Купить систему ГАРАНТ Получить демо-доступ Узнать стоимость Информационный банк Подобрать комплект Семинары

Ведомственные нормы технологического проектирования тепловых электрических станций ВНТП 81 (утв. протоколом Минэнерго СССР от 17 августа 1981 г. N 99)

 

Срок введения в действие 8 октября 1981 г.

Взамен норм технологического проектирования

тепловых электростанций и тепловых сетей,

утвержденных 8 мая 1973 г.

 

2. Охрана природы

 

2.1. Охрана земель

 

2.1.1. Выбор площадки для строительства электростанции должен производиться с соблюдением "Основ земельного законодательства Союза ССР и союзных республик" законодательных актов по охране природы и использованию природных ресурсов, норм и правил строительного проектирования, увязывается со схемой районной планировки или генеральной схемой промышленного узла.

2.1.2. При разработке проектов электростанций следует:

- использовать, как правило, земли несельскохозяйственного назначения и малопродуктивные угодья;

- предусматривать снятие и хранение плодородного слоя почвы (на землях временного и постоянного отвода) с целью нанесения его на рекультивируемые (восстанавливаемые) земли и малопригодные угодья;

- предусматривать компенсацию за изымаемые сельскохозяйственные угодья;

- при отводе земельных участков во временное пользование следует предусматривать последующую рекультивацию этих участков.

2.1.3. Площадь отводимых земельных участков для сооружения объектов электростанции должна использоваться рационально и определяться следующими условиями:

- оптимальной блокировкой производственных зданий и сооружений;

- размещением вспомогательных служб и подсобных производств в многоэтажных зданиях;

- соблюдением нормативной плотности застройки в соответствии с требованиями главы СНиП;

- учетом необходимого резерва площадей для расширения электростанций в соответствии с заданием на проектирование и при соответствующем технико-экономическом обосновании;

- определением площади золошлакоотвалов с учетом использования золы и шлака в народном хозяйстве.

2.1.4. Отвод земель следует производить очередями с учетом фактической потребности в них объектов строительства. Временно отводимые земли под карьеры, отвалы грунта и т.д. после проведения на них всех необходимых работ по рекультивации должны возвращаться землепользователям.

2.1.5. В составе проекта электростанции должен быть раздел по рекультивации земель, отводимых во временное пользование, и улучшению малопродуктивных угодий, как компенсации за изымаемые сельскохозяйственные угодья. Проекты рекультивации выполняются с привлечением проектных организаций Минсельхоза СССР, Гослесхоза СССР и Минрыбхоза СССР. Проекты улучшения малопродуктивных угодий должны выполняться с привлечением проектных институтов по землеустройству (гипроземам) Минсельхоза СССР.

2.1.6. При размещении электростанций в развитых энергосистемах следует рассматривать в проектах возможность отказа от строительства или сокращения объемов строительства на площадке электростанции центральной ремонтной мастерской, материальных складов и ремонтно-строительного цеха на ТЭС, имея в виду централизованное обеспечение нужд электростанции.

2.1.7. При проектировании электростанции следует рассматривать возможность использования существующих строительных баз и укрупнительных площадок близ расположенных предприятий Минэнерго СССР.

2.1.8. Подъездные железные и автомобильные дороги, а также внешние инженерные коммуникации, трассы теплопроводов, линии электропередачи и связи, подводящие и отводящие каналы технического водоснабжения и т.д., если они совпадут по направлению, следует, как правило, размещать в одной полосе отвода земель и по возможности трассировать их, не нарушая существующих границ сельскохозяйственных угодий и полей севооборота.

2.1.9. Золоотвалы должны проектироваться с учетом их консервации или рекультивации после заполнения их золошлаками до проектной высоты.

2.2. Охрана воздушного бассейна

 

2.2.1. В проектах тепловых электростанций должны быть предусмотрены мероприятия обеспечивающие снижение концентрации вредных веществ и пыли в приземном слое атмосферного воздуха, до величин, не превышающих допустимые санитарными нормами ПДК.

Это условие должно быть обеспечено с учетом работы электростанции при ее конечной мощности, а также с учетом фонда создаваемого другими источниками загрязнения атмосферы.

Расчет концентрации ведется при режиме работы электростанции на полной ее электрической и тепловой нагрузке, соответствующей средней температуре наиболее холодного месяца.

При расчете для летнего режима работы электростанции в случаях установки на ней трех и более турбин учитывается остановка одной из них на ремонт.

2.3. Охрана водного бассейна

 

2.3.1. Для защиты водного бассейна от загрязнений различными производственными сточными водами, должны быть предусмотрены соответствующие очистные сооружения, обеспечивающие соблюдение санитарных норм Минздрава СССР.

2.3.2. Выбор метода и схемы обработки производственных сточных вод производится в зависимости от конкретных условий проектируемой станции: мощности и устанавливаемого оборудования. Режима работы, вида топлива, способа золошлакоудаления, системы охлаждения, системы водоподготовки, местных климатических, гидрогеологических и прочих факторов с соответствующими технико-экономическими расчетами.

Сброс сточных вод в водоемы должен проектироваться с соблюдением "Правил охраны поверхностных вод от загрязнения сточными водами" и в установленном порядке согласовываться с органами по регулированию использования и охране вод, государственного санитарного надзора, по охране рыбных запасов и регулированию рыбоводства и другими заинтересованными органами.

2.3.3. Проектирование водохранилищ-охладителей, золошлакоотвалов шламоотвалов, прудов-испарителей, водоподготовок и др. Должно осуществляться с учетом разработки комплексных мероприятий по защите поверхностных и грунтовых вод от загрязнения сточными водами.

При разработке мероприятий необходимо рассматривать:

- возможность уменьшения количества загрязненных производственных сточных вод за счет применения в технологическом процессе электростанции совершенного оборудования и рациональных схемных решений;

- применение частично или полностью оборотных систем водоснабжения, повторного использования отработанных в одном технологическом процессе вод на других установках;

- возможность использования существующих, проектируемых очистных сооружений соседних промышленных предприятий и населенных пунктов или строительства общих сооружений с пропорциональным долевым участием;

- в проекте должна быть исключена фильтрация из золошлаковых хранилищ загрязненных вод в грунтовый поток.

 

3. Генеральный план и транспортное хозяйство

 

3.1. Генеральный план

 

3.1.1. Район или пункт строительства тепловой электростанции определяется схемой развития энергосистем или схемой теплоснабжения района. Выбор площадки для строительства, а также определение основных характеристик электростанции производится на основании технико-экономического сопоставления конкурирующих вариантов, выполняемого в соответствии с требованиями "Инструкции по разработке проектов и смет для промышленного строительства", а также соответствующих глав строительных норм и правил.

3.1.2. Площадка для строительства электростанции должна по возможности удовлетворять следующим условиям:

- грунты, слагающие площадку, должны допускать строительство зданий и сооружений, а также установку тяжелого оборудования без устройства дорогостоящих оснований;

- уровень грунтовых вод должен быть ниже глубины заложения подвалов зданий и подземных инженерных коммуникаций;

- поверхность площадки должна быть относительно ровной с уклоном, обеспечивающим поверхностный водоотвод;

- площадка не должна располагаться в местах залегания полезных ископаемых или в зоне обрушения выработок, на закарстованных или оползневых участках и участках, загрязненных радиоактивными отбросами, а также в охранных зонах в соответствии с действующим законодательством;

- при ориентации на прямоточную схему технического водоснабжения площадку следует размещать у водоемов и рек на прибрежных незатапливаемых паводковыми водами территориях с учетом наименьшей высоты подъема охлаждающей воды;

- для теплофикационных электростанций площадка должна быть максимально приближена к потребителям тепла.

