Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
ПРИЛОЖЕНИЕ А
(рекомендуемое)
ОБЩИЕ ПОЛОЖЕНИЯ И ОБОСНОВАНИЯ
А.1 Общие положения
Необходимость настоящего общего стандарта по безопасности МЕДИЦИНСКИХ ЭЛЕКТРИЧЕСКИХ ИЗДЕЛИЙ обусловлена тем, что такие ИЗДЕЛИЯ определенным образом взаимодействуют с ПАЦИЕНТОМ, ОПЕРАТОРОМ и окружающими предметами. При этом важное значение имеют следующие факторы:
a) Неспособность ПАЦИЕНТА или ОПЕРАТОРА определять наличие некоторых потенциальных опасностей, таких как ионизирующее или высокочастотное излучения.
b) Отсутствие нормальной реакции ПАЦИЕНТА, который может быть болен, находиться без сознания, под действием анестезирующих средств, в иммобилизованном состоянии и т.д.
c) Отсутствие нормальной защиты ПАЦИЕНТА от токов, обеспечиваемой кожей, когда нарушают ее целостность или обрабатывают для получения низкого сопротивления.
d) Поддержание или замещение жизненно важных функций тела могут зависеть от надежности ИЗДЕЛИЯ.
e) Одновременное присоединение к телу ПАЦИЕНТА более одного ИЗДЕЛИЯ.
f) Комбинация, часто специальная, мощного ИЗДЕЛИЯ и ИЗДЕЛИЯ, чувствительного к слабым сигналам.
g) Подключение электрических цепей непосредственно к телу человека с использованием контактов с кожей и (или) с помощью введения зондов во внутренние органы.
h) Условия окружающей среды, в частности в операционных помещениях, могут приводить к возникновению комбинаций опасностей из-за влажности воздуха, наличия влаги на предметах и (или) опасности пожара или взрыва смесей воздуха, кислорода или закиси азота с анестетиками или средствами очистки.
А.1.1 Безопасность МЕДИЦИНСКИХ ЭЛЕКТРИЧЕСКИХ ИЗДЕЛИЙ, как указано в Публикации МЭК 513, является частью общей системы безопасности, которая включает в себя безопасность самих ИЗДЕЛИЙ, безопасность электропроводки в медицинских помещениях и безопасность эксплуатации.
Безопасность ИЗДЕЛИЙ должна быть обеспечена при НОРМАЛЬНОЙ ЭКСПЛУАТАЦИИ и НОРМАЛЬНОМ СОСТОЯНИИ, а также в УСЛОВИЯХ ЕДИНИЧНОГО НАРУШЕНИЯ. Надежность работы считается фактором безопасности для жизнеобеспечивающих ИЗДЕЛИЙ, а также в случаях, когда перерывы в обследовании или лечении рассматриваются как ОПАСНОСТЬ для ПАЦИЕНТА.
Надлежащая конструкция и монтаж, служащие для предотвращения человеческих ошибок, рассматриваются как факторы безопасности.
Меры безопасности считаются приемлемыми, если они обеспечивают надежную защиту без нежелательного ограничения нормальной работы.
Обычно считается, что ИЗДЕЛИЯ работают под ответственностью квалифицированных или дипломированных лиц, что ОПЕРАТОР обладает достаточными знаниями для данного медицинского применения и действует согласно инструкции по эксплуатации.
Общая безопасность ИЗДЕЛИЙ может обеспечиваться:
защитными средствами, предусмотренными в ИЗДЕЛИИ (безусловная безопасность);
дополнительными защитными средствами, например использованием экранов или защитных оболочек (условная безопасность);
ограничениями в инструкции по эксплуатации относительно транспортирования, монтажа и (или) расположения, подключения, ввода в действие, работы и положения ОПЕРАТОРА и его помощников относительно ИЗДЕЛИЯ во время его эксплуатации (описательная безопасность).
Обычно исходят из того, что средства безопасности должны применяться в приведенном порядке. Они могут быть реализованы совершенными техническими приемами, которые включают в себя знания процессов производства и условий окружающей среды во время изготовления, транспортирования, хранения и эксплуатации изделий, применением резервирования и (или) применением защитных механических или электрических устройств.
Ссылка на другие нормативно-технические документы делается только в том случае, если они имеют общий характер, т.е. не ограничены конкретным видом изделия.
А.1.2 Указания ко второму изданию международного стандарта МЭК 601-1
А.1.3 Защита от опасностей поражения электрическим током
Защита от поражения электрическим током, не обусловленным физическими явлениями, создаваемыми ИЗДЕЛИЯМИ, может быть обеспечена комбинацией следующих средств:
предотвращением контакта между телом ПАЦИЕНТА, ОПЕРАТОРА или третьего лица с частями, которые НАХОДЯТСЯ или могут оказаться ПОД НАПРЯЖЕНИЕМ в результате нарушения изоляции, применением корпусов, защитных ограждений или монтажом соответствующих частей в недоступных местах;
ограничением напряжений на частях и токов от частей, которых преднамеренно или случайно может коснуться ПАЦИЕНТ, ОПЕРАТОР или третье лицо. Указанные напряжения или токи могут иметь место при НОРМАЛЬНОЙ ЭКСПЛУАТАЦИИ или возникать при условии ЕДИНИЧНОГО НАРУШЕНИЯ.
Обычно такая защита достигается комбинированным использованием:
ограничения напряжения и (или) энергии или же защитного заземления (см. пункты 15 и 18);
корпусов и (или) защитных ограждений для НАХОДЯЩИХСЯ ПОД НАПРЯЖЕНИЕМ частей (см. пункт 16);
изоляции требуемого качества и конструкции (см. пункт 17).
Значение тока, протекающего через тело человека или животного и способного вызвать определенную степень стимуляции, изменяется от индивидуума к индивидууму и зависит от вида соединения с телом, а также частоты тока и продолжительности его воздействия.
Токи низкой частоты, протекающие непосредственно в сердце или через него, значительно увеличивают вероятность фибрилляции желудочков. В случае токов средней или высокой частоты вероятность поражения током незначительна или практически полностью отсутствует, однако остается опасность ожогов.
Чувствительность тела человека к электрическому току, в зависимости от степени и характера контакта с ИЗДЕЛИЯМИ, делает необходимой классификацию ИЗДЕЛИЙ по степени и качеству защиты. Это выражается через максимально допустимые ТОКИ УТЕЧКИ (ИЗДЕЛИЯ ТИПОВ В, BF и CF). ИЗДЕЛИЯ ТИПОВ В и BF пригодны для внешнего или внутреннего контакта с телом ПАЦИЕНТА, кроме контакта с сердцем, ИЗДЕЛИЯ ТИПА CF пригодны для ПРЯМОГО ПРИМЕНЕНИЯ НА СЕРДЦЕ.
С учетом этой классификации были сформулированы требования к допустимому ТОКУ УТЕЧКИ. Все еще остается проблема, связанная с отсутствием достаточно надежных научных данных относительно чувствительности человеческого сердца к токам, вызывающим фибрилляцию желудочков.
Тем не менее, технические специалисты располагают данными, позволяющими им конструировать ИЗДЕЛИЯ; таким образом, в настоящее время имеющиеся требования отражают представления о допустимой степени безопасности.
При формировании требований к ТОКУ УТЕЧКИ было учтено следующее:
a) на вероятность фибрилляции желудочков, кроме электрических, влияют и другие факторы;
b) максимально допустимые ТОКИ УТЕЧКИ в УСЛОВИЯХ ЕДИНИЧНОГО НАРУШЕНИЯ должны считаться безопасными с учетом результатов статистических исследований;
c) значения ТОКОВ УТЕЧКИ для НОРМАЛЬНОГО СОСТОЯНИЯ необходимы для обеспечения безопасности во всех случаях, что достигается достаточно высоким коэффициентом безопасности относительно УСЛОВИЙ ЕДИНИЧНОГО НАРУШЕНИЯ.
При выборе методов измерений исходили из необходимости применения простых приборов, исключения вероятности различной интерпретации того или иного случая и учета возможностей периодической проверки, проводимой ПОТРЕБИТЕЛЕМ (описанной в Правилах применения).
Требования к электрической прочности изоляции включены для проверки качества изоляционного материала, используемого в различных частях ИЗДЕЛИЯ.
А.1.4 Защита от механических опасностей
Требования раздела четыре разделены на часть, рассматривающую ОПАСНОСТИ, вызываемые повреждениями или ухудшением качества ИЗДЕЛИЯ (механическая прочность), и на несколько частей, рассматривающих опасности механической природы, вызываемые ИЗДЕЛИЕМ (повреждения движущимися частями, неровными поверхностями, острыми углами и кромками, из-за неустойчивости, выбрасываемых частей, вибрации и шума и при повреждении опор для ПАЦИЕНТА и средств для подвески частей ИЗДЕЛИЯ),
ИЗДЕЛИЕ может оказаться небезопасным из-за повреждения частей или ухудшения их характеристик при механических воздействиях, например ударах, давлениях, толчках, вибрациях, при попадании твердых частиц, пыли, жидкостей и влаги, а также агрессивных газов, из-за тепловых и динамических нагрузок, коррозии, ослабления креплений движущейся части или подвешенной массы и из-за излучения.
Влияния механических перегрузок, разрушения или износа материалов можно избежать с помощью средств, которые:
прекращают или делают безопасной работу ИЗДЕЛИЯ или ИСТОЧНИКА ПИТАНИЯ (например плавкими предохранителями, предохранительными клапанами) при возникновении перегрузки;
защищают от вылетающих или падающих частей (вызванных дефектом материала, износом или перегрузкой), которые могут представить ОПАСНОСТЬ.
Защита от разрушения опор для ПАЦИЕНТА и устройства для подвеса может обеспечиваться резервированием или применением предохранительных захватов.
