Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение 3
Обязательное
Статистические методы определения характеристик нагревостойкости
В данном приложении содержатся методы определения графика нагревостойкости, диапазона нагревостойкости и температурного индекса электроизоляционных материалов.
1. Общие положения
1.1. Методы применяются для определения нагревостойкости электроизоляционных материалов в соответствии с основной частью настоящего стандарта приложения 1.
1.2. График сроков службы электроизоляционных материалов представляет собой зависимость срока службы образцов от температуры старения, базирующуюся на результатах испытаний по определению уровня контролируемого показателя образцов в процессе или после старения при различных температурах.
1.3. К экспериментальным данным, которые необходимо статистически обработать, чтобы определить нагревостойкость материала, относится срок службы образцов.
Статистическая обработка результатов испытания основана на предположении, что существует линейная зависимость между логарифмом срока службы и величиной, обратной термодинамической температуре, которая, например, имеет место, если разрушение материала является следствием химической реакции первого порядка и подчиняется закону Аррениуса. Если измеренные величины четко указывают на отсутствие линейной зависимости, экстраполяция графика, необходимая для определения диапазона нагревостойкости, не производится. Кривые старения, выражающие зависимость контролируемого свойства материала от времени старения при различных температурах, могут дать в этих случаях ценную информацию, но температурный индекс можно получить только после испытаний при температуре старения, при которой средний срок службы составляет не менее 20000 ч.
Точность результатов в значительной степени зависит от числа образцов, подвергаемых воздействию каждой температуры.
Если вероятный разброс результатов испытаний предопределен, то можно вычислить число образцов, которое позволит обеспечить достаточную уверенность в результатах; в других случаях для определения необходимого количества образцов проводят предварительные испытания.
Если есть сомнение в принадлежности экспериментальных результатов к данной совокупности, они могут быть выделены как отклонения, посредством статистических методов, но только после тщательного изучения условия испытаний, а их значения должны быть внесены в протокол испытания. Количество результатов при различных температурах воздействия в таких случаях, как правило, бывает различным.
1.4. Способы обработки данных зависят в некоторой степени от метода проведения испытаний.
Следует различать следующие случаи:
А. - способ старения;
А.1 - непрерывное старение;
А.2 - циклическое старение;
Б. - оценка состояния образцов;
Б.1 - измерение свойства (свойств) материала без разрушения образца;
Б1.1 - непрерывная проверка;
Б 1.2 - циклические измерения;
Б.2 - циклическое приложение заданного испытательного воздействия (проверочное испытание);
Б.3 - определение свойства материала с разрушением образца.
Способ Б.1 может применяться в сочетании либо со способом А.1, либо со способом А.2. В каждом случае целью испытательного цикла может быть, например, воздействие на испытуемые образцы определенных тепловых ударов во время старения. Если измерения регистрируются непрерывно или часто (Б.1.1) данные срока службы можно получить непосредственным изучением зарегистрированных величин, а в случае циклических измерений (Б.1.2) они интерполируются на графиках кривой старения (п. 3.1). В обоих случаях срок службы определяется для каждого отдельного образца как непрерывная переменная и скорость изменения свойства определяется на основании измерений, что не относится к способам Б.2 и Б.3. Оценка результатов описана в разд. 3.
Способ Б.2 наиболее часто применяется в связи со способом А.2. Проверочное испытание определяет, остается или нет испытуемое свойство образца в пределах контрольного воздействия (критерий конечной точки). В случае применения проверочного испытания (например, в конце каждого цикла старения) срок службы, являющийся дискретной переменной, определяют как среднюю точку цикла (п. 3.1). Поскольку во время испытаний не удается проследить изменение свойств материала во времени, этот способ нельзя считать в такой же степени информативным, как способ Б.1. Статистические способы обработки результатов для получения диапазонов нагревостойкости аналогичны способу Б.1, описанному в разд. 3.
Способ Б.3 может применяться при любом из способов А.1 или А.2. При каждом из измерений проверяют заданное число образцов, которые затем выбрасывают. Так как изменения показателей свойства за разные периоды старения определяют на различных образцах, этот способ более чувствителен к различиям между образцами, чем ранее перечисленные способы. Получить таким путем срок службы отдельных образцов не представляется возможным, но результаты испытаний показывают общую тенденцию изменения свойства материала в зависимости от времени старения и средний срок службы при каждой температуре старения. Статистические способы определения диапазонов нагревостойкости в этом случае рассмотрены в разд. 4.
