Statistical methods. Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty evaluation
Дата введения - 1 января 2022 г.
Взамен ГОСТ Р ИСО 21748-2012
Предисловие
1 Подготовлен Закрытым акционерным обществом "Научно-исследовательский центр контроля и диагностики технических систем" (ЗАО "НИЦ КД") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
2 Внесен Техническим комитетом по стандартизации ТК 125 "Применение статистических методов"
3 Утвержден и введен в действие Приказом Федерального агентства по техническому регулированию и метрологии от 28 сентября 2021 г. N 1018-ст
4 Настоящий стандарт идентичен международному стандарту ИСО 21748:2017 "Руководство по использованию оценок повторяемости, воспроизводимости и правильности при оценке неопределенности измерений" (ISO 21748:2017 "Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty evaluation", IDT).
Международный стандарт разработан Техническим комитетом ISO/ТС 69.
Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5)
5 Взамен ГОСТ Р ИСО 21748-2012
Введение
Знание неопределенности результатов измерений крайне важно для интерпретации результатов. Без количественных оценок неопределенности невозможно принять решение о превышении наблюдаемых отклонений результатов измерений заданной характеристики изменчивости и соответствии объектов испытаний установленным требованиям. При отсутствии информации о неопределенности результатов измерений велика вероятность ошибочного принятия решений, которые могут привести к непредусмотренным расходам в процессе производства, неправильным судебным выводам, неблагоприятным последствиям для здоровья человека или неблагоприятным социальным последствиям.
Лаборатории, аккредитованные в соответствии с ИСО/МЭК 17025, обязаны оценивать неопределенность результатов измерений и испытаний и указывать ее в соответствующем отчете. В Руководстве ИСО/МЭК 98-3 установлен стандартный подход к оценке неопределенности результатов измерений. Приведенный в этом документе подход относится к ситуации, когда известна модель процесса измерений. Широкий диапазон стандартных методов испытаний может быть подвергнут совместному исследованию в соответствии с ИСО 5725-2. Настоящий стандарт устанавливает методы оценки неопределенности результатов измерений и испытаний, основанные на анализе данных, полученных при межлабораторном исследовании, и в полной мере соответствует принципам GUM.
Общий подход, используемый в настоящем стандарте, требует, чтобы:
- оценки повторяемости, воспроизводимости и правильности метода, полученные при межлабораторном исследовании в соответствии с ИСО 5725-2, могли быть получены из опубликованной информации об использовании метода испытаний. Эти оценки позволяют получать внутрилабораторные и межлабораторные составляющие дисперсии, а также оценку неопределенности результатов, связанную с правильностью метода;
- лаборатория подтвердила на основе проверок присущих ей смещения и прецизионности, что выполнение лабораторией метода испытаний соответствует установленным характеристикам метода испытаний. Это подтверждает, что опубликованные данные применимы к результатам, полученным лабораторией;
- все воздействия на результаты измерений, не охваченные межлабораторными исследованиями, были идентифицированы, а дисперсия, связанная с результатами, вызванными этими воздействиями, определена количественно.
Оценку неопределенности определяют путем объединения соответствующих оценок дисперсии в порядке, установленном в Руководстве по выражению неопределенности измерений (GUM). Эта оценка вместе с другими составляющими неопределенности может быть использована при оценке суммарной неопределенности или, при их отсутствии, может быть окончательной, установленной оценкой неопределенности.
Общий принцип применения данных воспроизводимости при оценке неопределенности иногда называют "нисходящим" подходом.
Для контроля полного понимания метода разброс результатов, полученных в межлабораторном исследовании, полезно сравнивать с оценками неопределенности измерений, полученными с использованием процедур GUM. Такие сравнения будут более эффективны при использовании последовательных оценок одного и того же параметра, полученных на основе данных совместных исследований.
1 Область применения
В настоящем стандарте приведено руководство для:
- оценки неопределенности результатов измерений на основе данных, полученных в результате исследований, проводимых в соответствии с ИСО 5725-2;
- сравнения результатов, полученных в межлабораторном исследовании, с оценками неопределенности измерений исследуемого параметра, полученными с использованием принципов распространения неопределенности (см. раздел 14).
В ИСО 5725-3 установлены дополнительные модели для анализа промежуточной прецизионности. Однако, хотя к использованию таких моделей может быть применен тот же общий подход, оценка неопределенности с использованием этих моделей не включена в настоящий стандарт.
Настоящий стандарт применим во всех областях измерений и испытаний, когда должна быть определена неопределенность результатов.
В настоящем стандарте не рассмотрено применение данных повторяемости в отсутствие данных воспроизводимости.
В настоящем стандарте использовано предположение, что признанные значимыми систематические воздействия устранены либо путем численной корректировки результатов, включенной в метод измерений, либо путем анализа и устранения причины воздействий.
В настоящем стандарте приведено общее руководство. Представленный подход к оценке неопределенности применим во многих случаях, однако возможно применение и других методов.
В общем случае информация, приведенная в настоящем стандарте, относительно результатов, методов и процессов измерений относится также к результатам, методам и процессам испытаний.
2 Нормативные ссылки
В настоящем стандарте нормативные ссылки отсутствуют.
3 Термины и определения
В настоящем стандарте применены термины по ИСО 5725-3, а также следующие термины с соответствующими определениями.
Терминологические базы данных ИСО и МЭК доступны по следующим интернет-адресам:
- электронная база МЭК Electropedia по адресу: http://www.electropedia.org/;
- электронная платформа ИСО с функцией онлайн-просмотра терминов по адресу: http://www.iso.org/obp.
3.1 смещение (bias): Разность между математическим ожиданием результатов измерений или испытаний и истинным значением.
Примечание 1 - Смещение представляет собой общую систематическую ошибку 1) в противоположность случайной ошибке. Могут существовать одна или несколько составляющих систематической ошибки. Большее систематическое отклонение от истинного значения соответствует большему значению смещения.
------------------------------
1)Применительно к измерениям под ошибкой следует понимать "погрешность".
------------------------------
Примечание 2 - Смещение средств измерений определяют в виде среднего арифметического ошибок его показаний по соответствующему количеству повторных измерений. Ошибка показания - "показания измерительного прибора минус истинное значение соответствующей величины".
Примечание 3 - На практике вместо истинного значения применяют принятое опорное значение.
[ИСО 3534-2:2006, 3.3.2]
3.2 суммарная стандартная неопределенность (combined standard uncertainty): Стандартная неопределенность результата измерения, полученного из значений ряда других величин, равная положительному квадратному корню взвешенной суммы дисперсий или ковариаций этих величин, весовые коэффициенты при которых определяются зависимостью изменения результата измерения от изменения этих величин.
