Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение F
(справочное)
Анализ действия нагрузок
F.1 Анализ прочности
F.1.1 Общие положения
Шлангокабели являются гибкими конструкциями, в которых при изгибе возникают относительные смещения элементов. Это усложняет описание поведения конструкции при сочетании нагрузок вследствие взаимосвязи внутренних сил, возникающих при натяжении и скручивании, и сопутствующего им трения в соприкасающихся поверхностях.
При небольших растягивающих и крутящих нагрузках внутренние силы и сопротивление трению относительно сдвига, как правило, малы, а в реакции конструкции на изгиб преобладает упругая деформация. Однако в динамических условиях на большой и сверхбольшой глубине при значительном натяжении со стороны плавучего сооружения силы давления в точках контакта и сопротивление трению могут стать значительными и вызывать дополнительные осевые напряжения, а также износ и истирание, что необходимо принимать в расчет при оценке сопротивления усталости.
Коррозионное истирание может возникать в зоне контакта металлических поверхностей при наличии существенного контактного давления в сочетании с переменными напряжениями, при которых контактные поверхности находятся в режиме прерывистого перемещения. Это создает условие для возникновения трещин на контактной поверхности и, как следствие, ухудшает усталостные характеристики элементов. Коррозионное истирание может быть принято в расчет при испытаниях для определения зависимости между напряжением и числом циклов до разрушения при заданной нагрузке и внешних условиях. При перемещении всех контактных поверхностей относительно друг друга возникает коррозионно-механический износ, в результате чего уменьшается площадь конструкции элементов и увеличиваются напряжения в них.
Трение также оказывает влияние на общие характеристики поперечного сечения, что приводит к изменению соотношений между моментом и изгибом, а также связанной с ними жесткостью поперечного сечения, и демпфирующими свойствами, которые учитывают в общем динамическом анализе. Как правило, влияние трения, износа и коррозионного истирания становится более существенным при увеличении глубины моря (с возрастанием приложенной растягивающей нагрузки).
F.1.2 Обзор методов анализа прочности конструкции
F.1.2.1 Методы анализа прочности шлангокабелей охватывают диапазон от простых аналитических методов до детального анализа с использованием метода конечных элементов. Присущие этим методам допущения в отношении поведения конструкции зависят от прикладываемых нагрузок.
F.1.2.2 Для анализа нагрузок от растяжения и кручения, как правило, принимают допущение об отсутствии относительного сдвига между элементами в осевом направлении, т.е. допускается, что все подверженные воздействию нагрузок элементы двигаются в одной и той же поперечной плоскости. Тогда жесткость поперечного сечения, включая нагрузку, распределяемую между каждым элементом, может быть рассчитана путем построения модели приложенного усилия от натяжения и кручения в сочетании с геометрическими параметрами, шагом витка, площадью поперечного сечения и свойствами материала. Модели определения реакции на натяжение и скручивание разделяют следующим образом:
- аналитические уравнения, основанные на допущении об отсутствии свободного пространства между элементами конструкции;
- методы численного моделирования с применением компьютерных программ, в которых шлангокабель рассматривают как совокупность концентрических слоев, а расчет влияния пустот и сил в радиальном направлении выполняют методом последовательных приближений с учетом геометрических параметров, кинематических характеристик и свойств материалов; делают допущение о равномерном распределении контактного давления на каждом слое, что означает необходимость оценки влияния локальной раздавливающей нагрузки отдельно от контактных давлений;
- двумерные и трехмерные модели, построенные методом конечных элементов, в которых каждый элемент в поперечном сечении рассматривают отдельно, а внутренние силы реакции учитывают на уровне элементов; эффект от локальных радиальных нагрузок при контакте как результат внутренних реакций при взаимодействии между элементами, учитывают сразу в модели либо его оценивают отдельно.
F.1.2.3 При анализе реакции на внешние нагрузки (такие как раздавливающие нагрузки при укладке) модели подразделяют:
- на аналитические математические модели, основанные на консервативном допущении о распределении нагрузки между элементами;
- математические модели, построенные с применением метода конечных элементов, включающие построение полной модели условий контакта с учетом геометрических параметров элементов и свойств материалов.