2. Статистические методы
2.1. Рассматриваемые статистические методы включают следующие этапы:
1) определение срока службы;
2) вычисление коэффициентов а и b линейного уравнения регрессии
у = а + b х х, связывающего логарифм срока службы (y = lg t) с величиной,
1
обратной термодинамической температуре (Х = ----);
Тэта
3) построение графика нагревостойкости;
4) определение температурного индекса (в тех случаях, когда это
возможно);
5) проверка равенства дисперсий логарифма срока службы при различ-
ных температурах старения;
6) проверка линейности уравнения регрессии.
Примечание. Эта проверка распространяется только на диапазон из-
меренных точек, и доверительные интервалы, вычисленные для экстраполиро-
ванных точек, основаны только на предположении о наличии вышеупомянутой
линейности (п. 2.2, перечисление 4);
7) определение нижней односторонней границы 95%-ного доверительного
интервала для средних значений логарифмов времени до выхода из строя,
взятых на линии регрессии;
8) вычисление величины температуры в градусах Цельсия, соответ-
ствующей сроку службы при работе в течение 5000 и 20000 ч по уравнению
регрессии;
9) проверка коэффициента вариации логарифма срока службы в соот-
ветствии с уравнением регрессии при работе в течение 5000 ч;
10) вычисление нижней односторонней границы 95%-ного доверительного
интервала для температуры, соответствующей на линии регрессии сроку
службы 5000 ч.
2.2. Допущения.
Допущения, лежащие в основе примененного статистического метода, сводятся к следующему:
1) наблюдаемые величины срока службы являются стохастически независимыми: образцы, используемые для испытаний на старение, являются произвольно взятыми из исследуемой совокупности и прошедшими одинаковую обработку;
2) зависимая переменная y (логарифм срока службы) имеет нормальное распределение при каждой величине независимой переменной х (величина, обратная термодинамической температуре);
3) дисперсия сигма(2) зависимой переменной у одинакова при всех величинах х;
4) зависимая переменная у является линейной функцией аргумента х в диапазоне, включающем все испытательные и экстраполированные точки;
5) погрешностями хи можно пренебречь, так как хи имеет одинаковое точно известное значение для всех образцов, состарившихся при одной и той же температуре.
3. Неразрушающие методы измерений и проверочные испытания
Данные методы применимы в тех случаях, когда свойства контролируются с помощью неразрушающих измерений (разд. 1, способ Б.1) или с помощью определенного проверочного испытания (разд. 1, способ Б.2). Метод определения характеристик нагревостойкости в случае контроля свойства при разрушающем испытании (разд. 1, способ Б.3) приведен в разд. 4.
3.1. Срок службы
Общее количество образцов (N) подвергается воздействию к различных температур тэта_i °С (где i =1 ... k). Число образцов n, подвергающихся воздействию при температуре тэта_t °С, обозначается n_i (N = сумма n_i). Обычно эксперименты планируются с одинаковым числом (n) образцов, подвергаемых воздействию при всех температурах (N = k х n), но возможны также вычисления в случаях, где n_i различны.
Для каждого образца срок службы обозначается t_ij, где i - соответствующая температура выдержки (тэта_i °С); j - номер, присваиваемый образцу в пределах группы образцов n_i, подвергаемых воздействию при этой температуре, т. е. j = 1 ... n_i.
3.1.1. Непрерывная проверка
При непрерывной проверке измеренные значения показателя свойства регистрируются непрерывно или путем частого испытательного воздействия на образец. По полученным в этом случае данным можно непосредственно определить время, когда уровень показателя свойства образцов становится ниже критерия конечной точки, т. е. индивидуальный срок службы t_ij.
3.1.2. Циклические измерения
Если измерения на образцах, подвергаемых старению при одной температуре, проводятся в заданные периоды времени t_1, t_2 ..., индивидуальный срок службы каждого образца t_ij можно определить из графика зависимости свойства от времени.
3.1.3. Проверочные испытания
Если проверочное испытание проводится через заданные периоды времени, результат испытания определяется временем t_f, после которого впервые был достигнут критерий конечной точки, и непосредственно предшествующим временем t_(f-1), когда критерий конечной точки еще не был достигнут.
За срок службы для данного случая принимается средняя величина этих двух времен, т. е.