[Руководство ИСО/МЭК 98-3:2008, 2.3.4]
3.3 коэффициент охвата (coverage factor): Коэффициент, на который умножают суммарную стандартную неопределенность для получения расширенной неопределенности.
Примечание - Коэффициент охвата k обычно принимает значения от 2 до 3.
[Руководство ИСО/МЭК 98-3:2008, 2.3.6]
3.4 расширенная неопределенность (expanded uncertainty): Величина, определяющая интервал вокруг математического ожидания результата измерения, который содержит большую часть распределения значений, которые с достаточным основанием могут быть приписаны измеряемой величине.
Примечание 1 - Долю распределения, охватываемую интервалом, можно рассматривать как вероятность охвата или уровень доверия для данного интервала.
Примечание 2 - Чтобы сопоставить интервалу, рассчитанному через расширенную неопределенность, некоторые значения уровня доверия, необходимо сделать в явном или неявном виде предположение о форме распределения вероятностей результатов измерений и их суммарной стандартной неопределенности (3.2). Уровень доверия, поставленный в соответствие этому интервалу, может соответствовать действительности только в той мере, в которой оправдано сделанное предположение о форме распределения.
Примечание 3 - В рекомендациях [20] расширенная неопределенность названа общей неопределенностью.
[Руководство ИСО/МЭК 98-3:2008, 2.3.5]
3.5 прецизионность (precision): Близость независимых результатов испытаний/измерений, полученных в конкретных регламентированных условиях.
Примечание 1 - Прецизионность зависит от распределения случайных ошибок и не связана ни с истинным, ни с установленным значениями.
Примечание 2 - Меру прецизионности обычно выражают в терминах неточности и вычисляют как стандартное отклонение результатов испытаний/измерений. Меньшая прецизионность соответствует большему стандартному отклонению.
Примечание 3 - Количественные значения меры прецизионности существенно зависят от принятых условий. Условия повторяемости (3.7) и условия воспроизводимости (3.10) являются примерами крайних вариантов принятых условий.
[ИСО 3534-2:2006, 3.3.4]
3.6 повторяемость (repeatability): Прецизионность (3.5) в условиях повторяемости (3.7).
Примечание - Повторяемость может быть выражена количественно в виде характеристики разброса результатов наблюдений.
[ИСО 3534-2:2006, 3.3.5]
3.7 условия повторяемости (repeatability conditions): Условия наблюдений, при которых независимые результаты испытаний/измерений получают одним и тем же методом на идентичных объектах испытаний/измерений, в одной и той же лаборатории, с применением одних и тех же средств испытаний/измерений, одним и тем же оператором, с использованием одного и того же оборудования в течение короткого периода времени.
Примечание - Условия повторяемости предполагают использование одних и тех же:
- процедур измерений или испытаний;
- операторов;
- измерительного и испытательного оборудования, используемого в одних и тех же условиях;
- расположений оборудования;
- повторений в течение короткого периода времени.
[ИСО 3534-2:2006, 3.3.6]
3.8 стандартное отклонение повторяемости (repeatability standard deviation): Стандартное отклонение результатов испытаний/измерений, полученных в условиях повторяемости (3.7).
Примечание 1 - Стандартное отклонение повторяемости является мерой рассеяния результатов испытаний или измерений в условиях повторяемости.
Примечание 2 - Аналогично могут быть введены и использованы в качестве меры рассеяния результатов испытаний или измерений в условиях повторяемости "дисперсия повторяемости" и "коэффициент вариации повторяемости".
[ИСО 3534-2:2006, 3.3.7]
3.9 воспроизводимость (reproducibility): Прецизионность (3.5) в условиях воспроизводимости (3.10).
Примечание 1 - Воспроизводимость может быть выражена количественно в виде характеристик разброса результатов.
Примечание 2 - Под результатами обычно понимают исправленные (скорректированные) результаты.
[ИСО 3534-2:2006, 3.3.10]
3.10 условия воспроизводимости (reproducibility conditions): Условия, при которых независимые результаты испытаний/измерений получены одним и тем же методом, на идентичных объектах испытаний/измерений, в разных лабораториях с применением различных средств испытаний/измерений, разными операторами с использованием различного оборудования.
[ИСО 3534-2:2006, 3.3.11]
3.11 стандартное отклонение воспроизводимости (reproducibility standard deviation): Стандартное отклонение результатов испытаний или измерений, полученных в условиях воспроизводимости (3.10).
Примечание 1 - Стандартное отклонение воспроизводимости является мерой рассеяния результатов испытаний или измерений в условиях воспроизводимости.
Примечание 2 - Аналогично могут быть введены и использованы в качестве меры рассеяния результатов испытаний или измерений в условиях воспроизводимости "дисперсия воспроизводимости" и "коэффициент вариации воспроизводимости".
[ИСО 3534-2:2006, 3.3.12]
3.12 стандартная неопределенность (standard uncertainty): Неопределенность (3.14) результата измерения, выраженная в виде стандартного отклонения.
[Руководство ИСО/МЭК 98-3:2008, 2.3.1].
3.13 правильность (trueness): Близость математического ожидания результатов испытаний или измерений к истинному значению.
Примечание 1 - В качестве меры правильности обычно используют смещение (3.1).
Примечание 2 - Правильность иногда трактуют как "точность среднего". Применение такого термина не рекомендуется.
Примечание 3 - На практике в качестве истинного значения обычно используют принятое опорное значение.
[ИСО 3534-2:2006, 3.3.3]
3.14 неопределенность (измерения) (uncertainty): Параметр, относящийся к результату измерения и характеризующий разброс значений, которые могли быть обоснованно приписаны измеряемой величине.
Примечание 1 - Параметром может быть, например, стандартное отклонение (или величина, пропорциональная стандартному отклонению) или полуширина интервала, которому соответствует заданный уровень доверия.
Примечание 2 - Неопределенность измерения, как правило, включает в себя много составляющих. Некоторые из них могут быть оценены из статистического распределения результатов ряда измерений и описаны выборочными стандартными отклонениями. Другие составляющие, которые также могут быть описаны стандартными отклонениями, оценивают, исходя из основных предположений или иной информации о виде закона распределения.
Примечание 3 - Предполагается, что результат измерения является лучшей оценкой измеряемой величины, а все составляющие неопределенности, включая обусловленные систематическими воздействиями (разного рода поправками, используемыми эталоном сравнения), вносят свой вклад в разброс значений измеряемой величины.
[Руководство ИСО/МЭК 98-3:2008, 2.2.3]
3.15 бюджет неопределенности (uncertainty budget): Перечень источников неопределенности (3.14) с соответствующими им стандартными неопределенностями, составленный для определения оценки суммарной стандартной неопределенности (3.2) результата измерений.