3.1.3. Планировочные решения по размещению объектов электростанций, включая жилпоселок, должны учитывать преобладающее направление ветров, а также существующую и перспективную жилую и промышленную застройку.

3.1.4. Компоновка генерального плана стройплощадок должна решаться с учетом подходов железных и автомобильных дорог, выводов ЛЭП и других коммуникаций по наиболее рациональной схеме в увязке с генсхемой развития района с учетом архитектурных требований и требований по зондированию территории.

3.1.5. Генеральный план электростанции выполняется с учетом:

- развития электростанции на полную мощность;

- оптимальной технологической зависимости подсобно-производственных вспомогательных служб по отношению к основному производству с соблюдением необходимых санитарных, противопожарных и других норм, регламентирующих расстояние между зданиями, сооружениями и инженерными коммуникациями;

- расположения железнодорожных станций и топливных складов, как правило, вне ограды промплощадки (при расположении склада топлива за железнодорожной станцией электростанции должен предусматриваться пешеходный мост (тоннель) для перехода персонала и пропуска коммуникаций);

- архитектурного оформления площадки основного въезда на электростанцию, свободного от застройки временными зданиями и сооружениями.

К зданиям и сооружениям, а при необходимости и вокруг них, предусматривается автодорога для проезда пожарных машин.

3.1.6. Строительная и монтажная базы, как правило, должны размещаться со стороны временного торца главного корпуса. Набор временных зданий и сооружений должен предусматривать их максимальную блокировку, а также использование по возможности постоянных сооружений электростанции подходящего назначения. Монтажные площадки следует располагать не далее 100 м от временного торца главного корпуса полной мощности.

При сооружении в одном районе нескольких электростанций место расположения их общей строительной, монтажной и ремонтной районной производственной комплектовочной (РПКБ) базы электростанций и поселка определяется схемой районной планировки.

Строительная, монтажная и ремонтная база принимаются минимальных размеров с рациональной блокировкой производственных и вспомогательных зданий с учетом дальнейшего их использования.

3.1.7. Выбор отметки главного корпуса должен осуществляться на основании технико-экономического сравнения вариантов по приведенным затратам с учетом капитальных затрат на строительство и эксплуатационных расходов по подъему охлаждающей воды.

3.1.8. Для обеспечения поверхностного водоотвода, как правило, следует применять открытую систему путем устройства кюветов, лотков и канав. Применение закрытой системы водоотвода должно быть обосновано.

3.2. Транспортное хозяйство

 

3.2.1. Выбор вида пассажирского транспорта необходимо определять на основании технико-экономического сопоставления вариантов.

3.2.2. Выбор вида транспорта для внешних и внутренних перевозок грузов электростанций (железнодорожного, конвейерного, автомобильного, водного, трубопроводного и др.), а также типа подвижного состава при железнодорожной или автотранспортной доставке топлива должен производиться на основании технико-экономических сравнений вариантов.

3.2.3. Для пассажирских перевозок в периоды строительства и эксплуатации следует применять наиболее эффективные виды транспорта, обеспечивающие наименьшие затраты времени для передвижения трудящихся между местами жительства и работы.

3.2.4. Для электростанций, размещаемых в промышленном районе или при промышленных предприятиях, железнодорожный транспорт увязывается с генеральной схемой развития железнодорожного транспорта промышленного узла.

3.2.5. Следует предусматривать кооперирование с соседними предприятиями и МПС по строительству и эксплуатации объединенных железнодорожных станций, подъездных путей, общих экипировочных устройств и локомотиво-вагонных депо.

3.2.6. Все объекты железнодорожного транспорта надлежит проектировать на полное развитие мощности электростанций с выделением объемов работ по очередям строительства.

3.2.7. Сооружение подъездных железнодорожных путей для газомазутных электростанций при поступлении мазута по трубопроводам или водным транспортом должно определяться максимальным объемом перевозок грузов в периоды строительства и монтажа электростанции.

3.2.8. Полезные длины приемо-отправочных путей на станциях примыкания и железнодорожных станциях электростанций принимаются, как правило, из расчета установки маршрутов перспективной весовой нормы поезда.

В отдельных случаях при соответствующем обосновании и согласовании с Управлением железной дороги на железнодорожных станциях электростанций допускается сокращение полезных длин путей, но при условии обеспечения приема маршрута не более чем в две-три подачи.

3.2.9. Число путей на железнодорожной станции электростанции определяется количеством поступающих маршрутов в сутки с учетом коэффициента неравномерности движения поездов 1,2.

Поступление на электростанцию прочих хозяйственных и строительных грузов учитывается с коэффициентом неравномерности движения поездов 1.5.

3.2.10. При определении количества маршрутов суточный расход топлива принимается исходя из 24-часовой работы всех установленных котлов при их номинальной производительности.

3.2.11. Для нужд строительства следует максимально использовать постоянные железнодорожные пути.

Постоянные въезды железнодорожных путей в турбинное и котельное отделение предусматриваются только с временного торца главного корпуса. С постоянного торца главного корпуса и вдоль фронта установки трансформаторов предусматривается устройство путей перекатки трансформаторов. Для ТЭЦ допускается устройство путей перекатки трансформаторов со стороны временного торца.

3.2.12. Для надвига вагонов на вагоноопрокидыватели должны применяться электротолкатели, или, при соответствующих обоснованиях, электровозы с дистанционным управлением.

Для откатки порожняка должны применяться специальные маневровые устройства. Пути надвига и откатки вагонов должны быть ограждены в соответствии с требованиями техники безопасности.

3.2.13. Все поступающие на электростанцию вагоны с твердым и жидким топливом должны взвешиваться, при этом следует применять весы, позволяющие производить взвешивание вагонов на ходу без остановки состава.

Вес жидкого топлива, поступающего в железнодорожных цистернах периодически определяется взвешиванием или обмером.

3.2.14. Для маневровой работы на путях электростанции должны применяться тепловозы или электровозы.

На электростанциях, при невозможности кооперирования с другими предприятиями, предусматривается сооружение экипировочно-ремонтного блока для локомотивов и механизмов угольного склада, или локомотивного депо для газомазутных станций. В случаях приобретения для электростанции парка специализированных вагонов должно предусматриваться локомотивно-вагонное депо.

На железнодорожной станции ТЭС должно быть предусмотрено служебно-техническое здание, пункт контрольно-технического обслуживания вагонов, в необходимых случаях пост электрической централизации или стрелочные посты.

Заправка букс вагонов смазкой и производство безотцепного ремонта вагонов должны производиться на отправочных пунктах железнодорожной станции ТЭС, для чего должно быть предусмотрено смазочное хозяйство, стеллажи для хранения запасных частей, асфальтирование дорожки вдоль ремонтных путей для подвоза запасных частей при соответствующем увеличении расстояния между путями.

При необходимости отправочные пути должны быть оборудованы устройствами опробования автотормозов.

Отцепочный ремонт вагонов должен производиться на специальном железнодорожном пути.

Железнодорожные пути станции, пути технического обслуживания подвижного состава, пассажирские платформы и переезды должны быть освещены в соответствии с требованиями норм МПС.

3.2.15. В случае доставки топливных маршрутов непосредственно локомотивами МПС, подъездные железнодорожные пути электростанции, примыкающие к электрифицированным магистралям, должны быть также электрифицированы.

При электрификации железнодорожных путей электростанций следует использовать возможность подключения к тяговым подстанциям МПС, блокирования тяговых подстанций с общепромышленными трансформаторными подстанциями, а также блокирования дежурных пунктов и мастерских контактной сети с локомотиво-вагонными депо или пунктами осмотра вагонов.

Следует также проверять возможность использования перегрузочной способности имеющихся тяговых трансформаторов и выпрямительных агрегатов МПС.