ЧАСТИ ИЗДЕЛИЙ, предназначенные для держания в руке или располагаемые на кровати, должны быть достаточно прочными, чтобы выдерживать падение. Они могут подвергаться вибрации и ударам не только при переноске, но и при использовании в автомобилях.
А.1.5 Защита от опасностей нежелательного или избыточного излучения
Излучение от МЕДИЦИНСКОГО ЭЛЕКТРИЧЕСКОГО ИЗДЕЛИЯ может происходить во всех известных в физике формах. Рассматриваемые требования безопасности относятся к нежелательному излучению. Меры защиты необходимы для ИЗДЕЛИЯ и его для окружения, при этом методы определения уровней излучения должны быть стандартизованы.
В некоторых случаях приходится идти на превышение предельных уровней излучения, ответственность за это берет на себя медицинский персонал. Для ионизирующего излучения требования МЭК, как правило, совпадают с рекомендациями МКРЗ. Их задачей является обеспечить данными, которые могут быть непосредственно использованы конструкторами и ПОЛЬЗОВАТЕЛЯМИ.
Оценка таких данных возможна только на основе специальных исследований методов и продолжительности эксплуатации ИЗДЕЛИЯ, а также возможного местонахождения ПОЛЬЗОВАТЕЛЯ и его помощников, так как учет наиболее неблагоприятных условий приводит к ситуациям, которые могут помешать правильной диагностике или лечению.
В последних Публикациях МКРЗ содержатся также указания для ПОЛЬЗОВАТЕЛЯ по способам ограничения преднамеренного излучения.
А.1.6 Защита от опасностей воспламенения горючих смесей анестетиков
А.1.6.1 Область применения
При использовании ИЗДЕЛИЯ в присутствии горючих анестетиков и (или) горючих веществ для дезинфекции и (или) очистки кожи их смешивание с воздухом, кислородом или закисью азота может привести к взрыву.
Такая смесь может воспламеняться от искр или при контакте с частями, поверхности которых имеют высокую температуру.
Искры могут возникать при размыкании или замыкании электрических цепей переключателями, штепсельными разъемами, плавкими предохранителями, АВТОМАТИЧЕСКИМИ ВЫКЛЮЧАТЕЛЯМИ МАКСИМАЛЬНОГО ТОКА и аналогичными устройствами. В высоковольтных частях искрение может обусловливаться короной. Искрение возможно также под действием статических разрядов.
Вероятность возгорания таких смесей анестетиков зависит от их концентрации, соответствующей минимальной энергии воспламенения, наличия высоких температур поверхностей, а также энергии искрения.
Опасность воспламенения смеси обусловлена местом ее нахождения и относительным количеством.
А.1.6.2 Промышленные изделия и компоненты
Требования к конструкции, приведенные в ГОСТ 22782.0, обычно непригодны для МЕДИЦИНСКИХ ЭЛЕКТРИЧЕСКИХ ИЗДЕЛИЙ по следующим причинам:
a) на их основе получаются ИЗДЕЛИЯ, которые по размеру, массе или устройству непригодны для использования в медицине и (или) могут быть нестерилизуемыми;
b) в некоторых конструкциях взрыв допускается внутри корпуса без распространения наружу. Такая безопасная конструкция оказывается непригодной для операционной, где существенна непрерывность работы ИЗДЕЛИЯ;
c) промышленные требования рассчитаны на воспламеняющиеся вещества в смеси с воздухом. Они не могут быть применены для смесей с кислородом или закисью азота, используемых в медицине;
d) в медицинской практике горючие смеси анестетиков встречаются лишь в относительно небольших количествах.
Однако некоторые конструкции, указанные в ГОСТ 22782.0, могут быть приемлемы для ИЗДЕЛИЙ КАТЕГОРИИ АР (см. пункт 40.1).
А.1.6.3 Требования к МЕДИЦИНСКИМ ЭЛЕКТРИЧЕСКИМ ИЗДЕЛИЯМ
Сведения о местонахождении горючих смесей анестетиков приведены:
насколько это необходимо для конструирования ИЗДЕЛИЙ, - в п. 37 настоящего стандарта, как минимум для установленных условий истечения и абсорбции газов;
насколько это необходимо для размещения изделия и конструирования электропроводки в помещениях, - в Публикации МЭК 364.
В Публикации МЭК 364 дополнительно приведены данные по воспламеняющимся концентрациям некоторых горючих веществ, их обычным рабочим концентрациям, температурам и минимальной энергии воспламенения и температурам вспышки. Требования к вентиляции и очистке помещений от газов, поддержанию минимальной относительной влажности и разрешение применять изделия некоторых видов в тех или иных зонах могут регламентироваться местными (больничными) или национальными, в том числе законодательными, нормами.
Требования, предельные значения и методы испытаний, указанные в настоящем разделе, основаны на статистическом рассмотрении результатов экспериментов с наиболее легковоспламеняемыми смесями паров эфира с воздухом и кислородом, проведенных с испытательным аппаратом (приложение F). Это оправдано, так как эфирные смеси имеют наименьшие температуры и энергии воспламенения из обычно применяемых веществ.
Если температуры или параметры цепей ИЗДЕЛИЯ, используемого в ГОРЮЧЕЙ СМЕСИ АНЕСТЕТИКА С ВОЗДУХОМ, превышают предельно допустимые значения и искрения нельзя избежать, соответствующие части и цепи могут находиться в КОРПУСАХ, заполненных сжатым инертным газом или чистым воздухом, или в КОРПУСАХ с ограниченной вентиляцией.
КОРПУСА с ограниченной вентиляцией задерживают образование воспламеняющихся концентраций смеси. Допустимость их применения объясняется тем обстоятельством, что период времени, в течение которого ИЗДЕЛИЕ работает в ГОРЮЧЕЙ СМЕСИ АНЕСТЕТИКА С ВОЗДУХОМ, чередуется с периодом вентиляции, способствующей исчезновению указанных опасных концентраций.
Для ИЗДЕЛИЙ, содержащих ГОРЮЧУЮ СМЕСЬ АНЕСТЕТИКА С КИСЛОРОДОМ ИЛИ ЗАКИСЬЮ АЗОТА, требования, предельные значения и методы испытаний гораздо жестче.
Приведенные требования относятся не только к НОРМАЛЬНОМУ СОСТОЯНИЮ, но и к УСЛОВИЯМ ЕДИНИЧНОГО НАРУШЕНИЯ, указанным в п. 3.6. Испытание на воспламенение не проводят лишь в двух случаях, а именно: при отсутствии искрения и ограниченной температуре или же при ограниченных температуре и параметрах цепей.
А.1.7 Защита от чрезмерных температур и других опасностей
Температуры (см. пункт 42).
Температурные пределы необходимы для предотвращения опасности практически для ИЗДЕЛИЙ всех видов, чтобы исключить быстрое старение изоляции и неудобства в тех случаях, когда люди касаются ИЗДЕЛИЯ или манипулируют им, или же травмы при контактировании ПАЦИЕНТОВ с частями ИЗДЕЛИЙ.
Части ИЗДЕЛИЯ могут быть введены в полости тела обычно временно, но иногда и постоянно.
Особые температурные пределы установлены для случаев соприкосновения частей с телом ПАЦИЕНТА.
Предотвращение опасности пожара (пункт 43)
За исключением ИЗДЕЛИЙ КАТЕГОРИЙ АР И APG, пожароопасность ИЗДЕЛИЙ может регламентироваться частными стандартами.
Действительны нормальные пределы рабочих температур и требования к защите от перегрузок.
Сосуды, работающие под давлением (пункт 45).
При отсутствии местных норм внимание обращается на требования к сосудам и частям, находящимся под давлением.
Прерывание электропитания (пункт 49).
Прерывание электропитания может привести к возникновению ОПАСНОСТИ.
А.1.8 Точность рабочих характеристик и защита от представляющих ОПАСНОСТЬ выходных характеристик
Настоящий стандарт является руководством для всех частных стандартов и должен содержать требования более общего характера, чтобы служить этой цели. Поэтому необходимо в разделе восемь иметь сформулированные в общем виде требования.
В настоящее время по ряду причин невозможно создать частные стандарты, даже срочно необходимые для ряда МЕДИЦИНСКИХ ЭЛЕКТРИЧЕСКИХ ИЗДЕЛИЙ. В то же время различные органы стандартизации приняли систему Публикаций МЭК, серии 601, чтобы иметь удобную систему стандартов. В связи с этим наиболее важно дать руководящие указания в настоящем разделе как помощь для создания требований "функциональной" безопасности ПАЦИЕНТА.
А.1.9 Ненормальная работа и условия нарушений; испытания на воздействие внешних факторов
Изделия или их части могут вызвать вследствие ненормальной работы чрезмерные температуры или другие ОПАСНОСТИ, поэтому условия этой ненормальной работы или нарушений должны быть исследованы.
А.2 Обоснования отдельных пунктов и подпунктов
Пункт 1 Частные стандарты могут в дополнительных пунктах рассматривать конкретные вопросы, и должно быть совершенно ясно, к чему они относятся в общем и частном стандартах.
В область распространения настоящего стандарта включаются только такие лабораторные изделия, которые связаны с ПАЦИЕНТОМ так, что могут повлиять на его безопасность.
Лабораторные изделия, находящиеся в области распространения подкомитета 66Е МЭК, не относятся к настоящему стандарту.
Комбинация ИЗДЕЛИЙ, созданная ПОЛЬЗОВАТЕЛЕМ, может не соответствовать настоящему стандарту, даже если она состоит из ИЗДЕЛИЙ, каждое из которых, взятое в отдельности, удовлетворяет требованиям данного стандарта.
Пункт 1.3. Частный стандарт может устанавливать:
пункты общего стандарта, которые применяются без изменений;
пункты или подпункты (или их части) общего стандарта, которые не применяются;
пункты или подпункты (или их части) общего стандарта, которые заменены пунктами или подпунктами частного стандарта;
дополнительные пункты или подпункты.