F.1.2.4 Реакция при изгибе является более сложной вследствие возникновения относительного сдвига элементов. Поведение элементов шлангокабеля при изгибе может быть разделено на следующие два режима:
- режим зацепления, когда плоские поверхности остаются плоскими, как в традиционной теории изгиба балки; это состояние является определяющим до тех пор, пока напряжение сдвига между элементами на нейтральной оси шлангокабеля не будет превышать сопротивление трения, определяемое коэффициентом трения и силами внутренней реакции от воздействия натяжения и кручения или внешних нагрузок;
- режим относительного перемещения, когда сопротивление трения превышено и имеет место относительный сдвиг; в случае изгиба с постоянной кривизной это означает, что спирально намотанные элементы двигаются под действием относительного сдвига от сжатой стороны к растянутой стороне шлангокабеля.
F.1.2.5 Описанное выше состояние приводит к появлению напряжений трения, которые суммируются с напряжением упругого изгиба, возникающего во всех элементах. При небольшом натяжении и скручивании при эксплуатации шлангокабеля на небольших глубинах воды внутренние силы реакции и напряжение трения, как правило, малы. В данном случае состояние определяется упругим изгибом, и расчет связанных с ним напряжений может быть выполнен с помощью аналитических методов, основанных на дифференциальной геометрии. При значительном натяжении шлангокабеля в расчетах усталости необходимо учитывать влияние трения, а также возможное влияние коррозионного истирания и износа. Модели расчета относительного сдвига и напряжения трения подразделяют:
- на аналитические модели, в которых применяют допущение о постоянстве кривизны, а расчет упругого изгиба и относительного сдвига основан на дифференциальной геометрии, оценка напряжения трения основана на силе трения на одной четверти шага намотки каждого элемента скрутки, т.е. напряжение трения рассматривают как гармоническую функцию с максимальными растягивающими и сжимающими напряжениями на растянутой и сжатой сторонах шлангокабеля;
- методы численного моделирования с применением компьютерных программ, в которых расчет контактного давления, обусловленного натяжением и кручением, выполняют методом последовательных приближений, контактное давление принимают в качестве граничного условия при расчете сил трения, а учет влияния упругого изгиба основан на дифференциальной геометрии и применении аналогичного описанному выше допущения об учете одной четверти шага намотки при расчете напряжений трения;
- двумерные и трехмерные модели, построенные методом конечных элементов, учитывающие влияние всех значимых физических факторов, включая произвольные профили кривизны, в которых уравнение равновесия под действием всех нагрузок решается для каждого элемента.
F.1.2.6 Все рассмотренные выше модели могут быть настроены посредством сравнения данных расчетов и экспериментальных данных натурных испытаний. Особое внимание следует уделять калибровке расчетной модели для условий динамического применения шлангокабеля, когда растягивающая нагрузка и/или углы отклонений превышают значения, имевшие место в предшествующих условиях эксплуатации. В этом случае необходимо уделить особое внимание двум видам воздействий: отмеченному выше трению между внутренними элементами шлангокабеля и возможным концевым эффектам, которые возникают вследствие изменения градиента кривизны по шагу намотки элементов скрутки или из-за ограниченной длины от изогнутого участка до концевого фитинга. Указанные эффекты могут приводить к значительному увеличению динамических напряжений, учитываемых в расчетах на усталость, которые необходимо обосновать испытаниями конструкции шлангокабеля, либо с помощью применения моделей, в которых учитывают указанные эффекты.
В таблице F.1 приведены различные подходы к проведению анализа конструкции шлангокабеля.
Таблица F.1 - Подходы к анализу конструкции шлангокабеля
Растягивающие и крутящие нагрузки |
Внешние нагрузки |
Изгиб |
Аналитические методы, предполагающие отсутствие свободного пространства в конструкции |
Аналитические методы, основанные на консервативном допущении о распределении нагрузки |
Аналитические методы, основанные на допущении о постоянной кривизне при расчете упругого изгиба и влияния трения a |
Методы численного моделирования с применением компьютерных программ, в которых делают допущение, что шлангокабель состоит из концентрических слоев, а расчет радиальных эффектов и учет влияния свободного пространства выполняют методом последовательных приближений |
Моделирование методом конечных элементов, при котором в модели используют геометрические параметры внутренней конструкции, а влияние сил внутренней реакции при взаимодействии между элементами и их деформацию учитывают на уровне отдельного элемента |
Трехмерные модели, построенные методом конечных элементов, в которых решается уравнение равновесия под действием всего комплекса нагрузок с учетом произвольной кривизны и концевых эффектов |
Моделирование методом конечных элементов, при котором радиальные эффекты и влияние свободного пространства между элементами учитывают на уровне элементов |
- |
- |
a Основное ограничение аналитических методов для расчета изгибающих напряжений относится к концевым эффектам, которые могут иметь место вследствие сочетания градиентов изгиба и/или малых углов навивки у элементов с витой скруткой. |
F.1.3 Верификация методов анализа прочности конструкции шлангокабеля
Методы анализа прочности конструкции следует верифицировать с помощью испытаний. Такие испытания могут быть распределены по группам, как это представлено в таблице F.2.