3.2.16. Выбор системы СЦБ железнодорожной станции (электрическая централизация, ключевая зависимость стрелок и сигналов или другая система) определяется технико-экономическим расчетом.

Малодеятельные стрелки следует оставлять на ручном обслуживании маневровой бригадой.

3.2.17. Железнодорожные пути и стрелки, связанные с работой вагоноопрокидывателя, должны оборудоваться электрической централизацией.

Стрелочными переводами, определяющими выход электротолкателя для надвига вагонов, должен управлять только дежурный по железнодорожной станции с обязательным контролем положения электротолкателя.

3.2.18. Разгрузочные и растормаживающие устройства должны быть оборудованы автоматической выездной и въездной световой и звуковой сигнализацией.

3.2.19. Автомобильные дороги проектируются на полное развитие электростанции. Конструкция дорожной одежды и ширина проезжей части автодорог выбирается в соответствии со СНиП, исходя из размеров движения и типов автомашин как в период строительства, так и при эксплуатации.

3.2.20. При выборе направления внешних автомобильных дорого учитываются перспективы развития района и наиболее эффективное сочетание проектируемой дороги с сетью существующих и проектируемых путей сообщения. Трассы и основные параметры проектируемых автомобильных дорог выбираются на основе технико-экономического сравнения вариантов.

3.2.21. Основной автомобильный подъезд, связывающий площадку электростанции с внешней сетью автомобильных дорог, проектируется на две полосы движения с усовершенствованным покрытием капитального типа и, как правило, должен подходить со стороны постоянного торца главного корпуса.

3.2.22. Внешние автомобильные дороги для обслуживания водозаборных и очистных сооружений, ОРУ, артскважин, золошлакопроводов, открытых отводящих и подводящих каналов должны проектироваться на одну полосу движения с усовершенствованным покрытием облегченного типа или переходными типами покрытий.

Подъездные автомобильные дороги к складам топлива следует предусматривать с усовершенствованным облегченным покрытием.

3.2.23. На площади у главного въезда на электростанцию предусматриваются площадки для стоянок общественного транспорта, а также личных автомобилей, мотоциклов, мотороллеров, и велосипедов. Размеры площадок (их вместимость) определяются в зависимости от численности эксплуатационного персонала.

 

4. Топливное и масляное хозяйство

 

4.1. Разгрузка, подача и хранения твердого топлива

 

4.1.1. Суточный расход топлива определяется исходя из 24 часов работы всех энергетических котлов при их номинальной производительности. Расход топлива водогрейными котлами определяется исходя из 24 часов работы при покрытии тепловых нагрузок при средней температуре самого холодного месяца.

4.1.2. Часовая производительность каждой нитки топливоподачи определяется по суточному расходу топлива электростанции, исходя из 24 часов работы топливоподачи с запасом 10%.

Для электростанций мощностью 4000 МВт и выше или при расходе топлива более 2000 т/ч топливоподача выполняется с двумя самостоятельными выводами в главный корпус.

4.1.3. При производительности топливоподачи 100 т/ч и более, для разгрузки ж.д. вагонов с углем и сланцем применяются вагоноопрокидыватели.

4.1.4. При производительности топливоподачи от 100 до 400 т/ч устанавливается один вагоноопрокидыватель, от 400 до 1000 т/ч - два вагоноопрокидывателя.

Количество вагоноопрокидывателей для электростанций с производительностью топливоподачи свыше 1000 т/ч определяется, исходя из 12 опрокидываний в час вагонов средневзвешенной грузоподъемности, в которых поставляется на эти электростанции топливо плюс один резервный вагоноопрокидыватель.

4.1.5. При установке двух вагоноопрокидывателей и более на складе предусматривается разгрузочная эстакада длиной 60 м, предназначенная для разгрузки неисправных вагонов.

4.1.6. Для электростанций, работающих на фрезерном торфе, тип разгрузочного устройства (безъемкостное, траншейное с многоковшовыми перегружателями и пр.) определяется в каждом конкретном случае с учетом расхода торфа и типа вагонов.

4.1.7. Для электростанций производительностью топливоподачи менее 100 т/ч, как правило, применяются безъемкостные разгрузочные устройства.

4.1.8. При обеспечении снабжения электростанции сухим несмерзающимся углем или фрезерным торфом, доставка топлива может осуществляться в саморазгружающихся вагонах, оборудованных дистанционным управлением открывания и закрывания люков. В этом случае вагоноопрокидыватели не устанавливаются.

4.1.9. Для разгрузки шлама используется ж.д. эстакада на складе топлива, рядом с которой должна быть предусмотрена площадка для складирования шлама.

4.1.10. При поставке на электростанцию смерзающегося топлива сооружаются размораживающие устройства. В случае отсутствия вагоноопрокидывателя дополнительно к размораживающему устройству предусматривается механизация разгрузки топлива. Вместимость размораживающего устройства должна определяться с учетом времени разогрева вагонов, суточного расхода топлива и увязываться с длинами пути надвига и поступающих маршрутов топлива.

4.1.11. В разгрузочных устройствах для дробления на решетках смерзающегося и крупнокускового топлива, включая фрезерный торф, предусматривается установка специальных дробильных машин. Решетки над бункерами вагоноопрокидывателей должны иметь ячейки размером не более 350x350 мм, расширяющиеся книзу. В остальных случаях размеры ячеек над бункерами принимаются в соответствии с требованиями Правил техники безопасности.

При соответствующем обосновании допускаются размеры решеток под вагоноопрокидывателем с ячейкой более 350x350 мм; при этом кроме дробильных машин должны предусматриваться дополнительно дробилки грубого дробления.

4.1.12. Подача топлива в котельную осуществляется, как правило, двухниточной системой ленточных конвейеров, рассчитанных на трехсменную работу, из которых одна нитка является резервной; при этом, должна быть обеспечена возможность одновременной работы обеих ниток системы. Подача топлива на склад осуществляется однониточной системой.

4.1.13. Подача топлива от каждого вагоноопрокидывателя осуществляется одним ленточным конвейером с производительностью равной производительности вагоноопрокидывателя.

4.1.14. При установке одного вагоноопрокидывателя производительность каждой нитки системы подачи топлива в котельную принимается равной 50% производительности вагоноопрокидывателя.

4.1.15. В тракте топливоподачи электростанций, работающих на всех видах твердого топлива, включая фрезерный торф, устанавливаются молотковые дробилки тонкого дробления, обеспечивающие измельчение топлива до размера 25 мм. При работе на торфе и другом мелком топливе (0-25 мм) предусматривается возможность подачи топлива помимо дробилок.

Производительность всех установленных дробилок тонкого дробления должна быть не меньше производительности всех ниток топливоподачи в котельное отделение.

При техническом обосновании производительность дробилок выбирается с учетом отсева мелочи с применением грохота.

4.1.16. В тракте топливоподачи на конвейерах для улавливания из угля металла устанавливаются:

- в узле пересыпки - подвесной саморазгружающийся электромагнитный металлоделитель и металлоискатель;

- перед молотковыми дробилками - подвесной саморазгружающийся электромагнитный металлоделитель и металлоискатель, а после молотковых дробилок шкивной и подвесной электромагнитные металлоотделители.

При среднеходных мельницах после молотковых дробилок дополнительно устанавливаются уловители немагнитного металла.

При шаровых барабанных мельницах металлоуловители устанавливаются только до дробилок.

4.1.17. Для улавливания из угля древесины устанавливаются:

- в узле пересыпки конвейеров до дробилок - уловители длинномерных предметов;

- на конвейерах после молотковых дробилок - уловители щепы.

Уловленные предметы должны удаляться механизированным способом.

4.1.18. В тракте топливоподачи на конвейерах после дробилок тонкого дробления предусматриваются пробоотборные и проборазделочные установки для определения качества топлива, подаваемого в котельную.

