МНГС может сопротивляться без обрушения. Этот источник неопределенности часто называют "изменчивость записей". Анализ изменений во времени выполняется в отношении семи акселерограмм, которые масштабируются на основе семи реальных землетрясений, и поэтому их спектр отклика согласуется с необходимым спектром. Семь акселерограмм обеспечивают неопределенность изменчивости записей, которая затем вводится в анализ изменений во времени. Другой причиной того, что способность к обрушению неопределенная, является то, что спектральное ускорение, связанное с обрушением, зависит от подробностей строительства МНГС. Эти подробности неопределенные из-за того, что присутствует изменчивость качества строительства, свойств материалов, неструктурных компонентов, а также других характеристик МНГС, которые имеют отношение к обрушению. Поскольку источник неопределенности в основном обусловлен нехваткой информации (так называемая "гносеологическая неопределенность"), то его труднее количественно определить.
Как бы то ни было, он может внести существенный вклад в общую неопределенность способности потери прочности на смятие. Фактор С С представляет эту неопределенность в анализе изменений во времени.
Циклическая амплитуда грунта в сейсмических условиях существенно больше, чем обычно это представляется в ходе мониторинга естественной частоты. Корректировка пружин грунта для согласования вычисленных естественных периодов МНГС с измеренными значениями может быть выполнена путем коррекции только начальных тангенциальных модулей пружин грунта, поскольку измерения естественного периода, как правило, основаны на небольших смещениях. Удлинение периода МНГС в ходе сейсмического события может быть представлено путем развития ухудшения пружин грунта в ходе анализа изменений во времени.
А.12.8 Оценка опасности столкновения
А.12.8.1 Общие сведения
Кривые опасности столкновения, как это показано на рисунке А.11, графически формируют величину кинетической энергии судна как функции повторяемости опасности. Формирование кривой опасности столкновения позволяет выполнить оценку различных периодов повторяемости, а также для повторяемости опасности, нарушающей уровень эффективности работы, который должен быть определен.
Рисунок А.11 - Пример кривой опасности столкновения судов
А.12.8.2 Зона столкновения
Указания отсутствуют.
А.12.8.3 Направленность опасностей столкновения
Указания отсутствуют.
А.12.9 Анализ ледовых опасностей
Кривые ледовых опасностей, как это показано на рисунке А.12, графически отображают величину ледового воздействия как функцию повторяемости опасности. Построение кривой ледовой опасности позволяет выполнить оценку для различной повторяемости, а также для повторяемости опасности, нарушающей уровень эффективности работы, который должен быть определен.
z, Z - воздействие; P(Z > z) - годовая вероятность, что воздействие Z превысит указанное значение z (годовая вероятность превышения); zA - воздействие ALIE; zE - воздействие ELIE; I - частые события; II - редкие события; х - ледовое воздействие; y - годовая вероятность превышения
Рисунок А.12 - Пример кривой ледовой опасности (см. [10])
А.12.10 Оценка опасности взрыва
Указания отсутствуют.
А.12.11 Оценка опасности пожара
Указания отсутствуют.
А.13 Повторное использование
А.13.1 Общие сведения
МНГС, как правило, проектируются для изготовления, погрузки, транспортировки и монтажа на берегу. Если выполнить последовательность строительства в обратном порядке, то МНГС могут быть удалены, отправлены обратно, транспортированы, модифицированы и повторно смонтированы на другом месте.
МНГС или часть МНГС могут быть использованы повторно в зависимости от их пригодности и состояния. Необходимость повторно использовать МНГС с теми же ВС, или наоборот, отсутствует. Элементы могут быть обновлены или заменены (например, большинство свай, как правило, потребует капитального ремонта или замены).
Повторно используемые МНГС удаляют до повторного монтажа, и это позволяет провести упрочнение и ремонт в качестве целесообразных вариантов ослабления последствий. Повторно используемые МНГС должны быть проанализированы в соответствии с критериями проектирования, а не с критериями оценки, которые предусматривает настоящий стандарт.