Таблица F.2 - Верификация методов анализа прочности конструкции
Цель испытаний |
Объект испытаний |
Верификация модели распределения нагрузки, обусловленной растягивающими и скручивающими воздействиями |
a) Измерения при испытании продольной жесткости и жесткости при кручении: - осевая деформация как функция приложенной осевой нагрузки. Для подтверждения связи между натяжением и кручением применяют два варианта: либо один конец имеет возможность свободного вращения и измеряют связанную с ним деформацию кручения, либо оба конца закреплены без возможности вращения и измеряют соответствующий крутящий момент; - деформация кручения как функция приложенного крутящего момента. Для подтверждения связи между натяжением и кручением применяют два варианта: либо один конец имеет возможность свободного перемещения в осевом направлении так, что может быть измерена связанная с ним продольная деформация, либо для обоих концов ограничена возможность перемещения вдоль оси так, что может быть измерена соответствующая растягивающая нагрузка. b) Тензометрические испытания, при которых датчики для измерения деформации размещают на отдельно взятых элементах, а деформацию измеряют для указанных выше режимов нагрузки |
Верификация модели оценки раздавливающей нагрузки |
Испытания на смятие, при которых шлангокабель подвергают максимальной нагрузке, имеющей место в процессе укладки и эксплуатации, включая соответствующее геометрическое распределение нагрузки |
Верификация модели изгибающих напряжений |
a) Испытания жесткости на изгиб, при которых измеряют соотношение между моментом и кривизной, планируя схему проведения испытаний таким образом, чтобы одновременно могли быть приложены растягивающие и крутящие нагрузки, а оценку влияния трения и концевых эффектов можно было выполнить по получившейся в результате диаграмме зависимости кривизны от момента |
б) Тензометрические испытания, при которых элементы шлангокабеля оборудованы датчиками для измерения деформации, а шлангокабель подвергают комбинированному нагружению, включающему натяжение, кручение и изгиб. Концевые эффекты могут быть учтены в испытаниях за счет установки концевых фитингов на обоих концах таким образом, чтобы элементы шлангокабеля были неподвижно закреплены в осевом направлении | |
Верификация модели напряженного состояния и развития усталости |
Испытания на усталостное разрушение, при которых шлангокабель подвергают комбинированному нагружению, включающему натяжение, скручивание и изгиб |
F.2 Сравнение вариантов конструкции шлангокабеля
Анализ прочности конструкции является эффективным средством для оценки уровня внедрения новых технологий в конструкциях шлангокабеля. По отношению к усталостным эксплуатационным свойствам при оценке необходимости и объема определительных испытаний должны быть рассмотрены, как минимум, следующие параметры:
- максимальное натяжение и максимальный изгиб;
- максимальный уровень напряженного состояния элемента из-за натяжения и изгиба;
- контактное давление между элементами в конструкции шлангокабеля;
- схема расположения элементов шлангокабеля в поперечном сечении и угол навивки;
- механические и коррозионные свойства материалов.
Для оценки напряжений от натяжения и изгиба и контактного давления допускается применять любой аттестованный аналитический метод согласно F.3.
F.3 Анализ подходов к выполнению анализа усталостных характеристик
F.3.1 Для выполнения анализа усталостных характеристик допускается применять альтернативные подходы, показанные на рисунке F.1.
Из общего анализа определяют классы по растягивающему напряжению и изгибу или классы по растягивающему напряжению и изменениям концевых углов. Для верификации усталостных характеристик для заданных условий применения в различных подходах необходимо:
- применять результаты общего анализа в качестве основы для натурных испытаний опытного образца для моделирования срока службы шлангокабеля;
- применять результаты локального анализа, чтобы преобразовать воздействие общей нагрузки в напряжение и деформацию и объединить с данными зависимости напряжений от числа циклов до разрушения на уровне элементов для расчета усталостного разрушения.
Допускается применять различные подходы для расчета местных напряжений и усталостного разрушения для временных последовательностей реакции на напряжение натяжения и изгиб, либо на напряжение натяжения и концевой угол. Вариант "напряжение натяжения и изгиб" применяют в случае, когда концевые эффекты являются небольшими, или концевой эффект учитывают благодаря масштабному фактору. Масштабный фактор может являться функцией от величины изгиба и поэтому необходимо рассматривать соответствующий диапазон величин изгиба. В случае, когда концевые эффекты описывают трехмерными моделями, требуется наличие необходимых статистических данных о нагружении в зависимости от напряжения натяжения и конечных углов из общего анализа.