4.1.19. Для взвешивания топлива, поступающего в котельное отделение, на конвейерах устанавливаются ленточные весы.

4.1.20. Перекрестные пересыпки в системе топливоподачи предусматриваются:

- после конвейеров разгрузочного устройства;

- после конвейеров со склада;

- в башне пересыпки главного корпуса.

4.1.21. Угол наклона ленточных конвейеров принимается не более 18° для всех типов твердого топлива. В местах загрузки крупнокускового топлива угол наклона конвейеров принимается 12°, а при обосновании допускается не более 15°.

4.1.22. Для распределения топлива по бункерам котлов применяются, как правило, стационарные плужковые сбрасыватели.

4.1.23. Угол наклона стенок приемных бункеров разгрузочных устройств с вагоноопрокидывателями и пересыпных бункеров принимается для антрацитов, каменных углей и сланцев не менее 55°, для торфа и бурых углей - 60°, для высоковлажных углей, промпродукта и шлама - не менее 70°. Стенки бункеров разгрузочных устройств и склада топлива должны иметь обогрев.

4.1.24. Угол наклона пересыпных коробов и течек для угля и сланца принимается не менее 60°, а для торфа и высоковлажных углей не менее 65°. Короба и течки выполняются по возможности круглыми, без переломов и изгибов.

Для замазывающихся углей пересыпные рукава, течки и тройники, за исключением шиберов, выполняются с обогревом.

Рабочие поверхности течек выполняются из утолщенного листа или со специальными средствами защиты от износа.

4.1.25. Ленточные конвейеры, как правило, устанавливаются в закрытых галереях. Высота галерей в свету по вертикали принимается не менее 2,2 м. Ширина галерей выбирается исходя из необходимости иметь проходы между конвейерами не менее 1000 мм, а боковые - 700 мм. При расположении между конвейерами колонн проход с одной колонны должен быть 700 мм. Допускаются местные сужения боковых проходов до 600 мм.

При одном конвейере проход должен быть с одной стороны 1000, а с другой 700 мм (все размеры указаны до выступающих частей строительных конструкций и коммуникаций).

В галереях через каждые 100 м необходимо предусматривать переходные мостики через конвейеры. В этих местах высот галерей должна обеспечивать свободный проход.

4.1.26. Уровень механизации угольных кладов должен обеспечивать их работу с минимальной численностью персонала как для выполнения складских операций, так и для ремонта механизмов.

На угольных складах должны применяться:

- механизмы непрерывного действия (роторные погрузчики, штабелеукладчики) на гусеничном или рельсовом ходу с максимальной автоматизацией их работы;

- мощные бульдозеры, в комплексе с штабелеукладчиком или конвейерами необходимой длины.

Рекомендуется принимать пробег бульдозера при выдаче угля со склада до 75 м.

Выбор системы механизации угольных складов в каждом конкретном случае определяется технико-экономическим обоснованием с учетом климатических условий района размещения электростанций, часового расхода и качества топлива.

Склады торфа оборудуются погрузочными машинами непрерывного действия или грейферными кранами.

Машины непрерывного действия не резервируются.

Другие складские механизмы, кроме бульдозеров, резервируются одним механизмом. При механизации склада только бульдозерами резерв должен быть в размере 30% их расчетного количества.

При механизации угольных складов машинами непрерывного действия для разравнивания угля и уплотнения его в штабеле, предусматриваются 2-3 бульдозера, которые используются также для выдачи угля из буферного штабеля.

4.1.27. Во избежание простоев груженых вагонов в период, когда бункеры котельного отделения заполнены, на электростанциях с безъемкостными разгрузочными устройствами должен предусматриваться буферный штабель емкостью на два-четыре железнодорожных маршрута.

4.1.28. Выдача топлива со склада осуществляется однониточной системой ленточных конвейеров. Выдача топлива из буферного штабеля в основной тракт топливоподачи осуществляется бульдозерами или другими механизмами и самостоятельным однониточным конвейером.

4.1.29. Часовая производительность всех механизмов, выдающих топливо со склада, должна быть не менее производительности однониточной системы конвейеров.

4.1.30. Для ремонта бульдозеров и их технического обслуживания предусматриваются закрытые отапливаемые помещения, оборудованные необходимыми средствами ремонта на количество машин, равное 30% расчетного парка бульдозеров, но не менее чем на две машины. Средний ремонт бульдозеров, как правило, производится в экипировочно-ремонтном блоке.

4.1.31. Емкость складов угля и сланца принимается (без учета госрезерва), как правило, равной 30-суточному расходу топлива.

Для электростанций, располагаемых в районе угольных разрезов или шахт на расстоянии 41-100 км емкость склада принимается равной 15-суточному расходу, а на расстоянии до 40 км - равной 7-ми суточному расходу.

4.1.32. На проектируемых электростанциях при перспективе их расширения должна предусматриваться возможность расширения склада.

4.1.33. Резервный запас торфа предусматривается на 15-суточный расход. Склад торфа может быть удален от территории электростанции на расстояние в пределах 5 км.

Склад должен иметь непосредственную связь с основным трактом топливоподачи, выполняемую однониточными конвейерами или железнодорожными путями, не входящими на железнодорожные пути общего пользования. В этом случае вблизи электростанции сооружается расходный склад торфа емкостью на 5-суточный расход, но не более 60000 т.

4.1.34. Закрытые склады допускаются для электростанций, расположенных в больших городах в условиях стесненной территории, а также при специальном обосновании в отдаленных северных районах.

4.1.35. Все устройства по перевалке топлива внутри помещений, а также бункера сырого топлива проектируются с герметизацией от пыления и установками по обеспыливанию.

Обеспыливающие установки предусматриваются в узлах пересыпки, дробильных устройствах и в бункерной галерее главного корпуса. Для разгрузочных устройств выбор системы обеспыливания в каждом конкретном случае определяется индивидуально.

При обеспыливании с помощью аспирационных установок воздух, удаляемый ими из помещений топливоподачи, следует возмещать потоком очищенного воздуха, а в холодный период года и подогретого. Неорганизованный приток наружного воздуха в холодный период года допускается в объеме не более однократного воздухообмена в час.

4.1.36. Уборка пыли и осыпки угля в помещениях топливоподачи должна быть механизированной. Все отапливаемые помещения топливоподачи должны проектироваться с учетом уборки пыли и осыпи угля с помощью гидросмыва.

Рекомендуется предусматривать устройства для утилизации шлама.

4.1.37. В целях предотвращения скоплений пыли на строительных конструкциях следует максимально ограничивать количество выступающих элементов, а там, где выступающие части неизбежны, они должны иметь угол наклона не менее 60°.

4.1.38. Галереи ленточных конвейеров, помещения узлов пересыпок, а также подземная часть разгрузочных устройств должны быть оборудованы отоплением для поддержания в них температуры +10°С; помещения дробильных устройств +15°С.

Надземная часть разгрузочных устройств (за исключением здания вагоноопрокидывателя и других устройств с непрерывным движением вагонов), оборудуется отоплением для поддержания в них температуры не ниже +5°С.

Галерея конвейеров, подающих топливо на склад для районов с расчетной температурой минус 20°С и ниже, оборудуются отоплением для поддержания в них температуры не ниже +10°С, в остальных районах они не отапливаются, а конвейеры оборудуются морозостойкой лентой.

Кабины машинистов вагоноопрокидывателей должны выполняться закрытыми с отоплением и вентиляцией.

4.1.39. На топливоподаче для производства ремонтных работ должны предусматриваться соответствующие площадки и помещения.