Примечание - Перечень обычно включает в себя дополнительную информацию, такую как коэффициент чувствительности (изменчивость результатов в зависимости от изменчивости воздействия на результат), число степеней свободы, соответствующее каждой стандартной неопределенности, и идентификацию методов оценки каждой стандартной неопределенности в терминах оценок типа А или типа В (см. Руководство ИСО/МЭК 98-3).
4 Обозначения
В настоящем стандарте использованы следующие обозначения:
а - свободный член эмпирической функции = a + bm, указывающий отрезок, отсекаемый этой прямой на оси ординат;
В - лабораторная составляющая смещения;
b - угловой коэффициент эмпирической функции = а + bm;
с - коэффициент эмпирической функции = cm d;
с i - коэффициент чувствительности ;
d - показатель степени эмпирической функции = cm d;
е - случайная погрешность результата измерений в условиях повторяемости;
k - числовой коэффициент, на который умножают суммарную стандартную неопределенность и при определении расширенной неопределенности U (коэффициент охвата);
l - номер лаборатории;
m - математическое ожидание (среднее) измеряемой величины;
N - количество составляющих, используемых при вычислении суммарной неопределенности;
n' - количество объединяемых составляющих при вычислении суммарной неопределенности в дополнение к совместно исследуемым данным;
n l - количество повторений, выполняемых лабораторией l при исследовании сертифицированного образца сравнения;
n r - количество повторений измерения;
р - количество лабораторий;
Q - количество объектов испытаний из большей (по количеству) партии;
q - количество назначенных величин в соответствии с принятым соглашением в процессе совместных исследований;
r ij - коэффициент корреляции х i и x j,
s b - стандартное отклонение межгрупповой составляющей дисперсии;
s D - оценочное или экспериментальное стандартное отклонение результатов наблюдений, полученных повторными измерениями на образце сравнения, используемом при контроле смещения;
s inh - стандартное отклонение, обусловленное неоднородностью образца;
s l - оценка стандартного отклонения повторяемости с v l степенями свободы для l-й лаборатории при верификации повторяемости;
s L - экспериментальное или оцененное внутрилабораторное стандартное отклонение;
- скорректированная оценка стандартного отклонения типа В, когда s L зависит от переменной отклика;
s r - оценка внутрилабораторного стандартного отклонения; оценка стандартного отклонения для е;
s' r - скорректированная оценка внутрилабораторного стандартного отклонения, когда вклад зависит от переменной отклика;
s R - оценка стандартного отклонения воспроизводимости;
s' R - оценка стандартного отклонения воспроизводимости, скорректированная для лабораторной оценки стандартного отклонения повторяемости;
- скорректированная оценка стандартного отклонения воспроизводимости, вычисленная по эмпирической модели, когда вклады зависят от переменной отклика;
s w - оценка внутрилабораторного стандартного отклонения, полученная на основе повторных измерений или других исследований повторяемости;
- оценка стандартного отклонения оценки смещения , полученная при межлабораторных исследованиях;
s() - лабораторное стандартное отклонение разностей, определяемых при сравнении обычного для лаборатории метода с заданным методом или с величинами, назначенными в соответствии с принятым соглашением;
u() - неопределенность, соответствующая , вызванная неопределенностью оценки , по измерениям эталона или образца сравнения с паспортным значением ;
u() - неопределенность, соответствующая паспортному значению ;
u(х i) - неопределенность, соответствующая входному значению х i, а также неопределенность, соответствующая х' i, где х i и х' i отличаются только константой;
u(y) - суммарная стандартная неопределенность, соответствующая y;
u i(y) - вклад в суммарную неопределенность y, соответствующий значению х i;
u(y i) - суммарная стандартная неопределенность результата или назначенного значения y i;
u(Y) - суммарная неопределенность результата У = f(y 1, y 2, ...);
u inh - неопределенность, соответствующая неоднородности выборки;
U - расширенная неопределенность, равная стандартной неопределенности u, умноженной на k;
U(y) - расширенная неопределенность y;
х i - значение i-й входной величины при определении результата;
х' i - отклонение i-й входной величины от номинального значения х;
Y - объединенный результат, представляющий собой функцию других результатов y i;
y i - результат испытаний i-го объекта заданным методом при сравнении методов или назначенного значения со значениями, установленными в соответствии с принятым соглашением;
- результат испытаний i-го объекта обычным методом при сравнении методов;
- лабораторное смещение;
- оценка смещения l-й лаборатории, равная среднему лаборатории m минус паспортное значение ;
- среднее смещение лаборатории при сравнении обычного метода с заданным методом или со значениями, назначенными в соответствии с принятым соглашением;
- смещение, присущее используемому методу измерений;
- оценка смещения метода измерений;
- неизвестное математическое ожидание идеального результата;
- паспортное значение образца сравнения;
- стандартное отклонение для проверки квалификации;
- истинное значение стандартного отклонения результатов наблюдений, полученных на основе повторных измерений на образце сравнения, используемом при контроле смещения;
- межлабораторное стандартное отклонение; стандартное отклонение типа В;
- внутрилабораторное стандартное отклонение, стандартное отклонение е;
- стандартное отклонение в пределах группы;
- стандартное отклонение, необходимое для адекватной работы (см. Руководство ИСО 33);
v eff - число эффективных степеней свободы для стандартного отклонения или неопределенности, соответствующей результату y i;
v i - число степеней свободы, соответствующее i-му вкладу в неопределенность;
v l - число степеней свободы, соответствующее оценке s l стандартного отклонения для лаборатории l при верификации повторяемости.
5 Принципы
5.1 Отдельные результаты и свойства процесса измерений
5.1.1 Неопределенность измерений относят к отдельным результатам измерений. Повторяемость, воспроизводимость и правильность относят к выполнению процесса измерений или испытаний. При проведении анализа неопределенности в соответствии с ИСО 5725 (все части) процесс измерений или испытаний должен быть единым методом измерений, используемым всеми лабораториями, принимающими участие в исследовании. Следует заметить, что в настоящем стандарте под методом измерений понимают единственную полностью детализованную процедуру (как определено в Руководстве ИСО/МЭК 99:2007, 2.6). В настоящем стандарте предполагается, что графики показателей функционирования процесса, полученные при исследовании выполнения метода, соответствуют всем отдельным результатам измерений, полученным с использованием данного процесса. Это предположение требует подтверждающих доказательств в виде соответствующих данных контроля и обеспечения качества выполнения процесса измерений (раздел 7).
5.1.2 В некоторых случаях может потребоваться учитывать различия между отдельными объектами испытаний. Однако в этом случае нет необходимости в проведении специальных детальных исследований неопределенности для каждого объекта испытаний при наличии устойчивого процесса измерений с известными характеристиками.