Рисунок F.1 - Схема анализа усталостных характеристик
F.3.2 Для расчета усталостного разрушения допускается применять различные процедуры с использованием методов, описанных в F.3.1. К ним относят:
a) общий анализ, основанный на модели регулярных волн, в котором классы реакции на изгиб и натяжение применяют в качестве исходных данных для анализа местных напряжений;
b) общий анализ, основанный на модели нерегулярных волн, в котором определяют временные ряды растягивающей и изгибающей нагрузки, с дальнейшей обработкой этих временных рядов для расчета напряжений и усталости с применением следующих альтернативных подходов;
c) преобразование временных рядов общей реакции на натяжения и изгиб во временные ряды напряжений с помощью верифицированной аналитической формулы и прямой расчет усталостного разрушения посредством обработки временных рядов;
d) применение совместного распределения значений натяжения и изгиба и определение классов по изгибу и соответствующему напряжению от натяжения путем обработки временных рядов, например с использованием метода "дождя" в соответствии с ГОСТ 25.101; затем классы реакции могут быть применены в качестве исходных данных для расчета напряжений аналитическими или численными методами;
e) классы реакции, которые могут быть определены с применением альтернативных подходов:
1) если изменения напряжения натяжения незначительны (т.е. изменение напряжений, обусловленных натяжением, незначительно по отношению к усталости), среднее значение напряжения натяжения может применяться для всех классов изменения изгиба;
2) если изменение напряжения натяжения умеренное (т.е. изменение изгиба все еще является определяющим), может быть установлено соотношение между напряжением натяжения и изгибом посредством регрессионного анализа;
3) если результат воздействия от изменения натяжения имеет величину того же порядка, что и результат воздействия от изменения изгиба, необходимо построить обработку временного ряда на основе выбора в качестве основной величины либо напряжения натяжения, либо изгиба, чтобы получить классы одновременно изменяющегося напряжения натяжения и изгиба;
4) процедуры совместного распределения, которые также применяют в случае использования подхода "напряжение от натяжения и концевой угол".
F.3.3 В общем случае необходимо исследовать различные положения в поперечном сечении шлангокабеля и вдоль шлангокабеля для выявления наиболее неблагоприятного участка. Для учета влияния направления действия нагрузок от воздействия факторов окружающей среды допускается применять различные допущения:
- на основе диаграмм повторяемости волн и направлений определяют наихудшее направление и делают допущение на основе консервативного подхода, что в этом направлении приложены напряжения всех классов. В этом случае проверяемые положения поперечных сечений ограничивают одной плоскостью;
- направленность воздействий принимают в расчет полностью, чтобы распределить усталостное разрушение по поперечному сечению. Для этого требуется определить состояние моря для ряда направлений на основе диаграмм повторяемости волн и направлений. Для каждого направления применяют подход на основе регулярной или нерегулярной модели. Вместе с тем необходимо трехмерное представление модели напряженного состояния и развития усталости для распределения усталости в поперечном сечении. Необходимо определение изгиба по двум осям, и в то же время необходимо трехмерное представление изменения угла.
F.4 Методы общего анализа результатов воздействия нагрузок
F.4.1 Общие положения
F.4.1.1 Цель общего анализа воздействия нагрузок заключается в определении всех статических и динамических характеристик конструкции системы шлангокабеля. В таком анализе формируют полное представление о соотношении "результирующая сила/сдвиг" (осевая нагрузка в зависимости от осевого удлинения, изгибающий момент в зависимости от величины изгиба, крутящий момент в зависимости от угла закручивания) в поперечном сечении.
Результаты общего анализа воздействия нагрузок могут быть сгруппированы по следующим основным категориям:
- результирующие силы в поперечном сечении (эффективное натяжение, изгибающие моменты, крутящий момент);
- общие параметры отклонения шлангокабеля (изгиб, относительное удлинение, угол изгиба);
- общие параметры положения шлангокабеля (координаты, расстояние до других конструкций, положение точки касания морского дна, местоположение на морском дне точки, от которой начинается неподвижный участок шлангокабеля, и т.д.);
- удерживающие усилия в точках крепления к жестким конструкциям (например, результирующая сила и моменты на конце жесткой накладки).