А.13.2 Усталость в повторно используемых МНГС
Восстановительные работы (например, шлифование сварных швов, цементирование и армирование) могут улучшить усталостные показатели и могут быть полезны, когда МНГС предполагается использовать повторно.
А.13.3 Материалы в повторно используемых МНГС
Указания отсутствуют.
А.13.4 Инспекция повторно используемых МНГС
А.13.4.1 Общие сведения
Указания отсутствуют.
А.13.4.2 Оценка первоначального состояния конструктивных элементов и соединений
Указания отсутствуют.
А.13.4.3 Объем инспекции сварных швов
А.13.4.3.1 Общие сведения
Поскольку стоимость и значение инспекции для безопасности меньше, когда МНГС демонтировано, то инспекция МНГС в сухом доке должна быть проведена для сооружений, предназначенных для повторного использования.
Когда только частичные испытания требуются для сварных швов на участке, испытание сварных швов должно быть распределено таким образом, чтобы наиболее ответственные элементы были включены в инспекцию, и будут обследоваться участки сварных швов, наиболее подверженные образованию дефектов или повреждению в результате предыдущей эксплуатации.
Минимальная инспекция сварных швов на МНГС, предназначенном для повторного использования, должна включать:
- основные трубные элементы;
- основные трубные стыки;
- сваи;
- раскосы без резервирования и вспомогательные узлы;
- раскосы с резервированием и вспомогательные узлы;
- элементы палубы и соединения.
Минимальный объем инспекции сварных швов должен быть модифицирован в свете оценки конструктивной целостности состояния для повторного использования, а также истории предыдущей инспекции в ходе эксплуатации.
А.13.4.3.2 Основные трубные элементы
Объем инспекции основной конструкции должен определяться путем сопоставления проектных воздействий и напряжений (включая воздействия и напряжения при удалении и повторном монтаже) для новой площадки с теми, для которых предназначались сварные швы и/или которым подвергались.
Когда новые проектные воздействия и напряжения меньше или равны первоначальным проектным или фактическим воздействиям, то объем инспекции должен определяться на основе документации НК или результатов первоначального экспресс-осмотра.
Когда проектные воздействия и напряжения существенно выше первоначальных проектных или фактических воздействий или напряжений, либо когда невозможно провести сравнение с первоначальными проектными или фактическими воздействиями, то должны быть обследованы как минимум один раскос и один пролет между основными стойками на каждом уровне.
Дополнительная инспекция должна выполняться, когда известно или предполагается наличие повреждения в ходе эксплуатации.
Инспекция трубного элемента должна выполняться на основе ультразвукового испытания или порошковой магнитной дефектоскопии.
А.13.4.3.3 Основные трубные стыки
Сварные швы раскоса к хорде, а также раскоса к патрубку трубных стыков с высоким статическим или усталостным применением либо предрасположенные к случайным повреждениям должны быть на 100 % инспектируемыми. Когда в ходе инспекции НК этих стыков обнаруживаются дефекты, то должна выполняться дополнительная инспекция других соединений.
Минимум одно соединение раскоса с хордой на каждом уровне, а также одно соединение Х-образного раскоса между уровнями, если применимо, должны инспектироваться на 100 %.
Инспекция трубного стыка должна выполняться с использованием метода ультразвукового испытания или порошковой магнитной дефектоскопии. Для трубных соединений, не имеющих стали класса CV2Z или выше в толстостенных приемных трубах, должны использоваться методы ультразвукового испытания или порошковой магнитной дефектоскопии.
А.13.4.3.4 Сваи
Не менее 10 % каждого продольного и кругового шва на сваях, отобранных для повторного использования, должно быть проинспектировано с использованием ультразвукового испытания или порошковой магнитной дефектоскопии.