5.2 Применение данных воспроизводимости
Применение настоящего стандарта основано на двух принципах:
- стандартное отклонение воспроизводимости, полученное при совместных исследованиях, является основой для оценки неопределенности измерений (см. А.2.1);
- воздействия, не наблюдаемые в процессе совместных исследований, должны быть незначительными или должны быть учтены. Данный принцип является расширением основной модели, используемой для совместных исследований (см. А.2.3).
5.3 Основные уравнения статистической модели
5.3.1 Статистическая модель, на которой основаны изложенные в настоящем стандарте методы оценки неопределенности, может быть записана в виде уравнения
,
(1)
где y - результат измерений, относительно которого предполагается, что он может быть вычислен по соответствующей функции;
- (неизвестное) математическое ожидание идеальных результатов;
- смещение, присущее методу измерений;
В - лабораторная составляющая смещения;
х' i - отклонение от номинального значения х i;
с i - коэффициент чувствительности, равный ;
е - случайная погрешность в условиях повторяемости.
Предполагается, что B и е подчиняются нормальному распределению с нулевым средним и дисперсиями и соответственно. Эти предположения формируют модель, используемую в ИСО 5725-2 для совместного анализа данных.
Так как наблюдаемые стандартные отклонения смещения метода , лабораторного смещения В и случайных ошибок е полностью описывают разброс в условиях совместного исследования, сумма учитывает воздействия, которые вызывают отклонения, не включенные в , В или е, и, таким образом, эта сумма позволяет учесть влияние действий, которые не выполнялись в ходе совместных исследований.
Примерами таких действий являются:
a) подготовка объекта испытаний, выполняемая для каждого испытываемого объекта, выполненная до проведения совместных исследований;
b) формирование подвыборки в случае, когда объекты, подвергнутые совместному исследованию, были гармонизированы до проведения совместного исследования. Предполагается, что х' i подчиняются нормальному распределению с нулевым математическим ожиданием и дисперсией u 2(х i).
Пояснения к этой модели приведены в приложении А.
Примечание - Погрешность обычно определяют как разность между установленным значением и результатом измерений. В GUM [16] "погрешность" (значение) отличают от "неопределенности" (разброса значений). При оценке неопределенности, однако, важно характеризовать разброс значений, вызванный случайными воздействиями, и включить его в модель. Для этого в уравнение (1) включают член с нулевым математическим ожиданием, характеризующий "погрешность".
Учитывая модель, описываемую уравнением (1), стандартную неопределенность u(y) можно оценить, применяя уравнение
,
(2)
где - оценка дисперсии В;
- оценка дисперсии е;
u() - стандартная неопределенность, вызванная неопределенностью оценки , полученной на основе измерений эталона или образца сравнения с паспортным значением ;
u(x i) - стандартная неопределенность, соответствующая х' i.
Учитывая, что стандартное отклонение воспроизводимости s R, задаваемое равенством , , можно заменить на , уравнение (2) можно привести к уравнению
.
(3)
5.4 Данные повторяемости
Данные повторяемости использованы в настоящем стандарте, прежде всего для проверки прецизионности, которая вместе с другими проверками подтверждает, что конкретная лаборатория может применять данные воспроизводимости и правильности при оценке неопределенности. Данные повторяемости используют также при вычислении составляющей воспроизводимости в неопределенности (см. 7.3 и раздел 11).
6 Оценка неопределенности с использованием оценок повторяемости, воспроизводимости и правильности
6.1 Процедура оценки неопределенности измерений
Принципы, на которых основан настоящий стандарт (см. 5.1), приводят к следующей процедуре оценки неопределенности измерений:
a) определение оценок повторяемости, воспроизводимости и правильности метода на основе опубликованной информации о методе;
b) проверка непревышения лабораторным смещением, рассчитанным по измерениям, ожидаемого смещения, определенного на основе данных, полученных в соответствии с перечислением а);
c) проверка непревышения прецизионностью, полученной по текущим измерениям, ожидаемой прецизионности, полученной на основе оценок повторяемости и воспроизводимости, определенных в соответствии с перечислением а);
d) идентификация любых воздействий на измерение, которые не были учтены в процессе исследований в соответствии с перечислением а), и определение количественной оценки отклонений, которые могут вызывать эти воздействия, учитывая коэффициент чувствительности и неопределенность каждого из воздействий;
е) объединение оценки воспроизводимости (см. перечисление а)) с неопределенностью, соответствующей правильности (см. перечисления а) и b)) и результатами дополнительных воздействий (см. перечисление d)) для формирования оценки суммарной неопределенности, когда смещение и прецизионность находятся под контролем в соответствии с перечислениями b) и с).
Этапы этой процедуры описаны более подробно в разделах 7-11.
Примечание - В настоящем стандарте предполагается, что в случае, когда смещение является неконтролируемым, выполняют корректирующие действия для приведения процесса в устойчивое состояние.
6.2 Различия между фактической прецизионностью и ее ожидаемым значением
Если фактическая прецизионность отличается от ожидаемого значения прецизионности, полученного на основе исследований в соответствии с перечислением 6.1 а), должны быть учтены соответствующие вклады в неопределенность. В 8.5 описаны корректировки оценок воспроизводимости для общего случая, когда прецизионность приближенно пропорциональна уровню переменной отклика.
7 Установление соответствия данных выполнения метода результатам измерений для конкретного процесса измерений
7.1 Общие положения
По результатам совместных исследований определяют значения s R, s r и в некоторых случаях оценку смещения метода, на основе которых формируют спецификацию рабочих характеристик метода. При применении метода для установленных целей ожидается, что лаборатория продемонстрирует выполнение этих требований. В большинстве случаев для этого проводят исследования, направленные на подтверждение выполнения требований к повторяемости (см. 7.3) и лабораторной составляющей смещения (см. 7.2), а также регулярно проводят проверки правильности выполнения метода (контроль и обеспечение качества исполнения метода (см. 7.4)).
7.2 Демонстрация контролируемости лабораторной составляющей смещения
7.2.1 Общие требования
7.2.1.1 Лаборатория должна продемонстрировать, что соответствующее ей смещение при выполнении метода является контролируемым, т.е. лабораторная составляющая смещения не выходит за пределы смещения, полученного при совместных исследованиях. Далее предполагается, что контроль смещения выполнен на образцах материалов, значения характеристик которых близки к объектам исследования при обычных испытаниях. В тех случаях, когда материалы, используемые для проверки смещения, имеют значения характеристик, значительно отличающиеся от материалов, исследуемых при обычных испытаниях, итоговые вклады смещения в неопределенность должны быть скорректированы в соответствии с 8.4 и 8.5.