Частные стандарты могут содержать:
a) требования, приводящие к повышению уровня безопасности;
b) требования которые могут быть менее жесткими, чем требования общего стандарта, если они не могут быть выдержаны, например по причине наличия у ИЗДЕЛИЯ выходной мощности;
c) требования, касающиеся рабочих характеристик, надежности, интерфейсов и др.;
d) точности рабочих характеристик;
е) расширение и ограничение условий окружающей среды;
(Измененная редакция, Изм. N 1).
Пункт 2.2.24 ИЗДЕЛИЯ ТИПА В пригодны, например, для внутреннего или наружного применения на ПАЦИЕНТЕ, за исключением ПРЯМОГО ПРИМЕНЕНИЯ НА СЕРДЦЕ.
Пункт 2.2.26 ИЗДЕЛИЕ ТИПА CF предназначено, прежде всего, для ПРЯМОГО ПРИМЕНЕНИЯ НА СЕРДЦЕ.
Пункт 2.3.2 Указанное определение не обязательно распространяется на изоляцию, предназначенную исключительно для функциональных целей.
Пункт 2.3.4 ОСНОВНАЯ ИЗОЛЯЦИЯ и ДОПОЛНИТЕЛЬНАЯ ИЗОЛЯЦИЯ могут, если это требуется, испытываться раздельно.
Пункт 2.3.7 Термин "система изоляции" не означает, что изоляция должна быть выполнена в виде цельного однородного элемента. Она может состоять из нескольких слоев, которые нельзя проверять отдельно как ДОПОЛНИТЕЛЬНУЮ или ОСНОВНУЮ ИЗОЛЯЦИЮ.
Пункт 2.4.3 Указанное определение основано на Публикациях МЭК 364-4-41 и МЭК 536.
Пункт 2.5.4 Этот термин отличается от старого термина "рабочий ток пациента", который распространялся на ток, создающий физиологический эффект, например ток, необходимый для стимуляции нервов и мышц, кардиостимуляции, дефибрилляции, высокочастотной электрохирургии.
Пункт 2.7.6 Соединительные шнуры рассмотрены в ГОСТ 28190.
Пункт 2.11.2 МАКСИМАЛЬНО ДОПУСТИМОЕ РАБОЧЕЕ ДАВЛЕНИЕ устанавливается компетентным лицом с учетом данных проектирования, номинальных данных изготовителя, состояния сосуда и условий эксплуатации.
Пункт 2.12.2 ОБОЗНАЧЕНИЕ МОДЕЛИ ИЛИ ТИПА предназначено для установления связи с коммерческой и техническими публикациями, ЭКСПЛУАТАЦИОННОЙ ДОКУМЕНТАЦИЕЙ, а также для выявления взаимосвязи между отдельными частями ИЗДЕЛИЯ.
Пункт 3.6 Как указано в пункте 3.1, ИЗДЕЛИЯ должны сохранять свою безопасность при УСЛОВИИ ЕДИНИЧНОГО НАРУШЕНИЯ. Таким образом, допускается одно нарушение единичного защитного средства.
Вероятность одновременного возникновения двух единичных нарушений представляется достаточно малой, так что ею можно пренебречь. Это приемлемо только при выполнении одного из следующих условий:
a) вероятность единичного нарушения незначительна, поскольку достаточный запас надежности конструкции или наличие двойной защиты предотвращает возникновение первого единичного нарушения, или
b) единичное нарушение приводит к срабатыванию аварийного устройства (например плавкого предохранителя, АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ МАКСИМАЛЬНОГО ТОКА, захвата и др.), что предотвращает возникновение ОПАСНОСТИ, или
c) единичное нарушение обнаруживается по безошибочно и четко различимому сигналу, который очевиден для ОПЕРАТОРА, или
d) единичное нарушение обнаруживается и устраняется при периодических осмотрах и техническом обслуживании, предписанных в инструкции по эксплуатации.
Неисчерпывающими примерами для условий а) - d) являются:
a) УСИЛЕННАЯ или ДВОЙНАЯ ИЗОЛЯЦИЯ;
b) ИЗДЕЛИЕ КЛАССА I в случае нарушения ОСНОВНОЙ ИЗОЛЯЦИИ;
c) аварийные показания индикаторов, неисправность дополнительного несущего троса, приводящая к возникновению чрезмерного шума или трения;
d) ухудшение гибкого соединения защитного заземления, которое перемещается при НОРМАЛЬНОЙ ЭКСПЛУАТАЦИИ.
Появление внешнего напряжения на РАБОЧЕЙ ЧАСТИ ТИПА F (которая может иметь проводящее соединение с СИГНАЛЬНЫМ ВХОДОМ или СИГНАЛЬНЫМ ВЫХОДОМ) может быть следствием двойного нарушения защитных средств в других ИЗДЕЛИЯХ, одновременно соединенных с ПАЦИЕНТОМ и соответствующих требованиям настоящего стандарта, или же единичного нарушения такого же средства в изделии, не соответствующего этим требованиям. Таким образом, при правильной медицинской практике это является маловероятным.
Однако поскольку основным признаком (с точки зрения безопасности) ИЗДЕЛИЯ с РАБОЧЕЙ ЧАСТЬЮ ТИПА F является то, что ПАЦИЕНТ не заземлен через связь с ИЗДЕЛИЕМ, электрическое отделение такой РАБОЧЕЙ ЧАСТИ от земли должно иметь определенное минимальное качество. Это гарантируется требованием, что даже в случае появления на РАБОЧЕЙ ЧАСТИ гипотетического напряжения, действующего в пределах досягаемости ПАЦИЕНТА, имеющего частоту сети и равного максимальному значению напряжения питания относительно земли, предельное значение ТОКА УТЕЧКИ НА ПАЦИЕНТА не будет превышено.
В этом гипотетическом случае предполагается, что ПАЦИЕНТ не соединен с РАБОЧЕЙ ЧАСТЬЮ.
Пункт 4 ИЗДЕЛИЕ может иметь много элементов изоляции, электрических и механических компонентов, а также элементов конструкции, нарушения которых не вызывают ОПАСНОСТИ для ПАЦИЕНТА, ОПЕРАТОРА или окружающих предметов, несмотря на то, что это приводит к ухудшению работы ИЗДЕЛИЯ или его выходу из строя.
Пункт 4.1 Для обеспечения соответствия каждого отдельно изготовленного экземпляра ИЗДЕЛИЯ требованиям настоящего стандарта изготовитель и (или) монтажная организация во время производства и (или) сборки на месте эксплуатации должны принять такие меры, чтобы можно было гарантировать, что каждый экземпляр удовлетворяет всем требованиям, даже если не проводится полный объем испытаний.
К числу таких мер относятся:
a) технологическое обеспечение качества, которое может влиять на безопасность;
b) заводские (приемо-сдаточные) испытания каждого экземпляра продукции;
c) заводские испытания образцов серийной продукции, результаты которых позволяют установить достаточный доверительный уровень.
Заводские испытания могут отличаться от типовых, но могут при этом лучше соответствовать производственным условиям и в меньшей степени отрицательно влиять на качество изоляции или другие характеристики, важные для безопасности изделий. Заводские испытания должны, конечно, проводиться в таких режимах (возможно взятых из результатов типовых испытаний), которые создают наиболее жесткие условия.
В зависимости от характера ИЗДЕЛИЙ в процессе производства и (или) испытаний должны учитываться критически важная изоляция СЕТЕВОЙ И РАБОЧЕЙ ЧАСТЕЙ, а также изоляция и (или) разделение между ними.
Рекомендуется проверять такие параметры, как ток утечки и электрическая прочность изоляции.
Если это применимо, основным проверяемым параметром может быть непрерывность цепи защитного заземления.
Является ли образец представительным, решают испытательная лаборатория и изготовитель.
Пункт 4.8 Целью является проверка работы ИЗДЕЛИЯ.
a) Предварительное воздействие влагой и последующие испытания МЕДИЦИНСКИХ ЭЛЕКТРИЧЕСКИХ ИЗДЕЛИЙ часто проводят в лабораториях, приспособленных для испытаний бытовых и аналогичных электрических приборов.
Во избежание ненужных капитальных и текущих расходов для таких лабораторий методы предварительного воздействия и испытания этих изделий следует, по возможности, сблизить.
b) В соответствии с пунктом 2.2.28 КОРПУС ВОДОНЕПРОНИЦАЕМЫХ ИЗДЕЛИЙ в заданных условиях предотвращает проникновение определенного количества воды в места, где это могло бы привести к ОПАСНОСТИ.
Режим испытаний, а также приемлемое количество и места нахождения воды определяются частными стандартами. При полной недопустимости проникновения воды (для герметичных КОРПУСОВ) предварительное воздействие влагой не является необходимым.
c) Во избежание конденсации, когда ИЗДЕЛИЕ помещено в камеру влаги, температура в ней должна быть равной или несколько ниже температуры ИЗДЕЛИЯ в момент его помещения в камеру. Для предотвращения необходимости в системе стабилизации температуры воздуха в помещении, в котором находится камера, температуру камеры при испытаниях устанавливают равной наружной от 20 до 32°С, а затем "стабилизируют" на этом начальном уровне. Хотя известно влияние температуры камеры на степень поглощения влаги, можно считать, что это не приведет к значительному ухудшению воспроизводимости результатов и в то же время позволит уменьшить расходы.
d) КАПЛЕ- и БРЫЗГОЗАЩИЩЕННЫЕ ИЗДЕЛИЯ могут применяться в более влажных средах по сравнению с теми, в которых работают обычные изделия. Поэтому такие ИЗДЕЛИЯ выдерживают в камере влаги в течение 7 сут (см. пункт 4.10).
Пункт 5 ИЗДЕЛИЯ могут иметь комбинированную классификацию.