100 % каждой предохранительной стыковой накладки на сваях должно быть обследовано с помощью ультразвукового испытания или порошковой магнитной дефектоскопии.
А.13.4.3.5 Раскосы без резервирования и вспомогательные узлы
Раскосы без резервирования и вспомогательные узлы (например, проушины, крепления для подъема, направляющая рама направления на уровне выше морского дна) должны быть на 100 % обследованы с использованием ультразвукового испытания или порошковой магнитной дефектоскопии.
Присоединительные сварные швы, соединяющие раскосы без резервирования/вспомогательные узлы к основным элементам, должны быть на 100 % обследованы с применением ультразвукового испытания или порошковой магнитной дефектоскопии.
А.13.4.3.6 Раскосы с резервированием и вспомогательные узлы
Не менее 10 % каждого сварного шва на раскосах с резервированием и вспомогательных узлах (например, многоуровневая направляющая направления, вторичная зона периодического смачивания и раскосы на дне моря, площадки посадки-выгрузки) должно быть обследовано визуально.
Не менее 10 % каждого присоединительного сварного шва, соединяющего раскосы с резервированием к основным элементам, должно быть обследовано визуально.
Элементы палуб и соединения
Повторное использование ВС должно выполняться согласно ГОСТ Р 57555.
А.13.4.4 Системы защиты от коррозии
Указания отсутствуют.
А.13.5 Демонтаж и повторный монтаж МНГС
Аспекты демонтажа и повторного монтажа, которые не применяются при проектировании МНГС, включают в себя:
- демонтаж.
Конструкции, которые невозможно погрузить на баржи, могут быть удалены за счет контролируемой откачки балласта и перетаскивания конструкции обратно на баржу для спуска на воду. Такие операции требуют точного контроля балластировки баржи, а также позиционирования и согласования между конструкцией и баржой. Условия окружающей среды для демонтажа МНГС могут быть более жесткими, чем для монтажа;
- способность держаться на воде и придание плавучести.
Когда демонтаж с предыдущей площадки требует придания плавучести компонентам МНГС, то может потребоваться дополнительная способность держаться на воде помимо той, которая была обеспечена в момент первоначальной установки для компенсации потери плавучести и дополнительной массы, которая отсутствовала в ходе первоначального монтажа (например, зацементированные сваи);
- удаление обрастания.
При демонтаже МНГС с целью их повторного использования должно быть обеспечено оборудование для удаления обрастания из мест раскрепления. Если план удаления предусматривает волочение конструкции обратно на баржу для спуска на воду, то обрастание должно быть удалено с рельсовых направляющих спуска на воду, чтобы можно было прогнозировать коэффициент трения и усилия подъема на проушины и лебедки. Водоструйная или пескоструйная очистка от обрастания признана эффективной.
А.14 Вывод из эксплуатации
А.14.1 Общие сведения
Указания отсутствуют.
А.14.2 Процесс вывода из эксплуатации
А.14.2.1 Общие сведения
Процесс вывода из эксплуатации в целом подразделяется на отдельные мероприятия, перечисленные в таблице А.8.
Таблица А.8 - Мероприятия по выводу из эксплуатации
Мероприятие |
Описание |
Обследование/сбор данных перед выводом из эксплуатации |
Этап сбора информации нужен для приобретения знаний о существующем МНГС и его состоянии |
Проектирование и планирование |
Разработка плана вывода из эксплуатации на основе информации, собранной в ходе обследований перед выводом из эксплуатации |
Вывод из эксплуатации скважин |
Ликвидация стволов непродуктивных скважин |
Вывод из эксплуатации объектов обустройства |
Останов технологического оборудования и объектов обустройства, удаление потоков отходов и связанных мероприятий для безопасного и экологически приемлемого демонтажа |
Вывод из эксплуатации сооружения |
Удаление палубы, за которым следует демонтаж ОЧ. Все или части МНГС, как правило, удаляются с площадки для утилизации, переработки, использования в качестве искусственного рифа или повторного использования элементов МНГС |
Очистка площадки |
Заключительная очистка от мусора на морском дне |
А.14.2.2 Планирование
План вывода из эксплуатации подготавливается для каждого МНГС. План должен включать в себя метод и процедуры, разработанные для вывода из эксплуатации скважин, объектов обустройства, демонтаж МНГС и очистку площадки. Основное внимание должно быть уделено разработке приемлемого плана природоохранных мероприятий и метода безопасной эксплуатации. В зависимости от сложности МНГС могут потребоваться более подробные указания для специальных аспектов (например, удаление направления, промывка трубопровода, обращение с опасными материалами, опрокидывание). Должны быть выявлены ограничения по операциям из-за гидрометеорологических условий, устойчивости баржи и/или конструктивной прочности (т.е. грузоподъемности).