F.4.1.2 Эти результаты количественного анализа реакции принимают как выходные данные общего анализа райзера. Кроме того, особую важность для конструкции шлангокабеля представляют следующие случаи комбинированной (т.е. одновременной) реакции:
- реакция на комбинированное воздействие "эффективное натяжение - изгиб", являющаяся основой для оценки прочности конструкции шлангокабеля, а также расчета усталостного напряжения для отдельно взятых элементов в поперечном сечении;
- реакция на комбинированное воздействие "эффективное напряжение - относительный угол" в непосредственной близости от точки крепления, являющаяся основой для проектирования устройств для ограничения изгиба шлангокабеля (например, жесткие накладки или раструб) при креплении к конструкции.
Статический анализ следует выполнять с применением полностью нелинейного подхода. Несколько альтернативных вариантов может быть использовано при последующем проведении динамического анализа, повторно начиная с состояния статического равновесия. Исследование нелинейности является отличительной особенностью среди имеющихся методов динамического анализа. Знание определяющих нелинейных характеристик для фактической системы, а также исследование нелинейности в принятых методах анализа является решающим для точности, а следовательно, и для выбора подходящего подхода к выполнению анализа. Обзор применяемых методов динамического анализа с использованием конечно-элементной модели представлен в таблице F.3.
Таблица F.3 - Методы численного моделирования с применением метода конечных элементов
Метод |
Нелинейность |
|
Нагрузка от факторов окружающей среды |
Конструкция |
|
Нелинейный анализ во временной области (NTD) |
Нагружение Моррисона. Интеграция с фактической отметкой поверхности |
Геометрическая жесткость. Нелинейное поперечное сечение. Контакт с морским дном. Поверхность контакта (например, раструб). Большое пространственное вращение |
Линеаризованный анализ во временной области (LTD) |
Линеаризована у положения статического равновесия |
|
Анализ в частотной области (FD) |
Линеаризована у положения статического равновесия (стохастическая линеаризация в случае нерегулярного возмущения) |
Пространственная конфигурация шлангокабеля, подсоединенного к плавучему нефтегазопромысловому сооружению и эксплуатируемого в динамических условиях, как правило, может меняться. Это означает, что качка плавучего сооружения компенсируется изменением пространственной конфигурации шлангокабеля в толще воды. Такие системы, как правило, имеют отчетливо выраженные нелинейные характеристики. Следовательно, анализ в нелинейной временной области следует рассматривать в качестве основного метода анализа для шлангокабеля. Для анализа в нелинейной временной области следует допускать неограниченное перемещение и пространственное вращение шлангокабеля.
Анализ в линеаризованной временной области и анализ в частотной области допускается применять при условии, что применимость такого анализа подтверждена в процессе верификации относительно анализа в нелинейной временной области.
F.4.1.3 Основную динамическую нагрузку на шлангокабели в условиях эксплуатации определяют волнением и связанной с ним качкой плавучего нефтегазопромыслового сооружения. Волнение в анализе может быть регулярное или нерегулярное. Регулярное волнение возникает в результате детерминированной гармонической волны с заданным периодом и амплитудой. Нерегулярное волнение возникает в результате стохастической волны, генерируемой из заданного спектра волн. Необходимо применять один из следующих методов или их сочетание:
- анализ во временной области для условий нерегулярного волнения;
- анализ во временной области для условий регулярного волнения;
- анализ в частотной области для условий нерегулярного волнения.
F.4.1.4 Изменение периода волн следует рассматривать в процессе анализа для условий регулярного и нерегулярного волнения с целью определения наиболее неблагоприятных условий нагружения. Это особенно важно при анализе в условиях регулярного волнения, который может иметь значительные систематические погрешности для динамически чувствительных систем. Изменение периода волны следует выполнять с учетом:
- статистической изменчивости периода волны;
- частоты собственных колебаний системы шлангокабеля;
- пиковых значений передаточной функции качки плавучего нефтегазопромыслового сооружения;
- зависимости периода колебаний от интенсивности нагрузки, например нагрузки в зоне заплеска в условиях возмущенного движения.
Необходимо подтвердить, что продолжительность временного интервала, принятого при проведении анализа для нерегулярного временного интервала, достаточна для получения оценки воздействия экстремальных нагрузок с достаточной статистической достоверностью. Это особенно важно при сочетании волновых нагрузок и низкочастотных нагрузок. Для проведения анализа можно использовать метод, приведенный в [5].