7.2.1.2 В общем случае проверка лабораторной составляющей смещения сводится к сравнению результатов, полученных в лаборатории, с некоторыми эталонными значениями и представляет собой оценку В. Уравнение (2) показывает, что неопределенность, связанная с изменениями В, характеризуется s L, непосредственно входящей в s R. Однако проверке смещения соответствует своя неопределенность, поэтому неопределенность сравнения в общем случае увеличивает неопределенность результатов, которые могут быть получены при применении метода. По этой причине важно гарантировать, что неопределенность, связанная с проверкой смещения, мала по сравнению с s R (в идеале меньше, чем 0,2s R) и, следовательно, соответствующее увеличение неопределенности является незначительным. В этом случае, если свидетельства чрезмерной лабораторной составляющей смещения не обнаружены, уравнение (3) применяют без изменений. Если неопределенность, соответствующая проверке смещения, является большой, целесообразно увеличивать неопределенность, оцененную на основе уравнения (3), например, путем включения в суммарную неопределенность дополнительных членов (см. 3.15).
В тех случаях, когда из совместных исследований правильности известно, что смещение метода не является пренебрежимо малым, известное смещение метода следует учитывать при оценке лабораторного смещения, например, путем корректировки результатов на известное смещение метода.
7.2.2 Методы демонстрации контролируемости лабораторной составляющей смещения
7.2.2.1 Общие положения
Контролируемость смещения может быть продемонстрирована одним из методов, приведенных в 7.2.2.2-7.2.2.4. При всех проверках смещения, приведенных в настоящем стандарте, последовательно используют одни и те же общие критерии. Допускается применение более строгих методов проверки.
7.2.2.2 Исследование образца сравнения или эталона
Лаборатория I должна выполнить n l повторных измерений на эталоне сравнения в условиях повторяемости, чтобы получить оценку смещения на нем (равную среднему лаборатории m минус паспортное значение ). При этом n l следует выбирать так, чтобы неопределенность удовлетворяла неравенству < 0,2s R. Следует заметить, что эталон сравнения в общем случае не является тем же эталоном, который использовали при оценке правильности метода. Кроме того, , как правило, не равно В. Следуя Руководству ИСО 33 (с соответствующим изменением обозначений), процесс измерений выполняется адекватно, если
.
(4)
Для оценки из неравенства (4) используют оценку s D, заданную уравнением (5) 1);
------------------------------
1)См. 4.3 ГОСТ Р ИСО 5725-2-2002 и 4.2.3 ГОСТ Р ИСО 5725-6-2002.
------------------------------
,
(5)
где n l - количество повторений лаборатории l;
s W - внутрилабораторное стандартное отклонение, полученное на основе n l повторений или других исследований повторяемости;
s L - межлабораторное стандартное отклонение, полученное при совместных исследованиях.
Выполнение неравенства (4) является подтверждением того, что лабораторная составляющая смещения В находится в интервале значений, установленном при совместных исследованиях. Следует обратить внимание на то, что стандартный образец или эталон сравнения используют здесь для независимой проверки или в качестве контрольного материала, а не для калибровки.
Примечание 1 - Лаборатория может применять более строгий критерий, чем неравенство (4), используя коэффициент охвата менее 2 или выполняя более чувствительный метод на выявление смещения.
Примечание 2 - Эти процедуры предполагают, что неопределенность, соответствующая эталонному значению, мала по сравнению с .
7.2.2.3 Сравнение с заданным методом испытаний, обладающим известной неопределенностью
Лаборатории I необходимо провести испытания n l объектов испытаний, применяя как заданный метод испытаний, так и метод испытаний, используемый лабораторией, получив, таким образом, n l пар (y i, ) (y i - результат применения заданного метода к i-му объекту, а - значение, полученное применением обычного для лаборатории метода испытаний для i-го объекта). Затем лаборатория должна вычислить соответствующее среднее смещение , используя уравнение (6) и стандартное отклонение разностей s() (см. (7)):
,
(6)
,
(7)
где .
На практике значение n l должно быть выбрано так, чтобы выполнялось неравенство < 0,2s R. По аналогии с неравенством (4) и уравнением (5) процесс измерений удовлетворяет требованиям, если || < 2s D, где . В этом случае (3) используют без изменений.
Примечание 1 - Лаборатория может выбирать более строгий критерий, чем неравенство (4), используя коэффициент охвата менее 2 или применяя более чувствительный метод выявления смещения.
Примечание 2 - Эти процедуры предполагают, что стандартная неопределенность, соответствующая эталонному методу, мала по сравнению с и отклонения принадлежат к совокупности с постоянной дисперсией.
7.2.2.4 Использование метода при сравнении с другими лабораториями
Если I-я лаборатория участвует в дополнительных совместных исследованиях (например, при проверке квалификации в соответствии с ИСО/МЭК 17043), для которых она может оценивать смещение, данные этих исследований можно использовать для контроля смещения. Применяют два возможных варианта.
a) При выполнении испытаний используют эталон или стандартный образец с независимо приписанным значением и неопределенностью. Затем применяют процедуру 7.2.2.2 без изменений.
b) Проводят последовательную проверку соответствия q ( 1) заданных значений y 1, y 2, ..., y q. Лаборатория по результатам , , ..., должна рассчитать среднее смещение в соответствии с уравнением (8) и стандартное отклонение s() (см. уравнение (9)):
,
(8)
,
(9)
где .
Процесс измерений удовлетворяет требованиям, если || < 2s D, где . В этом случае (3) используют без изменений.
Примечание 1 - Эта процедура предполагает, что заданные значения основаны на количестве результатов, превышающем q, и обладают незначительной неопределенностью, а отклонения принадлежат совокупности с постоянной дисперсией.
В некоторых программах проверки квалификации все значения преобразуют в z-значения (z i = ( - y i)/), вычитая из приписанное значение y i и деля разность на стандартное отклонение (см. ИСО/МЭК 17043) 1). В этом случае для проверки квалификации стандартное отклонение меньше или равное s R для метода и среднее z-значений в пределах для q приписанных значений обеспечивают достаточное свидетельство контролируемости смещения. Это удобно для вычислений и обеспечивает меньшую чувствительность к предположению о постоянстве дисперсии (см. примечание 1). Однако это обычно более строгий критерий, чем описанный в 7.2.2.4. Лаборатория может использовать более строгий критерий (см. примечание 2), но вычисления, установленные в 7.2.2.4, необходимы для проверки эквивалентности.
------------------------------
1)См. также ГОСТ Р ИСО 13528-2011.
------------------------------
Примечание 2 - Лаборатория может использовать более строгий критерий, чем описанный в 7.2.2.4.
7.2.3 Выявление существенной лабораторной составляющей смещения
Как отмечено в разделе 1, настоящий стандарт применим только в тех случаях, когда лабораторная составляющая смещения находится под контролем. Если обнаружено чрезмерное смещение, предполагается, что должны быть предприняты необходимые действия для приведения смещения в границы требуемого диапазона до продолжения выполнения измерений. Такие действия обычно требуют проведения исследований и устранения причины, вызывающей смещение.
