Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение 2
Справочное
Опытно-статистические методы
определения параметров точности ТС технологических операций
1. Определение параметров точности ТС опытно-статистическими методами производится на основе статистической обработки мгновенных выборок.
2. Расчет среднего значения и среднего квадратического отклонения по одной выборке
2.1. Среднее значение или центр рассеяния определяют по формуле
,
(1)
если результаты измерения х i записаны в абсолютных значениях параметра, и по формуле
,
(2)
если результаты измерения x i записаны в отклонениях от заданного начала отсчета x 0.
2.2. Пример. При обработке вала по диаметру 13,3h8 -0,27 на токарном автомате в мгновенной выборке, состоящей из пяти деталей, были получены отклонения диаметра от начала отсчета, которое было принято равным 13 мм; 0,25; 0,28; 0,26; 0,1; 0,14 мм.
По формуле (2) определяем
.
2.3. Среднее квадратическое отклонение определяют по формуле
(3)
или по формуле
,
(4)
где R = x max - x min - величина размаха в мгновенной выборке;
x max, x min - максимальное и минимальное значения в мгновенной выборке;
d n - коэффициент, изменяющийся в зависимости и от объема n мгновенной выборки и определяемый по табл. 1.
Таблица 1
n |
d n |
n |
d n |
2 |
1,12 |
11 |
3,173 |
3 |
1,693 |
12 |
3,258 |
4 |
2,059 |
13 |
3,336 |
5 |
2,326 |
14 |
3,407 |
6 |
2,534 |
15 |
3,472 |
7 |
2,704 |
16 |
3,532 |
8 |
2,847 |
17 |
3,588 |
9 |
2,970 |
18 |
3,640 |
10 |
3,078 |
19 |
3,689 |
|
|
20 |
3,735 |
2.4. Пример. Определить среднее квадратическое отклонение по данным п. 2.2. По формуле (3) определяем
.
По формуле (4) определяем ту же величину
,
где величину 2,326 = d n определяем по табл. 1 для n = 5.
3. Расчет среднего значения и среднего квадратического отклонения по нескольким мгновенным выборкам
3.1. Среднее значение рассчитывают по формуле
,
(5)
где - среднее значение j-й мгновенной выборки;
m - число мгновенных выборок.
3.2. Пример. Определить среднее значение контролируемого параметра по данным четырех мгновенных выборок, полученных при обработке вала диаметром 13,3h8 -0,27 и приведенных в табл. 2.
По формуле (1) рассчитывают среднее значение х j контролируемого параметра для каждой мгновенной выборки. Результаты расчета приведены в нижней строке табл. 2.
Таблица 2
Номер детали в выборке |
Номер выборки |
|||
1 |
2 |
3 |
4 |
|
1 |
13,25 |
13,18 |
13,19 |
13,13 |
2 |
13,28 |
13,22 |
13,20 |
13,13 |
3 |
13,26 |
13,14 |
13,22 |
13,29 |
4 |
13,10 |
13,20 |
13,28 |
13,21 |
5 |
13,14 |
13,25 |
13,25 |
13,20 |
13,206 |
13,178 |
13,228 |
13,192 |
По формуле (5) определяем искомое среднее значение
.
3.3. Среднее квадратическое отклонение по нескольким мгновенным выборкам одинакового объема рассчитывают по формуле
,
(6)
где S j - среднее квадратическое отклонение в j-й мгновенной выборке, определяемое по п. 2.3.
3.4. Пример. Определить среднее квадратическое отклонение по данным п. 3.2 (табл. 2).
Определяем величины S j для каждой мгновенной выборки по формуле (3) п. 2.3.
Результаты расчетов сведены в табл. 3.
Таблица 3
Номер выборки |
1 |
2 |
3 |
4 |
S j |
0,080 |
0,033 |
0,037 |
0,066 |
По формуле (6) определяем искомую величину
.
3.5. В некоторых случаях среднее квадратическое отклонение с достаточной для практики точностью можно определить методом размахов. В этом случае используют формулу
,
,
(7)
где R j - величина размаха в j-й мгновенной выборке.