А.14.2.3 Анализ вариантов
Должны быть разработаны, проанализированы и отобраны и запущен процесс планирования вариантов вывода из эксплуатации, который включает проектирование и подготовку мероприятий по безопасности. Наилучший вариант вывода из эксплуатации не всегда обеспечивает такое же решение для различных групп по интересам. Основными сферами специального интереса являются окружающая среда, здоровье и безопасность помимо групп коммерческих интересов и политического воздействия.
Вариант вывода из эксплуатации должен включать предварительное условие, которое заключается в том, чтобы:
- добыча была остановлена;
- скважины были ликвидированы;
- водоотделяющие колонны были отсоединены после промывки и очистки трубопровода;
- технологическая система была выведена из эксплуатации;
- запасы материалов были удалены с МНГС и МНГС оставалось в безопасном состоянии.
А.14.2.4 Риски
Безопасный вывод из эксплуатации, демонтаж и утилизация МНГС и трубопроводов зависят от анализа рисков, а также наблюдения за безопасными системами работы. Многие опасности и меры контроля рисков, связанные с выводом из эксплуатации, демонтажем и утилизацией МНГС, похожи на те, которые возникают при строительстве или техническом обслуживании, выполняемом на берегу или на море. Безопасность людей предусматривает анализ рисков получения травм или смертельных исходов в результате осуществления процесса вывода из эксплуатации. Риски для безопасности жизни в процессе вывода из эксплуатации должны учитывать:
- безопасность на море;
- морские операции;
- работы на берегу;
- остаточные риски для безопасности, возникающие из конечной точки различных вариантов утилизации;
- риски, связанные с отклонением от плана.
Должны анализироваться относительные воздействия на окружающую среду различных вариантов, включая:
- морское последствие;
- береговое последствие;
- использование энергии и выброс двуокиси углерода;
- используемые технологии резки;
- перемещение бурового шлама;
- искусственные рифы;
- эффекты переработки и повторной обработки.
А.14.2.5 Ответственность
Сторона, которая отвечает за выполнение каждого этапа работ, должна подготовить план выполнения для этого этапа, если эксплуатирующая организация не распорядилась иначе. Эксплуатирующая организация должна обеспечить процедуру координации и одобрения между сторонами.
А.14.2.6 Квалификация персонала
Вывод из эксплуатации и демонтаж должны выполняться персоналом, обладающим опытом и знаниями в области безопасности, производственных процессов, операций на МНГС, морской транспортировки, конструктивных систем, трубопроводных операций и вывода из эксплуатации.
А.14.2.7 Записи и документация
При завершении вывода из эксплуатации каждая сторона должна составить и представить эксплуатирующей организации журналы ежедневных сводок с указаниями отклонений от процедур и необычных гидрометеорологических условий, убрать мусор и т.п. Хранение этих записей должно выполняться в соответствии с требованиями эксплуатирующей организации и регулятивного органа.