4.2. Прием, подача и хранение мазута

 

4.2.1. Мазутное хозяйство сооружается для снабжения топочным мазутом (далее мазут) энергетических и водогрейных котлов электростанций, использующих мазут в качестве основного топлива, а также электростанций, для которых основным топливом является газ, а мазут является резервным или аварийным топливом.

Расчетный суточный расход мазута определяется исходя из 20-часовой работы всех энергетических котлов при их номинальной производительности и 24-часовой работы водогрейных котлов при покрытии тепловых нагрузок при средней температуре самого холодного месяца.

4.2.2. Для электростанций, работающих на твердом топливе при его камерном сжигании, сооружается растопочное мазутное хозяйство. В случае установки на таких электростанциях газомазутных пиковых водогрейных котлов их мазутное хозяйство объединяется с растопочным.

Снабжение мазутом пусковой котельной производится соответственно от основного или растопочного мазутного хозяйства.

4.2.3. Для разогрева и слива мазута из цистерн могут применяться как сливные эстакады с разогревом мазута "открытым" паром или горячим мазутом, так и закрытые сливные устройства-тепляки. Выбор типа сливного устройства определяется технико-экономическим расчетом.

Слив мазута из цистерн производится в межрельсовые каналы (лотки). Из них мазут направляется в приемную емкость, перед которой должны предусматриваться грубая фильтр-сетка и гидрозатвор.

4.2.4. Приемно-сливное устройство мазутохозяйства рассчитывается на прием цистерн грузоподъемностью 50, 60 и 120 т. Длина фронта разгрузки основного мазутохозяйства должна приниматься исходя из слива расчетного суточного расхода мазута, времени разогрева и слива одной ставки не более 9 часов и весовой нормы железнодорожного маршрута, но не менее 1/3 длины маршрута. При этом доставка мазута принимается цистернами расчетной грузоподъемностью 60 т с коэффициентом неравномерности подачи 1,2.

Длина фронта разгрузки растопочного мазутохозяйства для электростанций с общей производительностью котлов до 8000 т/ч принимается - 100 м, а при производительности котлов свыше 8000 т/ч - 200 м.

4.2.5. На приемно-сливном устройстве предусматривается подвод пара или горячего мазута к цистернам, на обогрев сливных лотков и к гидрозатвору.

По всей длине фронта разгрузки основного и растопочного мазутохозяйства предусматриваются эстакады на уровне паровых разогревательных устройств цистерн.

По обеим сторонам сливных и отводящих лотков выполняются бетонные отмостки с уклоном в сторону лотков. Уклон лотков принимается однопроцентным.

4.2.6. При подаче мазута на электростанцию по трубопроводам от близрасположенных нефтеперерабатывающих заводов устройства для приема мазута по железной дороге не предусматриваются.

4.2.7. Величина приемной емкости основного мазутохозяйства принимается не менее 20% емкости цистерн, устанавливаемых под разгрузку. Насосы должны обеспечить перекачку мазута, слитого из цистерны, установленных под разгрузку, не более чем за 5 часов. Насосы, откачивающие мазут из приемной емкости, устанавливаются с резервом.

Приемная емкость растопочного мазутохозяйства должна быть не менее 120 ; насосы, откачивающие мазут из нее, устанавливаются без резерва.

4.2.8. Разогрев мазута в резервуарах мазутного хозяйства принимается циркуляционной, при этом разогрев осуществляется, как правило, по отдельному специально выделенному контуру. Допускается применение местных паровых разогревающих устройств.

Схема подачи мазута (одно- или двухступенчатая) в основном и растопочном мазутохозяйствах принимается в зависимости от требуемого давления перед форсунками.

4.2.9. В мазутных хозяйствах электростанций используется пар давлением 0,8-1,3 МПа (8-13 ) с температурой 200-250°С. Конденсат пара должен использоваться в цикле электростанции и подвергаться контролю и очистке от мазута. Конденсат от мазутоподогревателей, спутников и тепляков должен подаваться отдельно от конденсата паропроводов разогрева лотков и емкостей.

4.2.10. Оборудование основного мазутного хозяйства должно обеспечивать непрерывную подачу мазута в котельное отделение при работе всех рабочих котлов с номинальной производительностью.

Вязкость подаваемого в котельную мазута должна быть:

- при применении механических и паромеханических форсунок не более 2,5°УВ, что для мазута марки "100" соответствует температуре примерно 135°С;

- при применении паровых и ротационных форсунок не более 6°УВ.

4.2.11. Для обеспечения циркуляции мазута в магистральных мазутопроводах котельной и в отводах к каждому котлу предусматривается трубопровод рециркуляции мазута из котельной в мазутохозяйство.

4.2.12. В насосной основного мазутохозяйства, кроме расчетного количества рабочего оборудования, должно предусматриваться:

- по одному элементу резервного оборудования - насосы; подогреватели, фильтры тонкой очистки;

- по одному элементу ремонтного оборудования - основные насосы I и II ступени. Количество мазутных насосов в каждой ступени основного мазутного хозяйства должно быть не менее четырех (в том числе по одному резервному и одному ремонтному).

4.2.13. Производительность основных мазутных насосов при выделенном контуре разогрева выбирается учетом дополнительного расхода мазута на рециркуляцию в обратной магистрали при минимально-допустимых скоростях. Производительность насоса циркуляционного разогрева должна обеспечивать подготовку мазута в резервуарах для бесперебойного снабжения котельной.

Для циркуляционного разогрева мазута предусматривается по одному резервному насосу и подогревателю.

ГАРАНТ:

Нумерация пунктов приводится в соответствии с источником

4.3.14. Схема установки подогревателей мазута и фильтров тонкой очистки должна предусматривать работу любого подогревателя фильтра с любым насосом I и II ступени.

4.2.15. В мазутохозяйствах должна предусматриваться выносная (за пределы мазутонасосной) дренажная емкость.

4.2.16. Подача мазута к энергетическим и водогрейным котлам из основного мазутохозяйства должна производиться по двум магистралям, рассчитанным каждая на 75% номинальной производительности с учетом рециркуляции.

4.2.17. Подача мазута к мазутному хозяйству производится по двум магистралям, рассчитанным каждая на 75% расчетного расхода пара.

Устанавливается не менее двух конденсатных насосов, один из них резервный.

4.2.18. На всасывающих и нагнетательных мазутопроводах должна быть установлена запорная арматура на расстоянии 10-50 м от мазутонасосной для отключений в аварийных случаях.

На вводах магистральных мазутопроводов внутри котельного отделения, а также на отводах к каждому котлу должна устанавливаться запорная арматура с дистанционным электрическим и механическим приводами, расположенными в удобных для обслуживания местах.

4.2.19. Для поддержания необходимого давления в магистральных мазутопроводах устанавливаются регулирующие клапаны "до себя" в начале линии рециркуляции из котельной в мазутное хозяйство.

4.2.20. Дистанционное аварийное выключение мазутных насосов должно производиться со щита, расположенного в главном корпусе.

В котельном отделении и в мазутонасосной должна предусматриваться автоматическая сигнализация аварийного понижения давления мазута в магистральных мазутопроводах.

4.2.21. Подача мазута на мазутохозяйство от нефтеперерабатывающего завода должна производиться по одному трубопроводу; в отдельных случаях при обосновании допускается подача мазута по двум трубопроводам, при этом пропускная способность каждого из них принимается равной 50% максимального часового расхода топлива всеми рабочими котлами при их номинальной производительности.

4.2.22. Прокладка всех мазутопроводов выполняется, как правило, наземной.

Все мазутопроводы, прокладываемые на открытом воздухе и в холодных помещениях, должны иметь паровые или другие обогревательные спутники в общей с ними изоляции.

На мазутопроводах должна применяться только стальная арматура.

На мазутопроводах котельных отделений фланцевые соединения и арматура (места вероятных попусков) должны быть заключены в стальные кожухи с отводом пропускаемого мазута в специальные емкости.