3.6. Пример. Определить среднее квадратическое отклонение методом размахов по данным п. 3.2 (табл. 2). Определяем величины R j как разность максимального и минимального значений параметра в j-й мгновенной выборке. Результаты расчетов сведены в табл. 4.
Таблица 4
Номер выборки |
1 |
2 |
3 |
4 |
R j |
0,18 |
0,08 |
0,09 |
0,13 |
Определяем искомую величину по формуле (7):
.
4. Оценку достоверности полученных значений параметров точности по пп. 2 и 3 следует производить методом доверительных интервалов, исходя из общего объема выборки n.
4.1. Доверительным интервалом для величины х будет интервал
,
(8)
в котором определяют по формуле
,
(9)
где - квантиль распределения Стьюдента, определяемый для заданной доверительной вероятности , по табл. 5 в зависимости от уровня значимости и числа степеней свободы k = n - 1;
S - среднее квадратическое отклонение в выборке.
Таблица 5
Значения квантилей распределения Стьюдента
K |
Уровень значимости |
||||||
0,80 |
0,40 |
0,20 |
0,10 |
0,05 |
0,02 |
0,01 |
|
1 |
0,325 |
1,376 |
3,078 |
6,314 |
12,706 |
31,821 |
63,657 |
2 |
0,289 |
1,061 |
1,886 |
2,920 |
4,303 |
6,965 |
9,925 |
3 |
0,277 |
0,978 |
1,638 |
2,353 |
3,182 |
4,541 |
5,841 |
4 |
0,271 |
0,941 |
1,533 |
2,132 |
2,776 |
3,747 |
4,604 |
5 |
0,267 |
0,920 |
1,476 |
2,015 |
2,571 |
3,365 |
4,032 |
6 |
0,265 |
0,906 |
1,440 |
1,943 |
2,447 |
3,143 |
3,707 |
7 |
0,263 |
0,896 |
1,415 |
1,895 |
2,365 |
2,998 |
3,499 |
8 |
0,262 |
0,889 |
1,397 |
1,860 |
2,306 |
2,896 |
3,355 |
9 |
0,261 |
0,883 |
1,383 |
1,833 |
2,262 |
2,821 |
3,250 |
10 |
0,260 |
0,879 |
1,372 |
1,812 |
2,228 |
2,764 |
3,169 |
11 |
0,260 |
0,876 |
1,363 |
1,796 |
2,201 |
2,718 |
3,106 |
12 |
0,259 |
0,873 |
1,356 |
1,782 |
2,179 |
2,681 |
3,055 |
13 |
0,259 |
0,870 |
1,350 |
1,771 |
2,160 |
2,650 |
3,012 |
14 |
0,258 |
0,868 |
1,345 |
1,761 |
2,145 |
2,624 |
2,977 |
15 |
0,258 |
0,866 |
1,341 |
1,753 |
2,131 |
2,602 |
2,947 |
16 |
0,258 |
0,865 |
1,337 |
1,746 |
2,120 |
2,583 |
2,921 |
17 |
0,257 |
0,863 |
1,333 |
1,740 |
2,110 |
2,567 |
2,898 |
18 |
0,257 |
0,862 |
1,330 |
1,734 |
2,101 |
2,552 |
2,878 |
19 |
0,257 |
0,861 |
1,328 |
1,729 |
2,093 |
2,539 |
2,861 |
20 |
0,257 |
0,860 |
1,325 |
1,725 |
2,086 |
2,528 |
2,845 |
21 |
0,257 |
0,859 |
1,323 |
1,721 |
2,080 |
2,518 |
2,831 |
22 |
0,256 |
0,858 |
1,321 |
1,717 |
2,074 |
2,508 |
2,819 |
23 |
0,256 |
0,858 |
1,319 |
1,714 |
2,069 |
2,500 |
2,807 |
24 |
0,256 |
0,857 |
1,318 |
1,711 |
2,064 |
2,492 |
2,797 |
25 |
0,256 |
0,856 |
1,316 |
1,708 |
2,060 |
2,485 |
2,787 |
26 |
0,256 |
0,856 |
1,315 |
1,706 |
2,056 |
2,479 |
2,779 |
27 |
0,256 |
0,855 |
1,314 |
1,703 |
2,052 |
2,473 |
2,771 |
28 |
0,256 |
0,855 |
1,313 |
1,701 |
2,048 |
2,467 |
2,763 |
29 |
0,256 |
0,854 |
1,311 |
1,699 |
2,045 |
2,462 |
2,756 |
30 |
0,256 |
0,854 |
1,310 |
1,697 |
2,042 |
2,457 |
2,750 |
40 |
0,255 |
0,851 |
1,303 |
1,684 |
2,021 |
2,423 |
2,704 |
60 |
0,254 |
0,848 |
1,296 |
1,671 |
2,000 |
2,390 |
2,660 |
120 |
0,254 |
0,845 |
1,289 |
1,658 |
1,980 |
2,358 |
2,617 |
0,253 |
0,842 |
1,282 |
1,645 |
1,960 |
2,326 |
2,576 |
4.2. В случае, если параметр х распределен по нормальному закону, его доверительный интервал определяют по формуле
,
(10)
где величины и (значения критерия согласия Пирсона) определяют по табл. 6 в зависимости от числа k = n - 1 и вероятности Р
.