7.3 Верификация повторяемости
7.3.1 Испытательная лаборатория I должна продемонстрировать, что ее повторяемость согласуется со стандартным отклонением повторяемости, полученным при совместных исследованиях. Для демонстрации этого выполняют повторные испытания одного или нескольких соответствующих испытуемых образцов и получают (объединяя результаты при необходимости) стандартное отклонение повторяемости s l с v l степенями свободы. Значение s l необходимо сравнить со стандартным отклонением повторяемости s r, полученным при совместных исследованиях, используя F-критерий с уровнем доверия 95 %. На практике следует выполнить такое количество повторений, чтобы получить v i 15.
7.3.2 Если s l значительно больше s r, лаборатория должна или идентифицировать и устранить соответствующие причины, либо использовать s l вместо s r во всех оценках неопределенности, рассчитанных с использованием настоящего стандарта. Следует обратить внимание, что это вызывает увеличение оценки стандартного отклонения повторяемости s R, так как должно быть заменено на (s' R является скорректированной оценкой стандартного отклонения воспроизводимости). Если s l значительно меньше s r, лаборатория может также использовать s l вместо s r, получая меньшую оценку неопределенности.
Во всех исследованиях прецизионности важно подтверждать, что данные свободны от неизвестных смещений, и проверять постоянство стандартного отклонения s W для различных объектов испытаний. Если стандартное отклонение s W не постоянно, может быть полезно оценивать прецизионность отдельно для каждого класса объектов или построить общую модель (см. 8.5) этой зависимости.
Примечание - Если требуется сравнение с заданным значением прецизионности, в Руководстве ИСО 33 более детально описан соответствующий тест, основанный на , в котором соответствует требуемому значению прецизионности.
7.4 Продолжение верификации выполнения метода
Кроме предварительной оценки смещения и прецизионности лаборатория должна принимать необходимые меры для обеспечения статистической управляемости процедуры измерений. Для этого проводят:
- соответствующий контроль качества выполнения метода измерений, включая регулярные проверки смещения и прецизионности. Для этих проверок в качестве объектов испытаний могут быть использованы любые уместные стабильные однородные объекты или материалы. Настоятельно рекомендуется использование контрольных карт (см. ИСО 5725-5 и ИСО 5725-6);
- мероприятия по обеспечению качества выполнения метода измерений, включая привлечение обученного и квалифицированного персонала, предусмотренные системой менеджмента качества.
При использовании контрольных карт стандартное отклонение наблюдений за рассматриваемый период времени должно быть меньше S' R, вычисленного в соответствии с 7.3.2, если прецизионность и смещение находятся под контролем.
8 Учет особенностей объекта испытаний
8.1 Общие положения
В совместных исследованиях или при оценке промежуточных показателей прецизионности в соответствии с ИСО 5725-2 и ИСО 5725-3 обычно проводят измерения на ограниченном количестве типов однородных материалов или образцов. Это является обычной практикой для разделения подготовленных для измерений материалов. Однако объекты испытаний могут иметь широкий диапазон возможных изменений, что может требовать дополнительной их обработки до испытаний. Например, образцы для экологических испытаний часто поставляют высушенными и гомогенизированными. Обычные образцы, как правило, являются влажными, неоднородными и грубо разделенными. Соответственно необходимо исследовать образцы и, если необходимо, учитывать различия в их состоянии.
8.2 Отбор выборки
8.2.1 Процесс отбора выборки
Совместные исследования редко включают этап отбора выборки (образцов). Если метод, используемый внутри лаборатории, включает формирование подвыборки, а также при регулярном применении процедуры оценки свойств большого объема материала по выборке малого объема, влияние процедуры отбора выборки необходимо исследовать. При этом полезно использовать документацию по отбору выборки, например ИСО 11648-1 или другие стандарты.
8.2.2 Неоднородность (негомогенность)
Неоднородность обычно исследуют экспериментально с применением дисперсионного анализа (ANOVA) 1) к нескольким объектам испытаний, для которых составляющая дисперсии , описывающая разброс между объектами, характеризует неоднородность. Если после всех установленных действий по гомогенизации испытуемые материалы признаны существенно неоднородными, эту оценку дисперсии следует преобразовать непосредственно в стандартную неопределенность (т.е. u inh = s inh). В некоторых обстоятельствах, особенно когда стандартное отклонение негомогенности найдено по выборке из Q объектов, отобранных из партии, а средний результат предполагается применять к другим объектам партии, вклад неопределенности оценивают на основе предикционного интервала (т.е. ). Влияние негомогенности можно также оценить теоретически, используя знание процесса отбора выборки и предположения о распределении, соответствующем выборке.
------------------------------
1)Принятая в международной практике аббревиатура для обозначения дисперсионного анализа (Analysis of Variance).
------------------------------
8.3 Подготовка и предварительная обработка
В большинстве исследований образцы являются гомогенными и дополнительно могут быть подвергнуты стабилизации до распределения по лабораториям. Могут потребоваться исследования, позволяющие учитывать воздействия специфических процедур предварительной обработки внутри лаборатории. Как правило, такие исследования устанавливают воздействие этой процедуры на результаты измерений на исследуемых материалах с приблизительно или точно установленными свойствами. Результатом воздействия может быть изменение разброса или появление систематических воздействий. Существенные изменения разброса следует устранять прибавлением соответствующей составляющей к бюджету неопределенности (предполагая, что воздействия увеличивают разброс). Если выявлены существенные систематические воздействия, наиболее удобно устанавливать соответствующий верхний предел. Следуя рекомендациям GUM, этот предел можно рассматривать как границу прямоугольного или другого ограниченного симметричного распределения, а оценку стандартной неопределенности можно задавать в виде половины длины области изменений функции распределения, деленной на соответствующий коэффициент.
8.4 Изменение типа объекта испытаний
При необходимости следует исследовать неопределенность, являющуюся результатом изменения типа или состава объекта испытаний по сравнению с используемыми в совместных исследованиях. Как правило, подобные воздействия должны быть предсказаны на основе установленных воздействий, объемных свойств материала (которые дают оценку неопределенности, полученную в соответствии с GUM) или исследованы введением систематических или случайных изменений типа или состава объекта испытаний (см. приложение В).
8.5 Изменение неопределенности в зависимости от уровня переменной отклика
8.5.1 Корректировка s R
Как правило, некоторые или большая часть составляющих неопределенности измерений зависят от измеренного значения. В ИСО 5725-2 рассмотрено три простых случая, когда стандартное отклонение воспроизводимости для положительной величины m может быть приближенно описано одной из следующих моделей:
;
(10)
;
(11)
,
(12)
где - скорректированная оценка стандартного отклонения воспроизводимости, рассчитанная по приближенной модели;
а, b, с и d - эмпирические коэффициенты, полученные на основе пяти или большего количества различных объектов испытаний с различными средними откликов m (a, b и с являются положительными).