4.2.23. На газомазутных электростанциях необходимо предусматривать стенд для тарировки форсунок, расположенный в котельном отделении.

4.2.24. Металлические резервуары мазутного хозяйства должны иметь тепловую изоляцию в районах со среднегодовой температурой +9°С и ниже.

4.2.25. Емкость мазутохранилища (без учета госрезерва) для электростанций, у которых мазут является основным, резервным или аварийным топливом, принимается следующей:

 

Мазутохозяйство

Емкость резервуаров

Основное для электростанций на мазуте

 

- при доставке по железной дороге

На 15-суточный расход

- при подаче по трубопроводам

На 3-суточный расход

Резервное для электростанций на газе

На 10-суточный расход

Аварийное для электростанций на газе

На 5-суточный расход

Для пиковых водогрейных котлов

На 10-суточный расход

 

Для электростанций на газе при обеспечении круглогодичной подачи его от двух независимых источников, мазутохозяйство может при соответствующем обосновании не сооружаться.

4.2.26. Для электростанций, на которых в качестве основного топлива выделен уголь, а для пиковых водогрейных котлов мазут, емкость совмещенного мазутохранилища определяется по расходу на водогрейные котлы с учетом запаса мазута на растопку и подсветку.

Для электростанций на газе при круглогодичной подаче его от одного источника предусматривается аварийное мазутное хозяйство, а при сезонной подаче газа - резервное мазутохозяйство.

4.2.27. В мазутном хозяйстве электростанций необходимо предусматривать устройства для приема, слива, хранения подготовки и дозирования жидких присадок в мазут.

4.2.28. Растопочное мазутное хозяйство выполняется для электростанций на твердом топливе с общей производительностью котлов:

а) более 8000 т/ч - с тремя резервуарами емкостью по 3000 ;

б) от 4000 до 8000 т/ч - с тремя резервуарами емкостью по 2000 ;

в) менее 4000 т/ч - с тремя резервуарами емкостью по 1000 .

4.2.29. Подача мазута в котельное отделение из растопочного мазутохозяйства производится по одному трубопроводу.

Число мазутных насосов в каждой ступени растопочного мазутохозяйства принимается не менее двух, в том числе один резервный.

4.2.30. Пропускная способность мазутопроводов и производительность насосов растопочного мазутного хозяйства выбираются с учетом общего количества и мощности агрегатов (энергоблоков) на электростанции, режима работы электростанции в энергосистеме и особенностей района размещения электростанции.

При этом число одновременно растапливаемых агрегатов не должно превышать:

- на ГРЭС - блоков 4x200 МВт, 3x300 МВт и более с нагрузкой до 30% их номинальной производительности;

- на ТЭЦ двух наибольших котлов с нагрузкой до 30% их номинальной производительности.

4.2.31. Склад растопочного мазутного хозяйства допускается выполнять совмещенным со складом масла и горюче-смазочных материалов.

Для тракторов (бульдозеров) топливного хозяйства пылеугольных электростанций предусматривается склад горюче-смазочных материалов, включающий один подземный резервуар емкостью 75-100 для дизельного топлива и один-два подземных резервуара емкостью по 3-5 для бензина.

4.2.32. Отвод замазученной воды из нижней части любого резервуара основного и растопочного мазутного хозяйства производится в рабочий резервуар, или в приемную емкость, или на очистные сооружения.

4.2.33. Топливные хозяйства электростанций для других видов жидкого топлива (дизельное, газотурбинное, сырая нефть, отбензиненная нефть и др.) должны проектироваться по специальным нормативным документам.

4.3. Газовое хозяйство

 

4.3.1. Газорегуляторный пункт (ГРП) предусматривается на электростанциях, работающих на газе, который применяется в качестве основного и сезонного топлива. Производительность ГРП на электростанциях, где газовое топливо является основным, рассчитывается на максимальный расход газа всеми рабочими котлами, а на электростанциях, сжигающих газ сезонно, - по расходу газа для летнего режима.

ГРП располагаются на территории электростанции в отдельных зданиях или под навесами.

4.3.2. Подвод газа от газораспределительной станции (ГРС) к ГРП производится по одному газопроводу на каждый ГРП, резервный подвод газа не предусматривается.

4.3.3. На газомазутных конденсационных электростанциях мощностью до 1200 МВт и ТЭЦ с расходом пара до 4000 т/ч может сооружаться один ГРП. На электростанциях большей мощности сооружается соответственно два или более ГРП.

Для электростанций на газе при отсутствии мазутного хозяйства сооружается не менее двух ГРП независимо от мощности электростанции.

Число параллельных установок, регулирующих давление газа, в каждом ГРП выбирается с учетом одной резервной.

4.3.4. Прокладка всех газопроводов в пределах ГРП и до котлов выполняется наземной. Подвод газа от каждого ГРП к магистрали котельного отделения и от магистрали к котлам не резервируется и может производиться по одной нитке.

Газовый коллектор, распределяющий газ по котельным агрегатам, прокладывается вне здания котельного отделения.

4.3.5. На газопроводах должна применяться только стальная арматура.

4.3.6. Газовое хозяйство электростанций, сжигающих доменный или коксовый газ, а также газы газогенераторные, сбросно-технологические, природные-влажные и сернистые и др., должно проектироваться по специальным нормативным документам.

4.4. Масляное хозяйство

 

4.4.1. Каждая электростанция оборудуется централизованным масляным хозяйством турбинного и трансформаторного масел, включающих в себя аппаратуру, баки свежего, регенерированного и отработанного масел, насосы для приема и перекачки масла и установки для сушки масел и восстановления цеолита или силикагеля.

Передвижные установки для дегазации трансформаторного масла должны предоставляться энергосистемам на период заливки трансформаторов, оборудованных азотной или пленочной защитой.

4.4.2. В масляном хозяйстве устанавливаются по четыре бака турбинного и трансформаторного масел и два бака машинного масла для мельничных систем. Емкость баков для турбинных и трансформаторных масел должна быть не менее емкости железнодорожной цистерны, т.е. 60 , кроме того, емкость каждого бака должна обеспечивать:

- для турбинного масла - масляную систему одного агрегата с наибольшим объемом масла и доливку масла в размере 45-суточной потребности всех агрегатов;

- для трансформаторного масла - один наиболее крупный трансформатор с 10% запасом; если объем каждого бака для турбинного и трансформаторного масел будет меньше указанных величин, то необходимо установить двойное количество баков;

- для машинного масла - масляные системы четырех мельниц и доливку масла в размере 45-суточной потребности всех агрегатов.

Хранение вспомогательных смазочных средств предусматривается в размере 45-суточной потребности.

4.4.3. Подача турбинного и трансформаторного масел к основным агрегатам и слив их производится раздельно по одинарным трубопроводам, снабженным обогревом в необогреваемой зоне.

4.4.4. Для аварийного слива турбинного масла из агрегатов на электростанции предусматривается специальная емкость, равная емкости системы наибольшего агрегата.

 

5. Котельное отделение

 

5.1. Котлоагрегаты

 

5.1.1. На конденсационных и теплофикационных электростанциях с промежуточным перегревом пара применяются блочные схемы (котел-турбина).

На ТЭЦ без промперегрева пара с преимущественно отопительной нагрузкой применяются, как правило, блочные схемы.

На ТЭЦ без промперегрева пара с преобладающей паровой нагрузкой применяются блочные схемы и при соответствующем обосновании с поперечными связями.

5.1.2. Энергетические котельные агрегаты паропроизводительностью 400 т/ч и выше, а также пиковые котлы теплопроизводительностью 100 Гкал/ч и выше должны выполняться газоплотными; газомазутные энергетические и водогрейные котлоагрегаты указанной мощности выполняются или под наддувом или под разрежением, а пылеугольные котлоагрегаты только под разрежением.