Применимость упрощенного моделирования и/или методов анализа должна быть подтверждена более совершенным моделированием и/или анализом для нескольких рассчетных случаев. В частности, для характерных (критических) условий нагружения должна быть предусмотрена валидация согласно таблице F.4.
Таблица F.4 - Методы валидации методов анализа
Применяемый метод анализа |
Метод валидации |
Линеаризованный анализ во временной области |
Нелинейный анализ во временной области |
Анализ в частотной области |
Анализ во временной области |
Анализ регулярных волн |
Анализ нерегулярных волн |
F.4.2 Моделирование поперечного сечения в общем анализе
Как отмечено в F.1-F.3, шлангокабель может иметь довольно сложные общие характеристики поперечного сечения при изгибе вследствие скачкообразного изменения реакции на изгиб, обусловленного контактными нагрузками и трением между элементами шлангокабеля. Это приводит к гистерезисным характеристикам взаимосвязи между моментом и изгибом в поперечном сечении, которые зависят от среднего значения натяжения шлангокабеля. Общие характеристики поперечного сечения типового шлангокабеля могут быть обобщены следующим образом:
- различные демпфирующие свойства конструкции связаны с осевой деформацией, деформацией кручения и изгиба шлангокабеля;
- продольную и крутильную жесткость можно рассматривать как постоянную для заданного натяжения шлангокабеля;
- демпфирование конструкции, связанное с осевой деформацией и деформацией кручения, может быть приближенно представлено с помощью модели вязкого демпфирования (т.е. модели постоянного линейного демпфирования). Эквивалентное демпфирование следует ожидать на уровне 1 %-5 %;
- отчетливо выраженная петля гистерезиса соотношения между моментом и изгибом наблюдается при изгибе с большой амплитудой вследствие относительного перемещения между элементами, как показано на рисунке F.2. Характеристики гистерезиса при изгибе определяются свойствами материала слоев и трением между слоями. В условиях полного смещения элементов в поперечном сечении эквивалентное демпфирование может составлять до 20 %-30 %;
- при изгибе с малой амплитудой шлангокабель ведет себя, как шлангокабель, имеющий сплошное поперечное сечение. Это связано с тем, что силы трения между элементами в конструкции шлангокабеля препятствуют относительному перемещению элементов в поперечном сечении. Эквивалентное демпфирование может быть на уровне 1 %-5 %.
X - изгиб; Y - изгибающий момент, кН·м
Рисунок F.2 - Характерный пример определенной путем измерений петли гистерезиса при изгибе
Приведенные выше цифры, касающиеся демпфирования, следует рассматривать только в качестве типового примера. Их используют для качественной оценки механизма демпфирования применительно к шлангокабелям. Оценку демпфирования конструкции шлангокабеля следует выполнять в каждом отдельном случае на основе испытаний фактической или аналогичной конструкции поперечного сечения.
Таким образом, можно сделать вывод о том, что демпфирующие свойства и характеристики жесткости при изгибе имеют ярко выраженный нелинейный характер. Следствием этого является зависимость характеристик жесткости и демпфирующих свойств шлангокабелей от амплитуды изгиба при динамическом нагружении. Более того, демпфирование и жесткость конструкции могут значительно меняться вдоль шлангокабеля. Увеличенное демпфирование конструкции проявляется в зонах с большим динамическим изгибом (например, на опорах, где реакция на изгиб регулируется ограничителями изгиба). Меньшее демпфирование проявляется в зонах с малым динамическим изгибом.
Общий анализ результатов действия динамических нагрузок на шлангокабель, как правило, выполняют с помощью динамических конечно-элементных методов моделирования во временной области, в то время как анализ вибраций, обусловленных вихревыми потоками, и анализ формирования свободных пролетов, как правило, выполняют в частотной области. Для анализа результатов действия такого рода нагрузок требуется общее описание характеристик шлангокабеля в поперечном сечении. Допускается применение следующих методов моделирования:
a) эквивалентная модель вязкого демпфирования, рекомендуемая для условий вибраций с малой амплитудой, например для анализа вибраций, обусловленных вихревыми потоками, и анализа формирования свободных пролетов. Демпфирование конструкции, в незначительной степени проявляющееся на нижней стороне, должно быть представлено как аппроксимация, основанная на консервативном подходе. Необходимо применять постоянные значения жесткости в поперечном сечении, характерные для вибраций с малой амплитудой. Такой подход применим к построению моделей для решения задачи во временной и частотной областях;
b) согласованная модель поперечного сечения может быть получена при введении полученного опытном путем гистерезисного отношения момента и изгиба в конечно-элементную модель вместе с моделью вязкого демпфирования для учета осевого демпфирования и демпфирования при кручении. С применением нелинейной схемы для решения задачи во временной области эта модель обеспечивает согласованное моделирование характеристик конструкции шлангокабеля.