Пункт 5.1 Безопасность изделий класса III критически зависит от электропроводки и других изделий класса III, подключенных к ней. Эти факторы находятся вне контроля со стороны ОПЕРАТОРА, что считается недопустимым для МЕДИЦИНСКИХ ЭЛЕКТРИЧЕСКИХ ИЗДЕЛИЙ. Кроме того, ограничение напряжения недостаточно для обеспечения безопасности ПАЦИЕНТА. По этим причинам в настоящем стандарте изделия класса III не предусмотрены.
Пункт 6.1 f) Хотя ОБОЗНАЧЕНИЕ МОДЕЛИ ИЛИ ТИПА ИЗДЕЛИЯ обычно дает определенные данные о характеристиках ИЗДЕЛИЯ, оно может не обозначать точные данные о конструкции, включая примененные компоненты и материалы. При необходимости ОБОЗНАЧЕНИЕ МОДЕЛИ ИЛИ ТИПА может быть дополнено СЕРИЙНЫМ НОМЕРОМ. СЕРИЙНЫЙ НОМЕР может также использоваться для других целей. Указание только серии изготовления может быть недостаточным, если потребуется индивидуальная идентификация.
Пункт 6.1 z) Проверку маркировки протиранием проводят с использованием дистиллированной воды, этилового спирта, денатурированного метилового спирта и изопропилового спирта. Изопропиловый спирт описан в Европейской фармакопее следующим образом: " (молекулярная масса 60,1) - Пропанол. Изопропиловый спирт. Прозрачная бесцветная жидкость с характерным запахом, смешивается с водой и спиртом. Относительная плотность около 0,785, температура кипения 81 - 83°С".
Пункт 6.7 О цветах световых индикаторов см. также Публикацию МЭК 73.
Пункт 6.8.1 Вопрос о языках, используемых в маркировке и ЭКСПЛУАТАЦИОННОЙ ДОКУМЕНТАЦИИ, не может быть решен МЭК. На международном уровне нельзя даже потребовать, чтобы обозначения и ЭКСПЛУАТАЦИОННАЯ ДОКУМЕНТАЦИЯ давались на национальных языках.
Пункт 6.8.2 b) Ответственность изготовителя
В инструкции по эксплуатации может быть указано, что изготовитель, организация по монтажу и сборке или импортер берут на себя ответственность за безопасность, надежность и технические характеристики ИЗДЕЛИЯ только в случаях:
если операции по сборке, соединению с другими изделиями, регулировке, внесению изменений или ремонту выполняются уполномоченными ими лицами;
если электропроводка данного помещения соответствует необходимым требованиям и
если ИЗДЕЛИЕ используют в соответствии с инструкцией по эксплуатации.
Пункт 10.2.1 Приведенные условия окружающей среды основаны на условиях в зданиях без кондиционирования воздуха в климате, при котором температура иногда достигает +40°С.
ИЗДЕЛИЯ, на которые распространяется настоящий стандарт, могут быть непригодными для использования в камерах, работающих под давлением.
Пункт 10.2.2 Из-за большого разнообразия МЕДИЦИНСКИХ ЭЛЕКТРИЧЕСКИХ ИЗДЕЛИЙ, на которые распространяется настоящий стандарт, невозможно определить допустимое влияние колебаний СЕТЕВОГО НАПРЯЖЕНИЯ и частоты на характеристики изделия конкретного типа. В настоящем стандарте такое влияние учитывается в ряде испытаний на безопасность.
Согласно теореме Фортескью, любая несбалансированная многофазная система может быть разложена на три сбалансированные системы фаз:
a) систему так называемых составляющих с прямой последовательностью, с одинаковыми амплитудами и фазным углом, но с противоположной, по сравнению с исходной системой, последовательностью фаз.
При отсутствии других указаний переменное напряжение считается практически синусоидальным, если его мгновенное значение отличается от мгновенного значения идеальной формы в тот же момент не более чем на 5% пикового значения идеальной формы.
Многофазная система напряжений считается симметричной, если значения ее составляющих отрицательной и нулевой последовательностей не превышает 2% значения составляющих прямой последовательности.
Многофазная система питания считается симметричной, если при питании от симметричной системы напряжений результирующая токовая система также будет симметричной. Из этого следует, что значения составляющих тока отрицательной и нулевой последовательностей не превышают 5% значения составляющих тока положительной последовательности;
b) систему так называемых составляющих с обратной последовательностью с одинаковыми амплитудой и фазным углом, но с той же последовательностью фаз, что и у исходной системы;
c) систему так называемых составляющих с нулевой последовательностью, с одинаковыми амплитудами и без фазного угла между фазами (с совмещением по фазе) и без последовательности фаз (стационарные векторы). Системы без нулевого провода не могут иметь составляющих с нулевой последовательностью. Ток нулевой последовательности можно определить как сумму токов трех фаз, деленную на три. Таким образом, ток нулевого провода в три раза превышает ток нулевой последовательности.
Литература**
1 Elements of Power Systems Analysis W. D. Stevensons, jr. McGraw Hill (page 272).
2 IEEE Vol 37 Part 11 (1918) page 1329.
3 Modem power systems Neuenswonder page 183, Measurement of Zero Sequence.
Пункт 14.1b) ИЗДЕЛИЕ, подключаемое к внешнему источнику постоянного тока (например для использования в машинах скорой помощи), должно удовлетворять всем требованиям к ИЗДЕЛИЯМ КЛАССА I или КЛАССА II.
Пункт 16 КОРПУСА и ЗАЩИТНЫЕ КРЫШКИ предназначены для защиты людей от контакта с частями, которые НАХОДЯТСЯ или могут оказаться ПОД НАПРЯЖЕНИЕМ в результате единичного нарушения защитной изоляции. Одновременно они могут обеспечивать защиту и от других видов опасности (механической, тепловой, химической и др.).
Понятие "случайный контакт" означает, что при нормальной эксплуатации человек прикасается к тем или иным частям без использования ИНСТРУМЕНТА и без значительного усилия.
Кроме особых случаев, когда ПАЦИЕНТ находится на опорной поверхности или резиновом наполненном водой матрасе, контакт с ИЗДЕЛИЕМ может иметь место:
одной рукой, имитируемой металлической фольгой 10x20 см (или меньшего размера при использовании ИЗДЕЛИЯ с меньшими общими размерами);
одним пальцем, выпрямленным или согнутым в естественном положении, имитируемым испытательным пальцем с ограничительным диском;
карандашом или ручкой, которые находятся в руке, имитируемыми испытательным штифтом;
ожерельем или аналогичным подвесным украшением, имитируемым металлическим стержнем, подвешенным над отверстиями в верхней крышке;
отверткой для регулировки органа управления ОПЕРАТОРОМ, имитируемой испытательным штифтом;
пальцем, вставляемым в отверстие, образовавшееся после отведения в сторону кромки или края щели, что имитируется комбинацией испытательного крюка и испытательного пальца.
Другие устройства не допускаются, за исключением случаев, когда они необходимы для проверки соответствия.
Пункт 16а) 5) Требования этого подпункта распространяются также и на те случаи, когда для дистанционного управления ИЗДЕЛИЕМ используется ручной блок управления, обычно подключаемый к ИЗДЕЛИЮ гибким многожильным кабелем.
Как правило, цепи управления работают на сверхнизком или даже БЕЗОПАСНОМ СВЕРХНИЗКОМ НАПРЯЖЕНИИ. Токи в этих цепях и сечения применяемых при этом проводов обычно малы.
Защитное заземление КОРПУСА блока управления было бы недостаточно надежным (из-за высокого сопротивления).
ДВОЙНАЯ ИЗОЛЯЦИЯ занимала бы много места и была бы слишком тяжелой, кроме того, миниатюрные выключатели и кнопки с УСИЛЕННОЙ ИЗОЛЯЦИЕЙ не выпускаются.
По этим причинам в случае отсутствия при НОРМАЛЬНОЙ ЭКСПЛУАТАЦИИ вероятности одновременного прикосновения к блоку управления и телу ПАЦИЕНТА указанный блок может иметь только ОСНОВНУЮ ИЗОЛЯЦИЮ и КОРПУС из металла или изоляционного материала.
Изоляция может быть рассчитана на сверхнизкое напряжение.
Пункт 16с) Проверка защитного заземления ДОСТУПНЫХ МЕТАЛЛИЧЕСКИХ ЧАСТЕЙ ИЗДЕЛИЙ (п. 18 f) проводится током от 10 до 25 А от источника достаточно низкого напряжения (не превышающего 6 В). Ток выдерживается, по меньшей мере, в течение 5 с. Основанием для этого требования является то, что соединение может выполнять свои защитные функции только в том случае, если оно выдерживает ток повреждения, возникающий при нарушении ОСНОВНОЙ ИЗОЛЯЦИИ.
Предполагается, что амплитуда такого тока достаточна для срабатывания защитных устройств электропроводки (плавких предохранителей, автоматических выключателей максимального тока, устройств защитного отключения и др.) в достаточно короткое время.
Минимальное время для прохождения испытательного тока должно обеспечивать выявление перегрева частей соединения из-за тонких проводов или плохого контакта. Выявление такого "слабого места" только методом измерения сопротивлений может оказаться невозможным.
Если проводящие части приводного механизма электрических органов управления соединены с ЗАЖИМОМ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ, то необходимое максимальное сопротивление составляет 0,2 Ом, минимальный испытательный ток - 1 А, максимальное напряжение источника - 50 В, а единственное ограничение минимального времени связано с продолжительностью считывания показаний измерительных приборов.
Такое смягчение требований оправдано следующими причинами:
a) Если приводные механизмы изготовлены из хрупкого материала и неспособны пропускать испытательный ток от 10 до 25 А, то они обычно представляют собой часть вторичной цепи и ток повреждения через соединение ограничен.
b) В связи с этим максимальное сопротивление может быть повышено, поскольку оно составляет лишь незначительную часть общего полного сопротивления току повреждения. Напряжение источника и испытательное время менее критичны, поскольку перегорание защитного соединения маловероятно.