5.1.3. Паропроизводительность котельных агрегатов, устанавливаемых в блоке с турбоагрегатами, выбирается по максимальному пропуску острого пара через турбину с учетом расхода пара на собственные нужды и запаса в размере 3%.

Паропроизводительность и число котельных агрегатов, устанавливаемых на теплофикационных электростанциях с поперечными связями, выбирается по максимальному расходу пара машинным залом с учетом расхода пара на собственные нужды и запаса в размере 3%.

5.1.4. Теплопроизводительность и число пиковых водогрейных и паровых котлов низкого давления выбирается исходя из условия покрытия ими как правило 40-45% максимальной тепловой нагрузки отопления, вентиляция и горячего водоснабжения.

На электростанциях с блочной схемой предусматривается установка резервных водогрейных котлов в количестве, при котором при выходе из работы одного энергетического блока или одного котла дубль-блока, оставшиеся в работе энергетические блоки и все установленные пиковые котлы должны обеспечивать максимально-длительный отпуск пара на производство и отпуск тепла на отопление, вентиляцию и горячее водоснабжение в размере 70% от отпуска тепла на эти цели при расчетной для проектирования систем отопления температуре наружного воздуха.

На электростанциях с поперечными связями установка резервных водогрейных и паровых котлов низкого давления не предусматривается. Для электростанций этого типа в случае выхода из работы одного энергетического котла оставшиеся в работе энергетические котлы и все установленные водогрейные котлы должны обеспечивать максимально-длительный отпуск пара на производство и отпуск тепла на отопление, вентиляцию и горячее водоснабжение в размере 70% от отпуска тепла на эти цели при расчетной для проектирования систем отопления температуре наружного воздуха; при этом для электростанций с поперечными связями, входящих в состав энергосистем, допускается снижение электрической мощности на величину мощности самого крупного турбоагрегата ТЭЦ.

5.1.5. Энергетические и пиковые котлы как правило устанавливаются в безподвальном помещении. Для этих котлов предусматривается сухая очистка поверхностей нагрева (обдувка, дробеочистка и др.).

5.1.6. Для ТЭЦ с докритическим давлением пара, а также для ГРЭС, работающих на морской воде, как правило, применяются барабанные котлы.

5.1.7. Для электростанций на твердом топливе, независимо от вида топлива, как правило, применяются замкнутая индивидуальная система пылеприготовления.

5.1.8. При шаровых барабанных мельницах пылеприготовительная установка выполняется, как правило, по схеме с промежуточными бункерами. На котел паропроизводительностью 400 т/ч и более устанавливается не менее двух мельниц. Для котлов меньшей паропроизводительности, а также для водогрейных котлов мощностью 180 Гкал/ч и ниже принимается установка одной мельницы на котел. При этом во всех случаях осуществляется связь по бункерам пыли с соседними котлами. Производительность мельниц выбирается из расчета обеспечения 110% номинальной паропроизводительности (теплопроизводительности) котла.

5.1.9. При среднеходных мельницах, мельницах-вентиляторах, а также молотковых мельницах пылеприготовительная установка, как правило, выполняется по схеме с прямым вдуванием. Применение пылевых бункеров при этих мельницах допускается при соответствующем обосновании.

Количество мельниц в системах с прямым вдуванием для котлов паропроизводительностью 400 т/ч и более выбирается не менее трех; для котлов меньшей паропроизводительности, а также водогрейных котлов 180 Гкал и ниже выбирается не менее двух мельниц. Производительность этих мельниц выбирается с расчетом, чтобы при остановке одной из них оставшиеся без учета возможности форсировки, обеспечили: при двух установленных мельницах не менее 60%, при 3-х мельницах - не менее 80%, при 4-х мельницах не менее 90%, при 5-и и более мельницах - 100% номинальной производительности котла. При установке этих мельниц в системе пылеприготовления с пылевым бункером коэффициент запаса производительности мельниц выбирается при двух установленных мельницах на котел 1,35, при трех - 1,2, при четырех и более - 1,1.

5.1.10. Взвешивание топлива производится в тракте топливоподачи. Автоматические весы перед мельницами не устанавливаются.

5.1.11. Производительность питателей сырого угля принимается с коэффициентом запаса 1,1 к производительности мельниц.

Производительность питателей пыли выбирается из расчета обеспечения номинальной производительности котла при работе всех питателей с нагрузкой 70-75% их номинальной производительности.

Питатели сырого угля для молотковых мельниц при схемах с прямым вдуванием и питатели для снабжаются электродвигателями с возможностью широкого регулирования числа оборотов (до 1:5).

5.1.12. Полезная емкость бункеров сырого топлива котельной принимается из расчета не менее:

для каменных углей и АШ - 8-часового запаса по АШ;

для торфа - 3-х часового запаса,

Угол наклона стенок бункеров и размеры их выходных отверстий принимаются:

а) для углей с нормальными сыпучими свойствами (угол естественного откоса не более 60°) угол наклона стенок 60°, размеры отверстия не менее 1,1 м во всех направлениях;

б) для углей с ухудшенными сыпучими свойствами (угол естественного откоса больше 60°) угол наклона стенок 65°, размеры отверстия не менее 1,6 м, во всех направлениях;

в) для шлама, промпродукта и других углей, имеющих угол естественного откоса более 70° - угол наклона стенок не менее 70° и размер отверстия не менее 1,8 м во всех направлениях.

Допускается применять меньшие размеры выходных отверстий бункеров в зависимости от конструкции и размеров питателей угля и производительности мельниц при сохранении площади выходных отверстий.

Выходное сечение бункеров сырого угля и течек на питатель принимается не менее 1000 мм в любом направлении.

Внутренние грани углов бункеров закругляются или перекрываются плоскостью.

Бункера сырого угля и торфа котельной снабжаются пневмообрушителями.

5.1.13. Полезная емкость промежуточных бункеров пыли в котельной должна обеспечить не менее 2-2,5 часового запаса номинальной потребности котла, сверх "несрабатываемой" емкости бункера, необходимой для надежной работы пылепитателей.

При установке одной мельницы на котел полезная емкость бункера пыли должна обеспечить 4-часовой запас пыли.

5.1.14. Характеристика дымососов и дутьевых вентиляторов выбирается с учетом запасов против расчетных величин: 10% по производительности и 20% по напору для дымососов и для вентиляторов по напору 15%. Указанные запасы включают также необходимые резервы в характеристиках машин для целей регулирования нагрузки котла.

При номинальной нагрузке котла дымососы должны работать при кпд не ниже 90%, а вентиляторы не ниже 95% максимального значения.

5.1.15. При установке на котел двух дымососов и двух дутьевых вентиляторов производительность каждого из них выбирается по 50%. Для котлов на АШ и тощих углях в случае работы одного дымососа или одного дутьевого вентилятора должна быть обеспечена нагрузка котла не менее 70%.

Для котлов паропроизводительностью 500 т/ч и менее, а также для каждого котла дубль-блока устанавливаются один дымосос и один вентилятор, установка двух дымососов и двух вентиляторов допускается только при соответствующем обосновании.

5.1.16. Для регулирования работы центробежных дымососов и дутьевых вентиляторов у котлов блочных установок применяются направляющие аппараты с поворотными лопатками в сочетании с двухскоростными электродвигателями. Для остальных котлов целесообразность установки двухскоростных двигателей проверяется в каждом конкретном случае.

Для осевых дымососов применяются направляющие аппараты с односкоростными электродвигателями.

5.1.17. Открытая установка дымососов и дутьевых вентиляторов применяется для электростанций, работавших на жидком или газообразном топливе районах с расчетной температурой отопления выше минус 30°С.