При использовании формул (10)-(12) оценка неопределенности должна быть основана на оценке воспроизводимости, рассчитанной с использованием соответствующей модели.
В условиях 7.3 оценка должна учитывать измененный вклад члена s r, отражающего вклад повторяемости. В большинстве случаев имеет место простое пропорциональное изменение :
,
(13)
где имеет то же самое значение, как и в 7.3.
8.5.2 Изменение других вкладов в неопределенность
В общем случае если любой вклад в неопределенность изменяется в соответствии с измеренным значением переменной отклика предсказуемым способом, соответствующая стандартная неопределенность y должна быть откорректирована.
Примечание - Если вклады в неопределенность прямо пропорциональны y, часто бывает удобно выражать все существенные воздействия в терминах мультипликативных воздействий на y, а всю неопределенность - в форме относительных стандартных отклонений.
9 Дополнительные факторы
В разделе 8 рассмотрены основные факторы, различающиеся в совместных исследованиях и обычных испытаниях. Возможно, что в специфических случаях могут проявляться другие воздействия. Это может быть вызвано тем, что контролируемые переменные случайно или преднамеренно рассматривались как постоянные в процессе совместного исследования, или тем, что при совместных исследованиях не был выполнен полный диапазон условий, достижимых в обычной практике.
Воздействия факторов, которые считаются постоянными или которые недостаточно изменяются при совместных исследованиях, следует оценивать отдельно либо в процессе экспериментального изменения, либо в соответствии с прогнозом на основе теоретических моделей. В тех случаях, когда воздействия являются существенными, неопределенность, связанную с соответствующими факторами, необходимо оценить, зарегистрировать и объединить с другими вкладами обычным способом (т.е. суммировать в соответствии с уравнением (3)).
10 Общее выражение для суммарной стандартной неопределенности
При оценке суммарной стандартной неопределенности u(y), соответствующей результату y и необходимости использовать скорректированную оценку вместо , для учета факторов, рассматриваемых в разделе 8, уравнение (3) принимает вид
.
(14)
Значение u() подсчитывают в соответствии с уравнением (15) (см. также (А.8)):
,
(15)
где р - количество лабораторий;
n - количество повторений в каждой лаборатории;
u() - неопределенность, соответствующая паспортному значению , используемому для оценки смещения в лабораторных исследованиях.
Переменная u(В) не использована в уравнении (14), потому что неопределенность s L, соответствующая В, уже включена в . Индекс i охватывает воздействия, идентифицированные в разделах 7 и 8 (индексы изменяются от 1 до n'). Очевидно, что если воздействия и соответствующие им неопределенности малы по сравнению с s R, то ими можно пренебречь для большинства практических целей. Например, неопределенность менее 0,2s R ведет к изменению менее чем на 0,02s R оценки полной неопределенности.
Примечание 1 - Если все составляющие неопределенности выражены в форме относительных стандартных отклонений или процентов, как предложено в примечании к 8.5.2, формулы (14) и (15) могут быть применены непосредственно к относительным значениям, и полученная неопределенность u(y) будет иметь форму относительного стандартного отклонения или процента.
Примечание 2 - Если смещение метода измерений рассматривают как пренебрежимо малое и при выполнении измерений на испытуемом образце используют ту же процедуру, что и при межлабораторном совместном исследовании, суммарная стандартная неопределенность принимает вид u(y) = s R.
11 Бюджет неопределенности, основанный на данных совместных исследований
Настоящий стандарт использует только одну, приведенную в уравнении (3), модель для описания результатов измерений или испытаний. Информация, подтверждающая справедливость модели, может быть получена из различных источников, но если неопределенность, соответствующая испытаниям, остается незначительной, используют уравнение (3). Однако существует несколько различных ситуаций, для которых уравнение (3) принимает несколько иной вид, например, в случае, когда параметры воспроизводимости или повторяемости зависят от переменной отклика. В таблице 1 приведен бюджет неопределенности в случае, когда неопределенность не зависит от переменной отклика в исследуемом диапазоне, в таблице 2 приведен бюджет неопределенности в случае, когда неопределенность зависит от переменной отклика.
Таблица 1 - Составляющие неопределенности, не зависящие от переменной отклика
Источник воздействия |
Стандартная неопределенность a, соответствующая у |
Примечание |
u() |
Используют только в случае, если при совместных исследованиях установлена поправка на смещение и неопределенность является значимой |
|
В |
s L |
См. таблицу 2 |
е |
s r |
Если среднее, полученное по n r полных повторений метода b, применяют к объекту испытаний, неопределенность, соответствующая е, принимает вид: |
x i |
|c i|u(x i) |
См. раздел 8 и приложение В |
а Стандартную неопределенность выражают в тех же единицах, что и y. При необходимости она может быть выражена в относительных величинах (см. примечание к разделу 10). b Метод может устанавливать количество повторений n r всего метода, включая все предусмотренные стадии метода. |
Таблица 2 - Составляющие неопределенности, зависящие от переменной отклика
Источник воздействия |
Примечание |
|
Используют только в случае, когда выявленное при совместном исследовании смещение устранено, а неопределенность является существенной. (Производную используют, чтобы охватить случаи, когда устранение смещения не сводится к простому сложению или вычитанию) |
||
В |
a L и b L - коэффициенты предполагаемой линейной зависимости между s L и средним (математическим ожиданием) отклика m, аналогично (11). Данная форма применима только в случае, когда установлена зависимость s L от m. В противном случае используют комбинированную оценку, соответствующую В и е r из таблицы 1 |
|
е |
а r и b r - коэффициенты предполагаемой линейной зависимости между s r и средним (математическим ожиданием) отклика m, аналогично (9). Если среднее, полученное по n r полных повторений метода, применяют к объекту испытаний, неопределенность, соответствующая e r, принимает вид: . Эта форма применима только в случае, когда установлена зависимость s r от m. В противном случае используют объединенную оценку, соответствующую В и е r из таблицы 1 |
|
В, е |
а и b - коэффициенты линейных соотношений между s R и средним переменной отклика m, как определено в (10), (11) и (12). Эту объединенную оценку следует использовать вместо отдельных оценок В и е (см. таблицу 1), когда отдельные зависимости s L и s r от m не установлены |
|
x i |
|c i|u(x i) |
См. раздел 8 и приложение В |
а Стандартную неопределенность выражают в тех же единицах, что и у. При необходимости она может быть выражена в относительных величинах (см. примечание к разделу 10). b Предполагается простая линейная зависимость, соответствующая уравнению (11). с Метод может включать n r повторений всего метода, включая все предусмотренные повторения. |
12 Оценка неопределенности суммарного результата
12.1 Суммарный результат Y формируют из совокупности результатов y i различных испытаний, каждый из которых охарактеризован совместными исследованиями. Например, анализ состава мяса обычно включает определение содержания в мясе белка (рассчитанного путем определения содержания в мясе азота), жира и воды. При этом содержание каждой составляющей определяют соответствующим стандартным методом.