Пункт 16d) Использование символа 14 таблицы D1 "Внимание! См. ЭКСПЛУАТАЦИОННУЮ ДОКУМЕНТАЦИЮ" приложения D недостаточно. Следует иметь предупреждающую надпись снаружи ИЗДЕЛИЯ.
Пункт 16е) Комбинированное использование изолированного ИСТОЧНИКА ПИТАНИЯ и ограниченного напряжения считается дополнительной мерой защиты от ОПАСНОСТИ поражения электрическим током.
Пункт 17 Воздух может частично или полностью выполнять функции ОСНОВНОЙ и (или) ДОПОЛНИТЕЛЬНОЙ ИЗОЛЯЦИИ.
Пункт 18а) Как правило, ДОСТУПНЫЕ МЕТАЛЛИЧЕСКИЕ ЧАСТИ ИЗДЕЛИЙ КЛАССА I должны быть соединены постоянно и с достаточно малым полным электрическим сопротивлением с ЗАЖИМОМ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ.
Однако ИЗДЕЛИЯ КЛАССА I могут иметь ДОСТУПНЫЕ ЧАСТИ, которые так отделены от СЕТЕВОЙ ЧАСТИ, что в НОРМАЛЬНОМ СОСТОЯНИИ и при ЕДИНИЧНОМ НАРУШЕНИИ изоляции СЕТЕВОЙ ЧАСТИ или защитного заземления ТОК УТЕЧКИ от этих ДОСТУПНЫХ ЧАСТЕЙ на землю не превышает значений табл. IV (см. раздел 19).
В этом случае эти ДОСТУПНЫЕ ЧАСТИ не должны быть соединены с ЗАЖИМОМ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ, а могут быть соединены, например, с ЗАЖИМОМ РАБОЧЕГО ЗАЗЕМЛЕНИЯ или могут быть оставлены плавающими.
Отделение ДОСТУПНЫХ МЕТАЛЛИЧЕСКИХ ЧАСТЕЙ от СЕТЕВОЙ ЧАСТИ может быть достигнуто применением ДВОЙНОЙ ИЗОЛЯЦИИ, металлическими экранами или СОЕДИНЕННЫМИ С ЗАЖИМОМ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ ДОСТУПНЫМИ МЕТАЛЛИЧЕСКИМИ ЧАСТЯМИ или вторичной цепью, полностью отделяющими ДОСТУПНЫЕ МЕТАЛЛИЧЕСКИЕ ЧАСТИ от СЕТЕВОЙ ЧАСТИ.
Части ИЗДЕЛИЯ
Части, НАХОДЯЩИЕСЯ ПОД НАПРЯЖЕНИЕМ
Металлические части за декоративным корпусом, который не удовлетворяет требованиям к механической прочности, рассматривают как ДОСТУПНЫЕ МЕТАЛЛИЧЕСКИЕ ЧАСТИ.
Ток повреждения может быть ограничен достаточно низким значением с учетом полного электрического сопротивления или характеристики источника питания, например в случае системы, не соединенной с землей или же соединенной с ней через высокое полное сопротивление.
В таких случаях при определении поперечного сечения защитного заземляющего соединения исходят в основном из механических требований.
Пункт 19.1d) При НОРМАЛЬНОМ СОСТОЯНИИ ТОК УТЕЧКИ НА КОРПУС ИЗДЕЛИЙ КЛАССА I от частей, соединенных с ЗАЖИМОМ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ, пренебрежимо мал.
Пункт 19.2а) Пробой ОСНОВНОЙ ИЗОЛЯЦИИ ИЗДЕЛИЙ КЛАССА I обычно не считается УСЛОВИЕМ ЕДИНИЧНОГО НАРУШЕНИЯ, поскольку ТОКИ УТЕЧКИ в этом случае нельзя ограничить допустимыми пределами (табл. IV) в течение времени до срабатывания плавких предохранителей для АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ МАКСИМАЛЬНОГО ТОКА. Как исключение, ТОКИ УТЕЧКИ измеряют при закорачивании ОСНОВНОЙ ИЗОЛЯЦИИ в случаях, когда возникают сомнения в эффективности соединений защитного заземления в ИЗДЕЛИИ (см. пункты 17а и 17g).
Пункт 19.3 и табл. IV Допустимые значения непрерывных ТОКОВ УТЕЧКИ и ДОПОЛНИТЕЛЬНОГО ТОКА В ЦЕПИ ПАЦИЕНТА для постоянного тока и для переменного сложной формы тока частотой до 1 кГц включительно.
Обычно опасность фибрилляции желудочков сердца или нарушение его нагнетательного действия повышается с увеличением значения или длительности (до нескольких секунд) тока через сердце. Некоторые участки сердца имеют большую чувствительность, чем другие, поэтому ток, вызывающий фибрилляцию желудочков при воздействии на одну часть сердца, не оказывает эффекта при воздействии на другую его часть.
Опасность наиболее велика и примерно одинакова для частот в диапазоне от 10 до 200 Гц. Она ниже примерно в 5 раз для постоянного тока и примерно в 1,5 раза - для частоты 1 кГц. Свыше 1 кГц опасность быстро уменьшается*(1). Значения в таблице IV охватывают диапазон от постоянного тока до частоты 1 кГц. Частоты ПИТАЮЩЕЙ СЕТИ 50 и 60 Гц находятся в диапазоне наибольшей опасности.
Как правило, требования общего стандарта менее жестки, чем требования частных стандартов. Некоторые допустимые значения в табл. IV заданы такими, чтобы:
a) большинство ИЗДЕЛИЙ могли удовлетворять соответствующим требованиям и
b) они могут быть отнесены к большинству типов ИЗДЕЛИЙ (существующих или будущих), для которых частные стандарты отсутствуют.
ТОК УТЕЧКИ НА ЗЕМЛЮ
Допустимые значения ТОКА УТЕЧКИ НА ЗЕМЛЮ не являются критическими и выбирались для исключения значительного повышения токов, протекающих через систему защитного заземления помещения.
В примечании 2) к табл. IV указаны условия, при которых допустимы более высокие ТОКИ УТЕЧКИ на землю при недоступности токопроводящих частей.
В примечании 3) к таблице IV указано, что ИЗДЕЛИЯ с закрепленным и постоянно присоединенным ПРОВОДОМ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ могут иметь более высокие допустимые ТОКИ УТЕЧКИ НА ЗЕМЛЮ, поскольку случайное прерывание ПРОВОДА ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ весьма маловероятно.
ТОК УТЕЧКИ НА КОРПУС
Предельные значения основаны на следующих соображениях:
a) ТОК УТЕЧКИ НА КОРПУС ИЗДЕЛИЯ ТИПА CF при НОРМАЛЬНОМ СОСТОЯНИИ был увеличен до того же значения, что и для ИЗДЕЛИЙ ТИПОВ В и BF, поскольку возможно их одновременное использование на ПАЦИЕНТЕ.
b) ТОК УТЕЧКИ НА КОРПУС может протекать через тело ПАЦИЕНТА на землю, в случае ИЗДЕЛИЙ ТИПА В - через РАБОЧУЮ ЧАСТЬ, а ИЗДЕЛИЙ ТИПОВ BF и CF - через косвенный контакт с КОРПУСОМ через ОПЕРАТОРА.
Плотность тока на сердце, обусловленная током, который проходит через грудь, составляет 50 на ампер*(8). Плотность тока на сердце для тока 500 мкА (максимально допустимое значение при УСЛОВИИ ЕДИНИЧНОГО НАРУШЕНИЯ), проходящего через грудь, составит 0,025 т.е. значительно ниже опасного уровня.
c) Вероятность протекания через сердце ТОКА УТЕЧКИ НА КОРПУС, вызывающего фибрилляцию желудочков или нарушение нагнетательного действия сердца.
При небрежном использовании внутрисердечных проводов или наполнении жидкостью катетеров ТОК УТЕЧКИ НА КОРПУС, предположительно, может попасть внутрь сердца. При работе с такими устройствами необходимо всегда проявлять особую осторожность и манипулировать ими в сухих резиновых перчатках.
Вероятность непосредственного контакта между внутрисердечным устройством и КОРПУСОМ считается весьма невысокой, по-видимому одна на 100 процедур. Несколько выше вероятность косвенного контакта через медицинский персонал, по-видимому одна на 10 процедур. Максимально допустимый ТОК УТЕЧКИ при НОРМАЛЬНОМ СОСТОЯНИИ составляет 100 мкА, что само по себе способно вызвать фибрилляцию с вероятностью 0,05. При вероятности косвенного контакта 0,1 общая вероятность будет 0,005. Она может показаться чрезмерно высокой, однако следует иметь в виду, что при правильной эксплуатации внутрисердечного устройства ее можно снизить до значения, характерного для механической стимуляции, т.е. 0,001.
Вероятность повышения ТОКА УТЕЧКИ НА КОРПУС до максимально допустимого значения 500 мкА (УСЛОВИЕ ЕДИНИЧНОГО НАРУШЕНИЯ) при плохом техническом обслуживании принята равной 0,1.
Вероятность того, что этот ток приведет к фибрилляции, принята равной единице, а вероятность случайного контакта непосредственно с КОРПУСОМ, как и в вышеуказанном случае, равна 0,01, что дает общую вероятность 0,001, равную общей вероятности в случае только механической стимуляции. Вероятность того, что ТОК УТЕЧКИ НА КОРПУС при максимально допустимом уровне 500 мкА (УСЛОВИЕ ЕДИНИЧНОГО НАРУШЕНИЯ) попадет на внутрисердечное устройство через медицинский персонал, составляет 0,01 (0,1 для УСЛОВИЯ ЕДИНИЧНОГО НАРУШЕНИЯ и 0,1 для случайного контакта). Поскольку вероятность того, что этот ток приведет к фибрилляции, составляет 1, общая вероятность также будет равной 0,01. И вновь она представляется высокой, однако соответствующими средствами ее можно снизить до уровня вероятности только при механической стимуляции (0,001).
d) Вероятность того, что ТОК УТЕЧКИ на КОРПУС ощущается ПАЦИЕНТОМ.