А.14.3 Сбор данных перед выводом из эксплуатации
Информация по состоянию объекта должна быть собрана до начала вывода из эксплуатации. Это включает в себя поиск файлов/чертежей с информацией, включая палубу ВС и проект, изготовление и монтаж вспомогательных конструкций, а также реконструкции конструкций, которые выполнены после монтажа. Файлы по монтажу должны быть просмотрены на предмет полевых заметок/сведений по ОЧ, палубе и массовым показателям оборудования. Данные по монтажу, включая измерение глубины установки свай, а также фактические массовые показатели подъема компонентов, как правило, документально оформляются в файлах.
Должна быть выполнена инспекция площадки для определения запасов материальных средств, оценки массовых показателей оборудования, подготовки отчетов по показателям массы, определения конструктивной целостности МНГС и состояния конструкций, выяснения состояния морского дна и подводных конструкций (данные, как правило, можно найти в последнем отчете подводной инспекции). Перед использованием существующих проушин необходимо с помощью НК выяснить их состояние. Инспекция должна помочь понять порядок демонтажа палубы.
А.14.4 Планирование и проектирование
Проектирование должно соединить вместе собранную информацию для формирования логичного, планового подхода к безопасному выводу из эксплуатации. Должны быть проанализированы технические и инженерные аспекты варианта, включая повторное использование и утилизацию, а также воздействие, связанное с очисткой или удалением углеводородов и отходов на МНГС, пока оно находилось в море.
Техническая осуществимость предусматривает анализ вероятности предлагаемого варианта, подготовка которого заканчивается вместе с рисками и последствиями отклонений от намеченного плана действий.
Техническая осуществимость должна учитывать массу ОЧ, глубину моря, тип МНГС, количество основных стоек, количество свай, дату вывода из эксплуатации, наличие мостовых соединений, наличие интегрированной палубы, массу ВС, общую массу, количество и размер модулей, максимальную массу модуля, размер основания, наличие бурового шлама, наличие донной плиты для бурения/скважинных патрубков, осуществимость одиночной вертикальной установки, наличие и функционирование спасательных средств, а также количество и размер емкостей для хранения.
А.14.5 Вывод скважин из эксплуатации
Ликвидация скважин является одним из основных этапов программы вывода из эксплуатации объекта. Вывод из эксплуатации предусматривает изолирование продуктивных зон ствола скважины с помощью цементирования, удаления некоторой части или всех НК и установки цементной пробки на поверхности скважины, верхняя часть пробки должна находиться на определенном расстоянии вниз от границы ила. Колонна внутренних обсадных труб должна быть обследована, чтобы подтвердить, что внутренний диаметр и глубина позволяют спустить взрывчатые вещества или режущие инструменты. Должна быть разработана процедура ликвидации скважин для герметизации ствола и предотвращения утечек. Технологии, используемые при выполнении этой задачи, должны быть основаны на отраслевом опыте, научных исследованиях и соответствовать нормативным требованиям и стандартам.
А.14.6 Вывод из эксплуатации объектов обустройства
Останов и очистка объектов обустройства ВС представляют собой основной компонент вывода из эксплуатации. Этот этап критичен для эффективности программы и включает в себя заключительный останов, промывку и отсоединение технологического оборудования, в том числе механические и электрические компоненты, а также обрезку конструктивных и технологических труб и перемещение оборудования для минимизации мероприятий, которые необходимо выполнить, пока судно для перевозки тяжеловесных грузов находится на площадке.
ВС могут существенно различаться по размеру, функциональности и сложности, и поэтому количество вариантов вывода из эксплуатации следует оценивать при планировании проекта. Одна черта, характерная для всех вариантов вывода из эксплуатации, - это сбор и обращение с опасными и неопасными отходами в соответствии с законодательными требованиями.
Перед удалением должен быть разработан план по утилизации материалов с МНГС. В плане должны быть указаны материалы, которые перерабатываются (например, сталь, резина, алюминий), и включены положения по переработке. Для тех изделий, которые не отобраны для переработки, в плане вывода из эксплуатации должно быть рассмотрено влияние утилизации в месте сброса отходов в окружающую среду. Твердые отходы должны утилизироваться на берегу в соответствии с приемлемыми практиками утилизации.