3.2. Уравнение регрессии
Для каждой величины температуры воздействия тэта_i вычисляется величина хи_i, обратная термодинамической температуре Тэта_i = тэта_i + 273
логарифм срока службы t_ij
и среднее значение y_ij
Коэффициенты уравнения регрессии
у = а + b х х (36)
определяются из уравнений
3.3. График сроков службы
По уравнению регрессии строится график сроков службы с ординатой
1
y = lg t и абсциссой х = -----. Обычно х на графике возрастает справа на-
Тэта
лево, а соответствующие величины тэта °С отмечают на оси Тэта для этой
цели используют специальную бумагу для графиков (см. черт. 4). _
Отдельные величины у = lg t и средние величины y = lg t
ij ij i i
(где lg t ) - логарифмические средние величины времени до разрушения)
i
наносятся на графике при соответствующих величинах
1
x = -----------. (41)
i тэта + 273
i
3.4. Температурный индекс
Температурный индекс (ТИ) определяют из графика сроков службы (п. 3.3), как температуру тэта °С, соответствующую на линии регрессии заданному времени t, равному обычно 20000 ч.
ТИ определяют только в тех случаях, если положение экспериментальных точек относительно линии регрессии оправдывает предположение линейной зависимости.
3.5. Проверка на равенство дисперсий
Для каждой величины i вычисляют дисперсии
с f_i = n_i - 1 степенями свободы и их среднее взвешенное значение
с f_1 = сумма (f_i) степенями свободы.
Равенство K дисперсий s(2)_1i проверяют методом Бартлетта на значащем уровне альфа = 0,05 путем сравнивания испытательной стохастической переменной
где промежуточная постоянная
и f_1 = сумма (f_i) с табулированным значением хи(2) (0,95, k - 1), где k - 1 есть число степеней свободы хи(2) (табл. 6 и 7).
Если хи(2) больше табулированного значения, расхождения в s(2)_1i следует считать значимыми и величину хи(2) указывают в протоколе испытаний. Оцененное значение s(2)_1 используют как суммарную оценку дисперсии в пределах K рядов измерений с f_1 степенями свободы.
3.6. Проверка на линейность
По уравнению регрессии вычисляют расчетные средние величины у согласно линии регрессии
У = а + b х х (46)
i
соответствующие K величинам х_i , и дисперсию
с f_2 = k - 2 степенями свободы.
Суммарную дисперсию s(2)_1 в пределах K рядов измерений сравнивают с дисперсией s(2)_2 около линии регрессии по методу Фишера на значащем уровне альфа = 0,05.
2
s
2
Экспериментальное значение переменной величины F = -- сравнивают с
2
s
1
табулированным значением F (0,95, f , f ) (табл. 6 и 7). В этом слу-
n альфа
чае f есть число степеней свободы числителя F и f - знаменателя,
n альфа
т. е. f равно f , вычисленному выше, и f равно f по п. 3.5.
n 2 альфа 1
Если F больше табулированной величины, отклонение от прямой линии считается значимым, и величина F должна быть внесена в протокол испытаний.
Суммарную оценку дисперсий вычисляют как
с f = N - 2 степенями свободы.
_
3.7. Доверительный интервал для у.
Нижняя граница 95%-ного доверительного интервала для истинного значения у при данном значении X имеет вид
и t есть табулированная величина коэффициента Стьюдента t с f = N - 2 степенями свободы, соответствующая 95%-ному доверительному интервалу t(0,95, f) (табл. 6 и 7). Y_с вычисляют для нескольких связанных между собой величин Y и X уравнения регрессии в пределах интересующего диапазона и по точкам (X, Y_с ) строят график.
3.8. Температуры, соответствующие срокам службы 5000 и 20000 ч.
Из уравнения регрессии
Y = a + b х x (52)
вычисляют величины Х_5 и Х_20, соответствующие величинам
Y = lg 5000 = 3,70 (53)
5
Y = lg 20000 = 4,30 (54)
20
и, следовательно, соответствующие температуры в °С
3.9. Коэффициент вариации
Дисперсию Y_5, полученного из уравнения регрессии и соответствующего температуре тэта_5, вычисляют как
и отсюда коэффициент вариации
Если коэффициент вариации С_v <= 1,5%, диапазон нагревостойкости определяют как в п. 3.11, в противном случае приводят только график нагревостойкости (п. 3.3) и там, где возможно, температурный индекс (п. 3.4).
3.10. Граница доверительного интервала по тэта_5
Нижнюю границу 95%-ного доверительного интервала тэта_с для температуры, соответствующей времени 5000 ч до критерия конечной точки, вычисляют как
и t есть табулированное значение коэффициента Стьюдента с f = N - 2
степенями свободы, соответствующее 95%-ному доверительному интервалу
1
t (0,95, f) (табл. 6 и 7) Тэта = --- - 273.