(11)
Таблица 6
Значения в зависимости от P и k = n - 1
k |
Р |
|||||
0,005 |
0,025 |
0,05 |
0,95 |
0,995 |
0,999 |
|
1 |
7,80 |
5,00 |
3,80 |
0,004 |
0,001 |
0,00 |
3 |
13,00 |
9,30 |
7,80 |
0,35 |
0,20 |
0,01 |
5 |
17,00 |
12,70 |
11,00 |
1,10 |
0,83 |
0,15 |
7 |
20,50 |
16,00 |
14,00 |
2,20 |
1,70 |
0,60 |
10 |
25,00 |
20,50 |
18,50 |
4,00 |
3,20 |
1,50 |
15 |
33,00 |
27,50 |
25,00 |
7,40 |
6,20 |
3,40 |
20 |
40,00 |
34,00 |
31,00 |
11,00 |
9,60 |
6,00 |
25 |
47,00 |
40,50 |
38,00 |
14,50 |
13,00 |
8,60 |
30 |
54,00 |
47,00 |
44,00 |
18,50 |
16,70 |
11,50 |
36 |
62,00 |
54,00 |
51,00 |
23,00 |
20,21 |
15,00 |
40 |
66,00 |
60,00 |
56,00 |
26,00 |
24,00 |
18,00 |
46 |
74,00 |
66,00 |
62,00 |
31,00 |
29,00 |
21,00 |
50 |
78,00 |
72,00 |
68,00 |
35,00 |
32,00 |
24,00 |
56 |
86,00 |
78,00 |
74,00 |
40,00 |
37,00 |
28,00 |
60 |
92,00 |
84,00 |
78,00 |
41,00 |
40,00 |
31,00 |
66 |
98,00 |
90,00 |
86,00 |
48,00 |
46,00 |
36,00 |
70 |
104,00 |
95,00 |
90,00 |
52,00 |
48,00 |
39,00 |
Доверительная вероятность обычно принимается достаточно большой и равной 0,9; 0,95; 0,99 в зависимости от уровня требований, предъявляемых к качеству изготовляемой продукции.
4.3. Пример. Определить доверительный интервал для величин
,
рассчитанных в пп. 2.2. и 2.4 при общем объеме выборки n = 5.
Нумерация подпунктов приводится в соответствии с источником
4.4.1. Определяем доверительный интервал для по выражению (8)
.
Задаваясь доверительной вероятностью = 0,9, определяем уровень значимости
.
По табл. 5 для = 0,1 и k = n - 1 = 4 находим значение квантиля распределения Стьюдента = 2,132.
Рассчитываем величину по формуле (9):
.
Следовательно, I x = (13,121 13,291).
4.4.2. Определяем доверительный интервал для S по выражению (10)
.
Задаваясь доверительной вероятностью = 0,9, определяем вероятности Р по выражению (11)
; .
По табл. 6 для k = n - 1 = 4 находим значения критериев согласия Пирсона
, .
Следовательно,
.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.