Технологические системы на МНГС должны быть промыты, продуты и дегазированы, чтобы удалить остаточное давление и уловленные углеводороды/флюиды. Должны быть введены в действие процедуры по безопасности, связанные с навешиванием блокирующих устройств, предупредительных табличек, проведения огневых работ и работ в замкнутых объемах. Углеводороды и другие остатки должны быть удалены в той степени, пока они не перестанут воздействовать на огневые работы и другие операции в ходе обрезания и подъема.
А.14.7 Вывод из эксплуатации трубопровода
Все трубопроводы или выкидные линии, подсоединенные к МНГС, должны быть выведены из эксплуатации. Стоимость и сложность вывода из эксплуатации обусловлены диаметром труб, глубиной моря, глубиной заглубления трубопровода, а также в зависимости от конфигурации трубопровода "водоотделяющей колонны к водоотделяющей колонне" или соединения двух ниток трубопровода методом захлеста. Метод захлеста может потребовать проведения дополнительных подводных работ в ходе операций промывки, и это может увеличить стоимость вывода из эксплуатации. Вывод трубопровода из эксплуатации по месту включает промывку трубопровода, обрезку и установку пробок на концах трубопровода, а также заглубление концов в грунт, чтобы они не создавали препятствий на морском дне в будущем.
А.14.8 Демонтаж направления
После того как завершены операции по ликвидации скважин, необходимо демонтировать направления до указанной глубины ниже границы ила, как это предусмотрено местным законодательством. Направления могут быть обрезаны и удалены перед приходом судна для перевозки тяжеловесных грузов либо могут быть удалены с помощью этого судна. Обрезка, вытаскивание, удаление и хранение направления должны планироваться.
А.14.9 Вывод из эксплуатации МНГС
А.14.9.1 Общие сведения
Вопросы утилизации являются сложными и увязанными с отраслевыми мощностями, природоохранными факторами и руководящими принципами, влияющими на участок вывода из эксплуатации. Эти переменные величины сужают имеющийся выбор вариантов утилизации материалов палубы и ОЧ.
Существует три основных метода утилизации:
- восстановление и повторное использование;
- разборка на слом и переработка;
- утилизация на указанных полигонах для захоронения отходов.
А.14.9.2 Демонтаж сооружения
Существует много проблем при выводе МНГС из эксплуатации, которые обусловлены глубиной моря и массой конструкции МНГС. Имеются ограничения в отношении оборудования и способов, которые должны быть проанализированы, чтобы выбрать наилучшую комбинацию ресурсов и технологий и придерживаться эксплуатационных и гидрометеорологических критериев, установленных для вывода площадки из эксплуатации.
Удаление МНГС должно быть выполнено на основе методологии, которая является эффективной, при этом обеспечивая безопасность для рабочих, а также сводя к минимуму возможное влияние на окружающую среду.
А.14.9.3 Демонтаж палубы и модулей
Удаление палубы состоит из удаления интегрированной палубы или палубных модулей, а также вспомогательной рамы модуля. Данные позиции должны быть подготовлены для подъема на этапе вывода из эксплуатации объектов обустройства. Это может быть достигнуто одним из следующих методов:
- удаление как одно целое;
- удаление групп модулей вместе;
- удаление в порядке, обратном монтажу;
- удаление небольшими частями.
Во многих случаях удаление ВС, скорее всего, будет представлять процесс, обратный монтажу. Тем не менее процесс удаления более сложный, чем процесс монтажа, так как нужно учитывать конструктивные модификации и дополнение/демонтаж оборудования в течение срока службы МНГС.
Анализ с точки зрения безопасности методов удаления должен выполняться для каждого МНГС. Анализ конструктивной целостности поднимаемых частей и точек подъема должен быть выполнен, чтобы подтвердить безопасность операций подъема.