При использовании зажатых в руке электродов и неповрежденной коже вероятность ощущения 500 мкА составляет 0,01 для мужчин и 0,014 для женщин*(1) *(2). Большая вероятность имеет место для токов, проходящих через слизистые оболочки или кожные покровы*(2). Так как распределение нормальное*(1), имеется вероятность того, что некоторые пациенты будут чувствовать очень слабые токи. Имеется сообщение, что один пациент чувствовал ток 4 мкА, проходящий через слизистую оболочку*(2).
ТОКИ УТЕЧКИ НА КОРПУС для ИЗДЕЛИЙ ТИПОВ В, BF и CF приняты одинаковыми, поскольку ИЗДЕЛИЯ этих типов можно применять одновременно на одном ПАЦИЕНТЕ.
ТОК УТЕЧКИ НА ПАЦИЕНТА
Допустимый ТОК УТЕЧКИ НА ПАЦИЕНТА для ИЗДЕЛИЯ ТИПА CF при НОРМАЛЬНОМ СОСТОЯНИИ принят равным 10 мкА, что дает вероятность фибрилляции желудочков или нарушения нагнетательного действия сердца при прохождении такого тока через небольшие участки на внутрисердечную область, равную 0,002.
Даже при нулевом токе отмечены случаи, когда механическое раздражение вызывает фибрилляцию*(4). Предельное значение тока 10 мкА легко достигается и не приводит к значительному повышению вероятности фибрилляции при внутрисердечных процедурах. Максимальное значение тока 50 мкА, допускаемое при УСЛОВИИ ЕДИНИЧНОГО НАРУШЕНИЯ для ИЗДЕЛИЙ ТИПА CF, основано на токе, который, как установлено в клинических условиях, имеет очень низкую вероятность вызова фибрилляции или нарушения нагнетательного действия сердца.
Для катетеров диаметром 1,25 - 2 мм, которые могут контактировать с миокардом, вероятность того, что ток 50 мкА вызовет фибрилляцию, приблизительно равна 0,01 (см. рисунок А.1 и пояснения к нему). Катетеры с малой площадью поперечного сечения (0,22 и 0,93 ), применяемые в ангиографии, способны с большей вероятностью вызывать фибрилляцию или нарушать нагнетательное действие сердца при их непосредственном расположении на чувствительных участках сердца.
Общая вероятность фибрилляции желудочков под воздействием ТОКА УТЕЧКИ НА ПАЦИЕНТА при УСЛОВИИ ЕДИНИЧНОГО НАРУШЕНИЯ составляет 0,001 (0,1 - вероятность нарушения и 0,01 - вероятность того, что ток 50 мкА вызовет фибрилляцию), что равно вероятности при использовании только механической стимуляции.
Ток 50 мкА, допускаемый при УСЛОВИИ ЕДИНИЧНОГО НАРУШЕНИЯ, вряд ли может привести к плотности тока, достаточной для стимуляции нервномышечных тканей или в случае постоянного тока вызвать их некроз.
Для ИЗДЕЛИЙ ТИПОВ В и BF с максимально допустимым ТОКОМ УТЕЧКИ НА ПАЦИЕНТА при УСЛОВИИ ЕДИНИЧНОГО НАРУШЕНИЯ, равным 500 мкА, справедливы те же соображения, что и для ТОКА УТЕЧКИ НА КОРПУС, поскольку этот ток не протекает непосредственно через сердце.
Вероятность попадания СЕТЕВОГО НАПРЯЖЕНИЯ на тело ПАЦИЕНТА представляется весьма небольшой. Это может иметь место в случае следующих нарушений:
a) нарушения ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ ИЗДЕЛИЯ КЛАССА I (вероятность 0,1);
b) нарушения ОСНОВНОЙ ИЗОЛЯЦИИ. Основанная на практическом опыте вероятность менее 0,01.
Это дает общую вероятность появления СЕТЕВОГО НАПРЯЖЕНИЯ на теле пациента, равную 0,001.
Для ИЗДЕЛИЙ ТИПА CF ТОК УТЕЧКИ НА ПАЦИЕНТА в этом случае ограничен значением 50 мкА, т.е. не более того, которое рассматривалось ранее для УСЛОВИЙ ЕДИНИЧНОГО НАРУШЕНИЯ.
Для ИЗДЕЛИЙ ТИПА BF в этом случае максимальный ток УТЕЧКИ НА ПАЦИЕНТА равен 5 мА. Даже если этот ток пройдет через грудь, то его плотность на сердце будет иметь значение 0,25 .Такой ток будет очень чувствительным для пациента, однако вероятность его появления очень незначительна.
ДОПОЛНИТЕЛЬНЫЙ ТОК В ЦЕПИ ПАЦИЕНТА
Допустимые значения ДОПОЛНИТЕЛЬНОГО ТОКА В ЦЕПИ ПАЦИЕНТА относятся к таким ИЗДЕЛИЯМ, как импедансные плетизмографы, использующие токи частотой не менее 0,1 Гц. Более низкие значения указаны для постоянного тока во избежание некроза тканей при продолжительных процедурах.
Пояснения к рисунку А.1
В статьях Стармера*(6) и Ватсона*(7) приведены данные по фибрилляции желудочков под воздействием токов частотой 50 и 60 Гц, проходящих непосредственно через сердце человека с сердечным заболеванием. Вероятность фибрилляции получена как функция диаметра электрода и значения тока. Для электродов диаметром 1,25 и 2 мм и токов до 0,3 мА распределение является нормальным. Поэтому оно было экстраполировано для учета значений, обычно встречающихся при оценке степени опасности ДЛЯ ПАЦИЕНТА (значения, указанные на черт. А1). Экстраполяция показывает, что:
a) любое, самое малое значение тока связано с некоторой вероятностью фибрилляции и
b) обычно встречающиеся значения дают малую вероятность, в диапазоне приблизительно от 0,002 до 0,01.
Фибрилляция зависит от многих факторов (состояния ПАЦИЕНТА, вероятности прохождения тока через более чувствительные участки миокарда, вероятности фибрилляции как функции значения тока или его плотности, физиологии, параметров электрического поля и др.), поэтому при определении возможной опасности следует использовать статистические данные для целой группы условий.
Примечание. Об интерпретации результатов см. статью Стармера и Ватсона.
Вероятность фибрилляции желудочков
Библиография**
1) Charles F. Dalziel; Re-evaluation of lethal electric currents, IEEE Transactions on Industry and General Applications, Vol. I GA-4, No. 5, September/October 1968
2) Kohn S. Keesey, Frank S. Letcher; Human threshold of electric shock at power transmission frequencies; Arch. Environ. Health, Vol. 21, October 1970
3) О. Z. Roy; 60 Hz Ventricular fibrillation and rhythm thresholds and the non-pacing intracardiac cathether; Medical and Biological Engineering, March 1975.
4) E. B. Rafferty, H. L. Green, M. H. Yacoub; Cardiovascular Research; Vol. 9, No. 2, pp. 263-265, March 1975
5) H. L. Green; Electrical Safety Symposium Report; Department of Health and Social Security; United Kingdom, October 1975
6) С. Frank Starmer, Robert E. Whalen; Current density and electrically induced ventricular fibrillation; Medical Instrumentation; Vol. 7, No. 1, January-February 1973
7) A. B. Watson, J. S. Wright; Electrical thresholds for ventricular fibrillation in man; Medical Journal of Australia; June 16, 1973
8) A. M. Dolan, B. M. Horacek, P. M. Rautaharaju; Medical Instrumentation (abstract), January 12, 1953, 1978
Пункт 19.4a) Хотя известно, что поглощаемая изоляцией влага гораздо больше влияет на ее сопротивление, чем на емкость, однако важнее, что результаты измерения сопротивления во многом зависят от выбора момента, в котором они проводятся. Поэтому такие результаты могли бы оказаться невоспроизводимыми.
Для еще большего повышения воспроизводимости результатов было предложено задерживать измерения ТОКА УТЕЧКИ и начинать их спустя 1 ч после окончания предварительного воздействия влагой. При этом исходили из того, что если уменьшение сопротивления изоляции приведет к возникновению опасности, то это будет обнаружено по повышению ТОКА УТЕЧКИ, а также изменению результатов проверки ее электрической прочности.
Пункт 19.4 b) Вместо выключателей или или же на черт. 10-13 для прерывания соответствующих проводов можно использовать другие средства. Вместо одно- или многофазного разделительного трансформатора с регулируемым выходным напряжением (напряжениями), показанными на черт. 10-14, может быть использован разделительный трансформатор с постоянным выходным напряжением, питаемый от автотрансформатора с регулируемым выходным напряжением.
Пункт 19.4 табл. IV. Ток 5 мА, протекающий между РАБОЧЕЙ ЧАСТЬЮ и землей при подаче внешнего напряжения на эту часть в ИЗДЕЛИЯХ ТИПА BF, допускается, поскольку опасность возникновения вредных физиологических эффектов невелика, а появление напряжения 220 В на теле ПАЦИЕНТА весьма маловероятно.
Пункт 19.4 d) Существует некоторая вероятность использования ИЗДЕЛИЯ на металлических заземленных частях или внутри таких частей, однако такие случаи достаточно сложно охарактеризовать для получения воспроизводимых результатов испытаний. В связи с этим указание, приведенное в 1), следует рассматривать как условное.
Вероятность того, что кабели ПАЦИЕНТА обладают значительной емкостью по отношению к земле, обычно достаточно высока, что оказывает существенное влияние на результаты испытаний. Поэтому предусмотрено их расположение, обеспечивающее воспроизводимость результатов.
Пункт 19.4е) 4) Измерительное устройство основано на методе измерений, учитывающем физиологическое влияние тока, протекающего через человеческое тело, в том числе сердце.