с Х
с
3.11. Диапазон нагревостойкости
Диапазон нагревостойкости (ДН) определяется числами, соответствующими температурам, дающим расчетные логарифмические средние значения сроков службы 20000 ч (тэта_20) и 5000 ч (тэта_5) (п. 3.8) и значением тэта_с (п. 3.10).
ДН: тэта_20/тэта_5 (тэта_с).
4. Разрушающие испытания
4.1. Общие положения
Когда определение изменения свойства проводят путем разрушающих испытаний (разд. 2, способ Б.3), число образцов, подвергаемых воздействию при каждой температуре, должно быть равно произведению числа образцов, испытанных в конце каждого интервала времени, и количества периодов времени t_1, t_2, ... , при которых проводят эти измерения.
Если, например, предполагается испытать 10 образцов в каждый из 9 периодов времени при 3-х различных температурах, то общее количество образцов составит 3х8х10 = 240. Целесообразно подвергать воздействию каждой температуры дополнительные группы из 10 образцов, чтобы испытать их при более длительных временах воздействия, чем планировалось первоначально, если испытания указывают на более длительный срок службы при одной или нескольких температурах.
Целесообразно также начать воздействие на дополнительные группы образцов несколько позднее по времени, чтобы провести испытание в промежуточные периоды воздействия или в более короткие периоды времени по сравнению с первоначально запланированными, если в этом возникает необходимость в ходе эксперимента.
Математическая функция, описывающая взаимосвязь показателей свойства и времени, зависит от типа испытуемого материала, т. е. от порядка химических процессов, происходящих при старении, и от взаимосвязи химического состава и проверяемого свойства.
При выборе точного метода оценки необходимо учитывать теоретические знания и предшествующий опыт использования таких процессов и связей. Поскольку образцы после испытания не используются, то невозможно проследить изменение свойства отдельных образцов и определить однозначно срок службы для каждого образца.
4.2. Срок службы
Для каждой испытательной температуры результаты наносятся на график зависимости измеряемой характеристики от времени старения. Пересечение построенной кривой с линией критерия конечной точки определяет срок службы при этой температуре t_i.
В стандартах на отдельные виды материалов может оговариваться специальная обработка результатов испытаний (например, вычерчивание логарифма показателей свойства в зависимости от времени или какой-либо другой функции свойства от логарифма времени с целью получения простого, например, приблизительно линейного графика). Кривая может быть приближена к экспериментальным точкам с помощью метода наименьших квадратов.
4.3. Расчеты
Расчеты осуществляют в основном согласно разд. 3, но поскольку только одна величина срока службы может быть получена из графика изменения свойства при каждой температуре (п. 4.2), n становится равным единице.
Поэтому нельзя определить величину s(2)_1 (п. 3.5), которая основана на колебании у при фиксированной температуре; оценка s(2) дисперсии у должна проводиться только на основе разброса величин t_i по линии регрессии с K - 1 степенями свободы.
Чтобы провести оценку степени соответствия кривых старения и линейности графика сроков службы, проводят грубую оценку дисперсии s(2)_1i при каждой температуре.
Предполагается, что кривые старения отдельных образцов идут параллельно средней кривой старения, полученной по п. 4.2 - во всяком случае в области, где кривая пересекает линию критерия конечной точки, - хотя в данном случае только одна точка каждой кривой может быть определена вследствие разрушающего характера испытания.
На графике зависимости изменения свойства от времени через точки, выражающие результаты испытаний отдельных образцов в периоды времени, близкие к времени достижения критерия конечной точки, проводят линии, параллельные средней линии, как показано на черт. 5, где линии проходят через пять точек, выражающих результаты при каждом из четырех периодов измерения, ближайших к времени t_i, где средняя линия (или линия наилучшего совпадения) пересекает линию, представляющую критерий конечной точки.
Периоды времени t_ij, соответствующие точкам пересечения этих линий с линией критерия конечной точки, принимают за срок службы образцов при температуре тэта_i и используют в расчетах в соответствии с пп. 3.5 и 3.6.
Однако эти вычисления дают только грубые оценки.
4.4. Температурный индекс
Температурный индекс (ТИ) в тех случаях, когда он применяется, определяют по п. 3.4.
<< Приложение 2 (обязательное). Расчет диапазонов нагревостойкости |
||
Содержание Государственный стандарт Союза ССР ГОСТ 27710-88 (СТ СЭВ 4127-83) "Материалы электроизоляционные. Общие требования к... |
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.