Модели вязкого демпфирования, как правило, подходят для всех видов деформированного состояния системы шлангокабеля, например модель демпфирования Рэлея, известная также как пропорциональная модель демпфирования. Вместе с тем такая модель не позволяет определять различные уровни демпфирования для различных видов деформации.
Применение согласованной модели поперечного сечения представляет сложность для количественной оценки и в основном рекомендовано для проверки более простых моделей расчета конструкций. Эквивалентная модель вязкого демпфирования также может применяться как аппроксимация при анализе динамических характеристик, включая случай изгиба с большой амплитудой. В этом случае следует применять низкий уровень общего вязкого демпфирования (характерный для осевого демпфирования и демпфирования при кручении) для реалистичного представления рассеивания энергии при преобладающей частоте ответных колебаний, например в пиковый период в спектре реакции.
Также допускается применение других моделей, например вязкостных моделей, позволяющих определять различные уровни демпфирования при различных видах деформации (осевой, при изгибе и кручении), пространственное определение уровня демпфирования и т.п.
F.4.3 Принципы общего моделирования
F.4.3.1 Общие положения
Численная аппроксимация, как правило, включает пространственную дискретизацию шлангокабеля на конечное число элементов, а также дискретизацию динамических нагрузок по времени и частоте. Исследование сходимости решения путем многократного анализа с учетом последовательного уточнения дискретизации является основным принципом для проверки точности дискретизации. Дискретизацию считают приемлемой, когда изменение отклика между двумя последовательными дискретизациями приемлемо относительно цели анализа. В таком случае отсутствует практическая целесообразность в дальнейшем совершенствовании дискретизации.
Руководство по отдельным вопросам общего моделирования приведено в F.4.3.2-F.4.3.4. Дополнительное руководство по моделированию содержится в стандартах и практических рекомендациях, таких как ГОСТ Р 59306 и ГОСТ Р 59309 (см. также [5], [36]).
F.4.3.2 Пространственная дискретизация
Особое внимание должно быть уделено следующим вопросам, связанным с пространственной дискретизацией системы шлангокабеля:
- участки с большим изгибом, например подвешенные и провисающие участки;
- участки контакта, например участки, на которых происходит касание морского дна, поддерживающих приспособлений, раструба;
- оконечные устройства при подключении к стационарным конструкциям;
- участки с высокой интенсивностью нагружения и/или градиентом нагрузки, например зоны периодического смачивания;
- участки со значительным изменением характеристик поперечного сечения, т.е. жесткие накладки, ограничители изгиба, модули плавучести;
- участки с изменением длины элементов. Относительное изменение длины между соседними элементами с постоянными характеристиками в поперечном сечении не должно превышать 1:2, может потребоваться меньшее относительное изменение длины при неравномерных свойствах поперечного сечения;
- сжатые участки, т.е. участки с отрицательным эффективным натяжением. Следует выбирать достаточно небольшие длины элементов для исключения возможности потери устойчивости по Эйлеру в границах одного элемента, т.е. конечно-элементная сетка должна быть достаточно мелкой для выявления потенциальной потери устойчивости по Эйлеру в модели общего анализа.
F.4.3.3 Дискретизация по частоте
Для корректного описания нагрузки должен быть определен спектр частот нагрузок, обусловленных, например, волнением и качкой нефтегазопромыслового сооружения. Особое внимание должно быть уделено потенциальным резонансным частотам системы шлангокабеля. Для частотно-зависимых систем предпочтительным является анализ для условий нерегулярного волнения, учитывающий нагрузки от случайных волн.
Функцию передачи воздействий от перемещений плавучего сооружения выражают через амплитуду и фазовые углы как функция значений частот и направлений дискретных волн. Дискретные частоты и направления должны быть тщательно подобраны, чтобы обеспечить точное описание перемещений нефтегазопромыслового сооружения. Применяют следующие рекомендации:
- частоты выбирают с охватом резонансных пиков в функции передачи воздействий от перемещений плавучего сооружения, например резонансных частот при вертикальной, бортовой и килевой качке;
- должны быть определены и представлены в дискретном виде частоты, исключаемые из функции передачи нагрузки от качки плавучего нефтегазопромыслового сооружения (имеет значение, например, для полупогружных платформ и платформ с натяжными опорами);
- частотный диапазон должен охватывать все значимые частоты в волновом спектре, критические режимы следует оценивать на основе возможных резонансных частот в системе шлангокабеля;
- дискретизация направления волн по интервалам в диапазоне от 15° до 30°, как правило, является достаточной для обеспечения хорошего представления о перемещениях плавучего сооружения.