Пункт 19.4h) Следует следить, чтобы емкость измерительного прибора и его соединительных проводов с землей и корпусом изделия была минимально возможной.
Вместо разделительного трансформатора с регулируемым выходным напряжением может быть использован разделительный трансформатор с постоянным выходным напряжением, питаемый от автотрансформатора с регулируемым выходным напряжением.
Пункт 20.3 Компоненты ИЗДЕЛИЯ, проверяемые на электрическую прочность по п. 20, например держатели предохранителей, кнопки, выключатели и др., будут подвергаться воздействию соответствующих испытательных напряжений.
Если указанные детали по своим характеристикам не выдерживают таких напряжений, то в ИЗДЕЛИЯХ могут быть приняты дополнительные меры (например с помощью дополнительного изоляционного материала) (см. также пункты 4.4 и 56.1)).
Пункт 20.4а) Проверку электрической прочности изоляции по п. 20.4а) проводят сразу же после ее предварительной обработки влагой, когда ИЗДЕЛИЕ еще находится в камере влаги, поэтому может оказаться необходимым принятие соответствующих мер по защите персонала испытательной лаборатории.
Пункт 20.4b) Испытательное напряжение можно получить от внешнего трансформатора, источника постоянного тока или от трансформатора самого ИЗДЕЛИЯ.
В последнем случае во избежание перегрева из-за увеличения индукции частота испытательного напряжения может превышать НОМИНАЛЬНУЮ частоту ИЗДЕЛИЯ.
Метод и длительность испытаний при рабочих напряжениях, равных или больших 1000 В переменного тока или 1500 В постоянного тока или пикового значения, могут быть дополнительно указаны в частных стандартах.
Пункт 20.4g) Во избежание перегрузок рабочей или дополнительной изоляции, например при испытании трансформатора, можно использовать делитель напряжения с общей точкой, подключенной к сердечнику или другой соединительной точке, что обеспечит требуемое деление напряжения на проверяемой изоляции. Для этой же цели можно применять два правильно сфазированных испытательных трансформатора.
Пункт 20.4j) Компоненты, предназначенные для ограничения напряжения, которые могут быть повреждены рассеиваемой мощностью при испытаниях электрической прочности изоляции, могут быть удалены при проведении испытаний.
Пункт 21.5 Методы испытаний удерживаемых в руке ИЗДЕЛИЙ или их частей отличаются от применяемых при испытании ПЕРЕНОСНЫХ и ПЕРЕДВИЖНЫХ ИЗДЕЛИЙ, что обусловлено различиями их применения.
Пункт 21.6 В отличие от распространенного мнения МЕДИЦИНСКИЕ ЭЛЕКТРИЧЕСКИЕ ИЗДЕЛИЯ могут применяться в неблагоприятных для них условиях.
В неотложных случаях такие ИЗДЕЛИЯ переносятся или перевозятся на тележках через дверные пороги и грузятся в лифты, а также подвергаются толчкам и вибрациям. Для ИЗДЕЛИЙ некоторых видов такие условия можно характеризовать как условия НОРМАЛЬНОЙ ЭКСПЛУАТАЦИИ.
Пункт 22 Степень защиты, требуемая для КОРПУСОВ или ограждений для движущихся частей, зависит от общей конструкции и назначения ИЗДЕЛИЙ. При анализе возможности использования открытых движущихся частей необходимо учитывать такие факторы, как степень их открытия, их форма, вероятность случайного прикосновения к ним, скорость их перемещения, а также вероятность попадания пальцев, рук или одежды в движущиеся части (например в сцепленные шестерни, под ремни на шкивах или в местах, где движущиеся части сближаются, создавая сжатие или срез).
Эти факторы могут учитываться как при рассмотрении режима НОРМАЛЬНОЙ ЭКСПЛУАТАЦИИ, так и при различного рода настройках или замене при присоединении любой ПРИНАДЛЕЖНОСТИ, в том числе на основе указаний инструкции по монтажу, поскольку ограждения могут устанавливаться на стадии монтажа, а не являться частью СТАЦИОНАРНОГО ИЗДЕЛИЯ.
Характеристиками ограждений являются:
возможность их снятия только с использованием ИНСТРУМЕНТА;
возможность снятия для обслуживания и замены;
прочность и жесткость;
укомплектованность;
возникновение дополнительных опасностей, например появление суженных участков, а также усложнение эксплуатации в связи с необходимостью обслуживания таких частей, например их очистки.
См. также обоснование пункта 6.8.2 b).
Пункт 26 На предприятиях и в мастерских чрезмерный шум может вызвать усталость или даже повреждение слуха. Пределы, исключающие повреждение слуха, указаны в стандартах ИСО.
В медицинских помещениях необходимы более низкие пределы шума для обеспечения комфорта ПАЦИЕНТУ и медицинскому персоналу. Фактический эффект, создаваемый шумом ИЗДЕЛИЯ, сильно зависит от акустических параметров помещения, изоляции между помещениями и взаимодействия между частями ИЗДЕЛИЯ.
Пункт 28.5 Расчет сил (динамических нагрузок), вызванных ускорением или замедлением подвешенных масс, зачастую труден, так как ускорения и замедления в сильной степени зависят от гибкости различных частей, чей комбинированный эффект трудно предвидеть. Это относится, в частности, к ручному приводу с концевым выключателем. Для привода с электродвигателем следует учитывать эффекты нарушении в электрических цепях управления.
Требования к переменным нагрузкам (включая размеры направляющих и колес) находятся на рассмотрении.
Пункт 36 Высокочастотное излучение 0,15 МГц обычно безвредно, однако при стабильных уровнях энергии это излучение может даже при относительно низких уровнях повлиять на функционирование чувствительных электронных устройств и вызвать помехи радио- и телесигналов.
Требования к конструкции обычно не предъявляют, но пределы и методы измерения электромагнитной совместимости приводят в нормативных документах на радиопомехи.
Требования к чувствительности ИЗДЕЛИЙ к внешним помехам (электромагнитное поле, колебание напряжения питания) находятся на рассмотрении.
Пункт 40.3 Гранки на рисунке 29, 30 и 31 предназначены для помощи при расчете цепей, удовлетворяющих требованиям к предельно допустимым значениям для ИЗДЕЛИЙ КАТЕГОРИИ АР без проведения испытания на воспламенение.
Экстраполяция на более высокие напряжения неприемлема, так как при этом условия воспламенения газов будут другими. Предельное значение индуктивности вводится по той причине, что большая индуктивность обычно обусловливает более высокие напряжения.
Пункт 40.4 Предполагается, что из ИЗДЕЛИЯ вытекает ограниченное количество воздуха или инертного газа, что исключает сколько-нибудь значительное нарушение гигиенического режима в медицинских помещениях.
Для целей пунктов 40.4 и 40.5 термин "корпус" может означать либо КОРПУС, согласно определению в пункте 2.1.6, либо отдельный отсек или кожух.
Пункт 40.5а) Это требование считается достаточным для предотвращения воспламенения при НОРМАЛЬНОЙ ЭКСПЛУАТАЦИИ в течение нескольких часов работы, поскольку в среднем условия при НОРМАЛЬНОЙ ЭКСПЛУАТАЦИИ менее жесткие.
Пункт 41.2 Это требование исключает возникновение напряжений более высоких, чем допускается в пункте 41.3. Такие напряжения могут возникнуть на заземленных проводах.
Пункты 41.3 Графики на рисунках 32, 33 и 34 предназначены для помощи при расчете цепей, удовлетворяющих требованиям к предельно допустимым значениям для ИЗДЕЛИЙ КАТЕГОРИИ APG без проведения испытания на воспламенение.
Пункт 42.1 и 42.2 Таблицы Ха и Хb основаны на ГОСТ 27570.0.
В табл. Ха предельные температуры указаны для ДОСТУПНЫХ ЧАСТЕЙ, компонентов с маркировкой Т и классифицированной изоляцией обмоток. В табл. Xb приведены материалы и компоненты, температура которых может влиять на срок службы ИЗДЕЛИЯ.
Пункт 44.4 Утечку считают УСЛОВИЕМ ЕДИНИЧНОГО НАРУШЕНИЯ.
Пункт 45 Требования этого пункта не представляют наиболее жесткую комбинацию национальных правил и стандартов. В некоторых странах такие правила или стандарты существуют.
Пункт 45.2 Принято, что в случае, если произведение давления на объем равно или меньше 200 или давление равно или меньше 50 кПа, гидравлическое испытание не является необходимыми.
Коэффициенты безопасности, предусмотренные черт. 38, выше, чем применяемые при испытаниях сосудов. Однако гидравлическое испытание обычно предназначено для проверки отсутствия дефектов изготовления в сосуде или серьезного ухудшения его качества, в то время как конструкцию проверяют другими средствами. Приведенное же гидравлическое испытание предназначено для проверки достаточности конструкции в тех случаях, когда ее нельзя установить другими средствами.
Исключение в этом измененном тексте ссылок на национальные требования позволяет избежать зависимости требований настоящего стандарта от национальных требований к ИЗДЕЛИЯМ.
ИЗДЕЛИЯ в некоторых случаях должны удовлетворять и тем и другим требованиям или тем, что более предпочтительны, чтобы национальные требования не противоречили требованиям настоящего стандарта.
Пункт 45.3 Способ определения максимального ДАВЛЕНИЯ при эксплуатации зависит от конкретных условий.
Пункт 48 Указания могут быть найдены в стандартах ИСО, подготавливаемых техническим комитетом 150.
Пункт 49.2 Обращается внимание на последствия нарушения электропитания, касающегося нежелательных перемещений, снятия сжимающих усилий и удаления ПАЦИЕНТОВ из опасного положения.
Передача ПАЦИЕНТУ или в окружающее пространство непредусмотренных опасных количеств энергии или частиц может быть рассмотрена в частных стандартах.
Опасное количество ядовитых или горючих газов зависит от типа газа, концентрации, мест утечек и т.д.
При рассеянии мощности 15 Вт или менее опасность пожара не возникает.