12.2 Стандартная неопределенность u(y i) для каждого результата y i может быть получена на основе принципов, установленных в настоящем стандарте или непосредственно при использовании уравнения (А.1) или (А.2) соответственно. Если величины y i независимы, суммарную стандартную неопределенность u(Y) для результата Y = f(y 1, y 2, ...) вычисляют по формуле
.
(16)
Если y i не являются независимыми, должны быть сделаны предположения относительно корреляции в соответствии с GUM (также использующим уравнение (А.2)).
13 Представление информации о неопределенности
13.1 Общие положения
Неопределенность может быть представлена в виде суммарной стандартной неопределенности u(y) или расширенной неопределенности U(y) = ku(y) (k - коэффициент охвата) (см. 13.2 и GUM). В некоторых случаях удобно представить неопределенность в относительных величинах в виде коэффициента вариации или расширенной неопределенности в процентах от зарегистрированных значений результатов.
13.2 Выбор коэффициента охвата
13.2.1 Общие положения
При оценке расширенной неопределенности выполняют следующие действия для выбора коэффициента охвата k.
13.2.2 Уровень доверия
Для практических целей должно быть указано значение расширенной неопределенности, соответствующее уровню доверия 95 %. Однако выбор уровня доверия зависит от диапазона факторов, таких как критичность и последствия применения неправильных результатов. Эти факторы вместе со всеми рекомендациями или юридическими требованиями, касающимися применения, должны быть рассмотрены при выборе k.
13.2.3 Число степеней свободы, соответствующих оценке
13.2.3.1 Для большинства практических целей, когда требуется уровень доверия 95 % и число степеней свободы в доминирующих составляющих неопределенности превышает 10 (> 10), выбор k = 2 обеспечивает достаточно надежный охват вероятного диапазона значений. Однако есть обстоятельства, в которых это приводит к существенно заниженной оценке, особенно когда один или более значимых членов уравнения (14) имеют число степеней свободы менее 7.
13.2.3.2 Если один такой член u i(y) с v i степенями свободы доминирует (признаком является выполнение неравенства u i(y) 0,7u(y)), обычно достаточно выбрать v i в качестве эффективного числа степеней свободы v eff, соответствующего u(y).
13.2.3.3 Если несколько значимых членов имеют приблизительно равную величину и число степени свободы, удовлетворяющее условию v i < 10, для получения эффективных значений числа степеней свободы v eff следует применять уравнение Велча-Саттервейта (см. уравнение (17)):
.
(17)
Значение k в этом случае выбирают на основе v eff, используя значение квантиля двустороннего распределения Стьюдента t для требуемого уровня доверия и v eff степеней свободы. Это наиболее безопасно при округлении нецелых значений v eff до ближайшего меньшего целого числа.
Примечание - Во многих областях измерений и испытаний для нормального распределения частота статистических выбросов является достаточно высокой, поэтому применение высоких уровней доверия (> 95 %) без хорошего знания распределения не рекомендуется.
14 Сравнение данных выполнения метода и неопределенности
14.1 Основные предположения
Оценка неопределенности измерений в соответствии с настоящим стандартом обеспечивает суммарную стандартную неопределенность, которая, хотя и основывается прежде всего на оценках воспроизводимости или промежуточной прецизионности, отдает должное факторам, которые не изменяются в процессе исследований, в которых эти оценки прецизионности получены. В идеале итоговая суммарная стандартная неопределенность u(y) должна быть идентична неопределенности, полученной на основе детальной математической модели процесса измерений. Сравнение этих двух оценок, если это возможно, обеспечивает полезную проверку качества оценки. Рекомендованная процедура описана в 14.2.
Процедура основана на двух важных предположениях:
- во-первых, оценку суммарной стандартной неопределенности u(y) с v eff степенями свободы обычно определяют в предположении о нормальном распределении наблюдений (это означает, что (n - 1)(s 2/) подчиняется распределению с (n - 1) степенями свободы). Это предположение позволяет использовать F-критерий. Однако, поскольку суммарная стандартная неопределенность может включать неопределенность, связанную с величинами, описываемыми распределениями различной формы с различными дисперсиями, результаты испытаний необходимо рассматривать как индикатор, а уровень доверия следует выбирать с необходимой осторожностью;
- во-вторых, обычно предполагают, что две сопоставляемые оценки суммарной стандартной неопределенности полностью независимы. Это также маловероятно на практике, так как некоторые факторы могут быть общими для обеих оценок. Более тонкие воздействия являются предметом исследований для выявления влияния составляющей неопределенности, соответствующей выполнению работ в разных лабораториях. Предполагается, что приняты необходимые меры предосторожности, чтобы избежать этого воздействия. Если значимые факторы являются общими для обеих оценок суммарной стандартной неопределенности, очевидно, что сопоставление оценок будет значительно чаще выявлять их аналогию. В этом случае, если последовательные испытания не позволяют выявлять существенных различий, результаты не следует трактовать как свидетельство адекватности модели измерений.
14.2 Процедура сравнения
Для сравнения двух оценок u(y) 1 и u(y) 2 (u(y) 1 u(y) 2) с эффективными числами степеней свободы v 1 и v 2, соответственно, и уровнем доверия 1- (например, для уровня доверия 95 % = 0,05) необходимо выполнить следующие действия:
a) Вычислить F = [u(y) 1/u(y) 2] 2.
b) Найти по таблицам или получить с помощью программного обеспечения одностороннее верхнее критическое значение F crit = F(/2, v 1, v 2). Если даны верхнее и нижнее значения, выбирают верхнее значение, которое всегда больше 1;
c) Если F > F crit, то u(y) 1 следует считать значительно больше u(y) 2.
14.3 Причины различий
Существует много причин для существенного различия оценок суммарной стандартной неопределенности. Они включают:
- наличие различий в работе лабораторий;
- использование модели, не учитывающей влияния всех существенных воздействий на измерения;
- неверное определение оценки значимости вклада в суммарную стандартную неопределенность.
Библиография
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Национальный стандарт РФ ГОСТ Р ИСО 21748-2021 "Статистические методы. Руководство по использованию оценок повторяемости, воспроизводимости и правильности при оценке неопределенности измерений" (утв. и введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 28 сентября 2021 г. N 1018-ст)
Текст ГОСТа приводится по официальному изданию Российского института стандартизации, Москва, 2021 г.
Дата введения - 1 января 2022 г.