А.14.9.4 Демонтаж ОЧ
Удаление ОЧ может быть выполнено различными способами и с использованием ряда методологий. Операции по удалению ОЧ проводят после завершения вывода из эксплуатации трубопровода и удаления палубы. Существуют следующие варианты:
a) полное удаление (на берег для переработки или утилизации как мусора, транспортировка на площадку для искусственного рифа, повторное или иное использование);
b) частичное удаление (на берег для переработки или утилизации как мусора и оставление оставшейся части конструкции на месте в качестве искусственного рифа);
c) повторное или иное использование;
d) затопление или опрокидывание на площадке как части программы искусственного рифа;
e) оставление на месте там, где это разрешено;
f) проектирование конструкций корпуса, потенциальное повторное использование, наличие оборудования для удаления, метод утилизации, а также законодательные требования, распространяющиеся на место вывода из эксплуатации, должны определять метод удаления ОЧ.
Эти аспекты взаимосвязаны, непосредственно влияют на операции по удалению и могут влиять на выбор метода разрезания свай и направления скважины. Метод отрезания вне зависимости от того, будут ли использованы взрывчатые вещества, абразивно-отрезные устройства или механические режущие инструменты, будет определять результат удаления ОЧ;
g) ОЧ, которые первоначально были установлены с использованием подъемных операций, могут быть удалены с помощью процесса, который, по существу, будет демонтажем в порядке, обратном монтажу. ОЧ, которые были первоначально установлены путем спуска на воду и которые не могут быть подняты на баржи, могут быть удалены с использованием контролируемой дебалластировки и затаскивания на полозьях ОЧ обратно на баржу. Другой вариант удаления предусматривает подводное разрезание ОЧ на меньшие по размеру части для подъема. Должны быть решены вопросы погрузки и обращения с разрезанными частями.
А.14.9.5 Демонтаж ОЧ - частичное
Перед частичным удалением должны быть определены оптимальные места разрезания ОЧ, чтобы свести к минимуму водолазные работы и использование режущих приспособлений на площадке. Глубина, на которой будет разрезаться ОЧ, должна быть определена на основе требований эксплуатирующей организации и надзорного органа.
В отношении ОЧ, которые запланированы для опрокидывания, должны быть вычислены усилия для каждой секции, чтобы подтвердить тот факт, что морское оборудование, выбранное для опрокидывания ОЧ, обладает необходимой способностью. Перед опрокидыванием могут быть использованы водолазы или дистанционно управляемый аппарат, чтобы верифицировать факт полного отрезания каждого стального элемента.
А.14.9.6 Демонтаж ОЧ - создание рифа на удалении
Создание рифа на удалении предусматривает подъем или восстановление плавучести и транспортировку ОЧ на новое место. Должны быть определены масса и плавучесть для установления необходимой подъемной нагрузки или добавленной плавучести. Подъемные проушины могут быть предварительно приварены к ОЧ в ходе этапа его подготовки к удалению.
Должен быть выбран маршрут буксировки, чтобы обойти подводные препятствия. Может быть выполнено исследование маршрута буксировки с целью определения соответствующего маршрута буксировки.
А.14.10 Очистка площадки
Должна быть выполнена очистка площадки для недопущения отрицательного воздействия мусора и нарушений морского дна за счет проведения нефтегазовых морских операций.
Могут быть использованы следующие типовые процедуры:
- съемка места работ локатором бокового обзора;
- инспекция и очистка места работ;
- траление места работ.
Существует много способов определения местонахождения и удаления мусора с помощью имеющегося на месте оборудования, на выбор которого будет также влиять и глубина моря. Должна выполняться предварительная съемка площадки с помощью сонара бокового обзора, чтобы представить целевой перечень и местонахождение мусора. Удаление мусора должно быть выполнено в указанном радиусе площадки вывода из эксплуатации. Мусор, удаляемый с морского дна, должен утилизироваться.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.