Появления нарушений и отказа в работе, вызывающие прямую ОПАСНОСТЬ для ПАЦИЕНТА (например невыявляемые нарушения в ИЗДЕЛИЯХ жизнеобеспечения, невыявляемые ошибки измерения и замена значений, относящихся к ПАЦИЕНТУ), могут быть рассмотрены в частных стандартах.
Пункт 52.5.7 Эффект срабатывания центробежных выключателей следует учитывать. Условия заблокированного ротора рассмотрены, так как у некоторых конденсаторных электродвигателей может при включении не начаться вращение, что приводит к различным результатам.
Пункт 52.5.8, таблица XII, последняя строка.
Температурные пределы для обмоток электродвигателей ИЗДЕЛИЯ устанавливаются после первого часа как среднее арифметическое значение, поскольку опыт испытательных лабораторий показал, что ИЗДЕЛИЯ с ПРЕРЫВИСТЫМ РЕЖИМОМ РАБОТЫ достигают различных значений температуры, которые временно могут отличаться от максимальных значений. Поэтому установлены более низкие температурные пределы.
Пункт 54 В разделе десять, если предусмотрено, что соответствие проверяется осмотром, оно может быть проверено анализом соответствующих документов, представленных изготовителем.
Пункт 54.1 Органы управления, измерительные приборы, индикаторные лампы и др., объединяемые определенной функцией ИЗДЕЛИЯ, следует группировать вместе (см. раздел 8).
Пункт 54.2 Части, подвергаемые регулированию или замене, следует размещать и закреплять так, чтобы осмотр, обслуживание, замена и регулирование могли осуществляться без повреждений расположенных рядом частей или проводов, или помех с их стороны.
Пункт 54.3 Органы управления, при случайном изменении установки которых может возникнуть опасность, должны иметь такое устройство или должны быть так защищены, чтобы случайное изменение их установки или регулирование было маловероятным.
Сетевые выключатели и другие органы управления в жизнеобеспечивающих и других используемых в критических ситуациях ИЗДЕЛИЯХ следует выполнять или защищать так, чтобы случайное их включение или изменение установки было маловероятным. Такие ИЗДЕЛИЯ следует рассматривать в частных стандартах.
Органы управления, измерительные приборы, индикаторы и аналогичные части, объединенные определенной функцией ИЗДЕЛИЯ, следует снабжать четкой маркировкой их функций в соответствии с п. 6.1 и размещать так, чтобы уменьшить вероятность их случайного или неправильного регулирования. Если неправильное регулирование органов управления может представить опасность, следует принять соответствующие меры, чтобы исключить возможность такого регулирования, например с помощью блокировочных устройств или дополнительной защиты.
Пункт 55.1 По крайней мере все НАХОДЯЩИЕСЯ ПОД НАПРЯЖЕНИЕМ части, за исключением ШНУРА ПИТАНИЯ и других соединительных шнуров, следует закрывать материалом, не поддерживающим горение. Это не исключает применение внешних крышек из другого материала, покрывающих внутренние крышки из материала, соответствующего вышеуказанной рекомендации.
Об испытаниях на воспламеняемость см. ГОСТ 28380.
Пункт 55.2 Механическая прочность рассматривается в разделе четыре.
Пункт 56.1b) В нормальных условиях соответствие этому требованию проверяют для компонентов в СЕТЕВОЙ ЧАСТИ и РАБОЧЕЙ ЧАСТИ.
Пункт 56.4 Такие конденсаторы не могут обеспечить ДВОЙНУЮ или УСИЛЕННУЮ ИЗОЛЯЦИЮ.
Пункт 57.2е) Это требование уменьшает возможность подключения других ИЗДЕЛИЙ, что может привести к чрезмерному ТОКУ УТЕЧКИ.
ТЕЛЕЖКИ СКОРОЙ ПОМОЩИ исключены из этого требования, чтобы обеспечить при необходимости быструю замену ИЗДЕЛИЙ.
Пункт 57.5а) Помимо присоединительной колодки, зажимы (выводы) компонентов могут быть использованы для присоединения внешних проводов. Эта практика считается непригодной, однако допускается в специальных случаях, когда зажимы удобно расположены (доступны и четко маркированы) и соответствуют настоящему стандарту. Эта ситуация может возникнуть, например, в пускателях электродвигателей.
Пайка, зажатие и обжатие проводов являются одинаково эффективными методами.
Пункт 57.5d) Термин "специальная подготовка провода" включает в себя пайку проволок, применение кабельных наконечников, присоединение ушек и т.д., но не придание формы проводу до его введения в зажим или скручивание многопроволочного провода для укрепления его конца.
Пункт 57.7 Помехоподавляющие устройства могут быть включены со стороны питающей СЕТИ до сетевого выключателя или до сетевого предохранителя, или АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ МАКСИМАЛЬНОГО ТОКА.
Пункт 57.9 Области распространения Публикаций МЭК 742 и МЭК 601-1 различны. На многие типы трансформаторов, используемых в МЕДИЦИНСКИХ ЭЛЕКТРИЧЕСКИХ ИЗДЕЛИЯХ, Публикация МЭК 742 не распространяется.
Для обеспечения безопасности ПАЦИЕНТА дополнительные требования следует предъявлять к конструкции таких трансформаторов, например ограничение ТОКА УТЕЧКИ, протекающего к ЦЕПИ ПАЦИЕНТА.
Дальнейшая работа будет проводиться, например с целью установить, например, достаточные ПУТИ УТЕЧКИ и ВОЗДУШНЫЕ ЗАЗОРЫ в трансформаторах с учетом их значений для разделительных трансформаторов, указанных в Публикации МЭК 742.
Требования к источникам питания, работающим в ключевом режиме, находятся на рассмотрении.
Пункт 57.10 На значения ПУТЕЙ УТЕЧКИ и ВОЗДУШНЫХ ЗАЗОРОВ влияют следующие факторы;
a) Рабочее напряжение; согласно определению в п. 20.3.
b) Предполагается что материал изоляции имеет малую устойчивость к образованию токоведущих мостиков. Испытание на образование токоведущих мостиков согласно ГОСТ 27473 может дать меньшие значения расстояний, но практическое значение таких расстояний остается на рассмотрении до изучения вопроса о применимости Публикации МЭК 664.
c) Расстояния для ДОПОЛНИТЕЛЬНОЙ ИЗОЛЯЦИИ те же, что и для ОСНОВНОЙ ИЗОЛЯЦИИ, даже если испытательные напряжения согласно п. 20.3 различны. Расстояния для ДВОЙНОЙ ИЗОЛЯЦИИ и УСИЛЕННОЙ ИЗОЛЯЦИИ в два раза больше, чем для ОСНОВНОЙ ИЗОЛЯЦИИ.
d) Для изоляции между КОРПУСОМ и РАБОЧЕЙ ЧАСТЬЮ ИЗДЕЛИЯ ТИПА F действуют специальные правила:
1) В случае РАБОЧЕЙ ЧАСТИ ТИПА F, не имеющей НАХОДЯЩИХСЯ ПОД НАПРЯЖЕНИЕМ частей даже когда РАБОЧАЯ ЧАСТЬ заземлена, изоляция между РАБОЧЕЙ ЧАСТЬЮ и КОРПУСОМ может оказаться под действием НАПРЯЖЕНИЯ СЕТИ при одном нарушении в другом ИЗДЕЛИИ, соединенном с ПАЦИЕНТОМ.
Эти условия возникают редко, более того, эта изоляция обычно не находится под действием переходных перенапряжений, имеющихся в СЕТЕВОЙ ЧАСТИ. По этим причинам изоляция, необходимая между РАБОЧЕЙ ЧАСТЬЮ и КОРПУСОМ, в рассматриваемом случае должна удовлетворять требованиям только к ОСНОВНОЙ ИЗОЛЯЦИИ.
2) В случае РАБОЧЕЙ ЧАСТИ ТИПА F, содержащей части с разницей потенциалов, соединение РАБОЧЕЙ ЧАСТИ с землей через соединенного с землей ПАЦИЕНТА (НОРМАЛЬНОЕ СОСТОЯНИЕ) может привести к появлению в РАБОЧЕЙ ЧАСТИ НАХОДЯЩИХСЯ ПОД НАПРЯЖЕНИЕМ частей. Изоляция между НАХОДЯЩИМИСЯ ПОД НАПРЯЖЕНИЕМ частями и КОРПУСОМ может в худшем случае (когда часть РАБОЧЕЙ ЧАСТИ заземлена через ПАЦИЕНТА) подвергаться воздействию полного напряжения, действующего в РАБОЧЕЙ ЧАСТИ.
Так как это напряжение появляется в НОРМАЛЬНОМ СОСТОЯНИИ, хотя и редко, соответствующая изоляция должна отвечать требованиям к ДВОЙНОЙ ИЗОЛЯЦИИ или УСИЛЕННОЙ ИЗОЛЯЦИИ. В связи с малой вероятностью возникновения этих условий ПУТИ УТЕЧКИ и ВОЗДУШНЫЕ ЗАЗОРЫ, приведенные в таблице XVI, являются достаточными.
3) Для испытаний берут большие из значений, найденных согласно d) 1) или d) 2).
Пункт 59.1е) Провода следует прокладывать в отдельных изоляционных трубках необходимого сечения. Если провода, относящиеся к различным цепям, проходят в общей трубке, канале, отверстии или соединительном устройстве, необходимого разделения цепей достигают достаточной изоляцией проводов и обеспечением ПУТЕЙ УТЕЧКИ и ВОЗДУШНЫХ ЗАЗОРОВ между токопроводящими частями соединительных устройств, соответствующих требованиям пункта 57.10.
Пункт 59.2 b) Испытания материалов на воспламеняемость предусмотрены в ГОСТ 28779.
_____________________________
** См. приложение М.
(*(1), *(2), *(4), *(6), *(7), *(8)) См. библиографию.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.