F.4.3.4 Дискретизация по времени
Численное интегрирование по времени применяют при анализе во временной области, чтобы получить дискретные временные ряды реакции системы. Выбор шага дискретизации по времени является решающим для обеспечения устойчивости и точности прямых методов интегрирования по времени. Ниже рассмотрены некоторые аспекты:
- временной шаг, необходимый для получения устойчивого численного решения, в большой степени определяется наибольшей собственной модой колебаний, присутствующей в дискретной модели конструкции. Это связано с необходимостью проведения корректного интегрирования всех собственных мод для получения устойчивого решения, включая, например, моды, которые не имеют значения для представления реакции системы. Характерный временной шаг находится в диапазоне от 0,1 до 0,4 с;
- для нелинейного анализа в общем случае требуется меньший временной шаг для получения устойчивого численного решения по сравнению с линейными видами анализа. Это справедливо, в частности, для чувствительных к численным методам систем, например, для систем со значительной нелинейностью зависимости перемещений. К таким случаям относят задачи для условий малого натяжения, включающие моментальную нагрузку, смятие, контактные задачи и характерное нелинейное поведение материала, например гистерезис между моментом и изгибом;
- для определения возможного нелинейного шума, отражающего неточное численное решение, всегда должен быть предусмотрен контроль правильности статистических данных о времени реакции системы;
- для получения точного численного решения выполняют исследование сходимости с учетом последовательного уточнения дискретизации по времени.
Для анализа во временной области с учетом нагрузки от стохастических волн, как правило, требуется формирование статистических данных о дискретном времени для перемещений плавучего сооружения и движении волн согласно заданному волновому спектру. Статистические данные о продолжительности действия нагрузки выражают через конечное число гармоник с применением стохастической фазы и/или стохастической амплитуды для получения представления о случайных волнах. Должна быть выполнена оценка качества полученных временных волновых рядов для надлежащего представления необходимых статистических характеристик (главным образом стандартного отклонения, среднего периода перехода волны через нулевое значение, коэффициента асимметрии и коэффициента эксцесса).
F.5 Анализ процессов укладки
Данный анализ применяют для определения нагрузок, действующих на шлангокабель во время укладки, в том числе обусловленных давлением в линиях шлангокабеля, качкой судна, воздействием оборудования для укладки, нагрузками при удержании, воздействием при прокладке в траншее, обратной засыпкой, смятием, воздействием грунта морского дна и операциями в процессе протягивания.
Анализ применяют для определения следующих параметров, которые необходимо учитывать при проектировании шлангокабеля:
- допустимые пределы смещения судна относительно точки касания шлангокабеля морского дна как функция от состояния моря и параметров течений;
- изменения натяжения и изгиба вдоль шлангокабеля как функция от состояния моря и параметров течений;
- диаграммы натяжения и изгиба во временной области для ряда точек вдоль шлангокабеля, включая точки, для которых определены максимальная величина натяжения и минимальный радиус изгиба;
- допустимые перемещения судна для исключения чрезмерного нагружения шлангокабеля;
- остаточное натяжение при укладке в траншею;
- максимальный период времени как функции от состояния моря, в течение которого выполняющее укладку судно может сохранять свое положение до начала процессов усталостного разрушения в шлангокабеле;
- воздействие обратной засыпки;
- поперечная деформация, обусловленная раздавливающими нагрузками во время хранения и прохождения через кабелеподающие устройства в сочетании с воздействием внутреннего давления и натяжения в процессе укладки.
Для определения максимально допустимых условий окружающей среды анализ должен быть выполнен для всех стадий укладки применительно к перемещениям судна и в диапазоне погодных условий, заданных заказчиком в качестве гидрометеорологических критериев.
Если укладка включает протягивание шлангокабеля через трубы I- или J-типа, должно быть определено максимальное усилие, прикладываемое к шлангокабелю при протягивании, с учетом действующей на шлангокабель силы трения как на морском дне, так и внутри труб I- или J-типа.
Проектные нагрузки на шлангокабель, минимальные радиусы изгиба и допустимые раздавливающие нагрузки должны находиться в пределах, определенных в рамках анализа процессов укладки.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.