Воздуходувки с турбоприводами устанавливаются в закрытых помещениях. Открытая установка вынесенных трубчатых и регенеративных воздухоподогревателей применяется в климатических в районах с расчетной температурой отопления выше минус 30°С.

5.1.18. При сжигании сернистых топлив предусматриваются мероприятия и устройства для защиты поверхностей нагрева котлов и газоходов от коррозии.

При установке на ТЭЦ водогрейных котлов, для которых в качестве основного или резервного выделено топливо с приведенным содержанием серы () более или равным 0,1%, температура сетевой воды на входе в котел должна быть не ниже 110°С.

5.1.19. В котельных отделениях ГРЭС и ТЭЦ предусматривается тупиковый железнодорожный заезд нормальной колеи; длина заезда должна обеспечивать снятие грузов с железнодорожной платформы посредством грузоподъемных механизмов. При соответствующем обосновании, допускается устройство тупикового железнодорожного пути совмещенного с автотранспортным по всей длине котельного отделения. В котельных отделениях предусматривается сквозной проезд автотранспорта. При количестве энергоблоков шесть и более предусматривается один боковой заезд автотранспорта со стороны дымовых труб.

Габариты автопроездов устанавливаются в техпроекте при разработке вопросов механизации монтажных и ремонтных работ и компоновки котельного отделения.

5.1.20. В котельном отделении на нескольких отметках (нулевой, площадке управления) должны предусматриваться ремонтные зоны для транспортировки и размещения при ремонте материалов и оборудования с нагрузками на перекрытие 0,5-1,5 .

5.1.21. Независимо от типа грузоподъемных механизмов для ремонтных работ в котельном отделении должны предусматриваться лифты для эксплуатационного персонала из расчета по одному грузопассажирскому лифту на два блока мощностью 500 МВт и более и по одному на четыре блока меньшей мощности.

Ремонтные лифты одновременно используются и для эксплуатации.

5.1.22. Для уборки пыли в помещениях котельной пылеугольных электростанций предусматривается пневматическая всасывающая система с разводкой трубопроводов, а для уборки полов система гидросмыва.

5.2. Золоулавливание

 

5.2.1. Все котлоагрегаты, сжигающие твердое топливо, оборудуются золоулавливающими установками.

Коэффициент золоулавливания в зависимости от мощности электростанции и приведенной зольности сжигаемого топлива принимается соответственно:

- для конденсационных электростанций мощностью 2400 тыс. кВт и выше и ТЭЦ мощностью 500 тыс. кВт и выше должны применяться высокоэффективные электрофильтры со степенью очистки газов не ниже 99% при приведенной зольности 4% и менее и, 99,5% при приведенной зольности выше 4%;

- для конденсационных электростанций мощностью 1000-2400 тыс. кВт и ТЭЦ мощностью 300-500 тыс. кВт - не ниже 98% и 99% соответственно приведенной зольности;

- для конденсационных электростанций мощностью 500-1000 тыс. кВт и ТЭЦ мощностью 150-300 тыс. кВт не ниже 96% и 98% соответственно приведенной зольности;

- для КЭС и ТЭЦ меньшей мощности коэффициент очистки газов принимается 93% и 96% соответственно приведенной зольности.

5.2.2. Высота дымовых труб выбирается в соответствии с утвержденной методикой расчета рассеивания в атмосфере выбросов и проверяется по допустимой запыленности перед дымососом.

Расчет ведется по расходу топлива при максимальной электрической нагрузке электростанции и тепловой нагрузке при средней температуре наиболее холодного месяца. При летнем режиме, в случае установки пяти турбин и более, расчет ведется с учетом остановки одной из них на ремонт.

5.2.3. В качестве золоуловителей на электростанциях, как правило, применяются:

- для очистки газов со степенью выше 97% - электрофильтры;

- для очистки газов со степенью 95-97% - мокрые золоуловителя типа МС-ВТИ и МВ-УООР ГРЭС. При невозможности применения мокрых аппаратов (из-за свойств золы или для дальнейшего ее использования и др.) устанавливаются электрофильтры со степенью очистки не менее 98%;

- для очистки газов со степенью 93-95% - батарейные циклоны типа БЦУ-М или БЦРН. Применение золоуловителей других типов допускается при соответствующем обосновании.

5.2.4. Как правило, следует применять открытую установку золоуловителей с закрытием во всех климатических зонах нижней бункерной части и верхних сопел орошения мокрых золоуловителей.

В районах с расчетной температурой отопления минус 20°С и ниже мокрые золоуловители устанавливаются в помещении.

5.2.5. Система газоходов перед и после золоуловителей, а также их компоновка, должны обеспечивать равномерную раздачу дымовых газов по аппаратам при минимальном сопротивлении газового тракта.

В газоходах, при необходимости, устанавливаются направляющие лопатки или другие газораспределительные устройства.

5.2.6. Температура и влагосодержание дымовых газов, поступающих в электрофильтры, должны обеспечивать возможность высокоэффективной очистки газов от золы сжигаемого топлива, с учетом ее электрофизических свойств.

Если температура и влагосодержание дымовых газов за парогенератором не обеспечивают благоприятных электрофизических свойств золы, необходимых для эффективной работы электрофильтров, требуемые температура и влагосодержание газов достигаются соответствующими мероприятиями по котлу или устройством специальной установки перед электрофильтром.

5.2.7. Высоковольтные агрегаты питания электрофильтров размещаются в специальном помещении.

5.2.8. Не допускается сброс в бункера электрофильтров воздуха или газов из системы аспирации, дробеочистки и др. Сброс сушильного агента из разомкнутой системы пылеприготовления в дымовые газы перед электрофильтром допускается при условии выполнения требований взрыво- и пожаробезопасности.

5.2.9. Температура дымовых газов за мокрыми золоуловителями при любых режимах работы парогенератора должна быть не менее, чем на 15°С выше точки росы газов по водяным парам.

5.2.10. На газоходах каждого золоуловителя по заданию организации, проектирующей золоуловители, предусматриваются люки и площадки для определения эффективности золоулавливания.

5.2.11. Электрофильтры и батарейные циклоны оборудуются системой сбора и транспорта сухой золы. Под бункерами золоуловителей устанавливаются устройства, исключающие присосы воздуха в бункера. Эти устройства должны обеспечивать нормальную работу систем сухого и мокрого золоудаления при всех режимах встряхивания осадительных электродов.

5.2.12. Сухие золоуловители должны иметь теплоизоляцию и систему обогрева нижней части бункера, обеспечивающий температуру стенки бункеров не менее, чем на 15°С выше точки росы дымовых газов по водяным парам.

5.3. Внутристанционное золошлакоудаление

 

5.3.1. Внутристанционное золошлакоудаление до насосных станций осуществляется раздельным с использованием пневмогидравлических или гидравлических способов.

При наличии на ТЭС сухих золоуловителей принимается внутристанционное пневмогидравлическое золоудаление, при котором зола из-под золоуловителей собирается пневмосистемами в промбункер.

Из промбункера зола подается через каналы гидроудаления в насосную станцию. При наличии потребителей золы она пневматическим способом транспортируется из промбункера на склад сухой золы или выдается непосредственно из промбункеров в транспортные средства потребителя.

При мокрых золоуловителях принимается гидравлическое удаление золы каналами в насосную станцию.

При соответствующем обосновании могут применяться и другие способы внутреннего золошлакоудаления.

5.3.2. Шлаковые и золовые каналы в пределах площадки, включая расположенные в насосной станции, принимаются, как правило раздельными.

Шлаковые каналы при твердом шлакоудалении выполняются с уклоном не менее 1,5% и при жидком шлакоудалении - не менее 1,8%. Золовые каналы выполняются с уклоном не менее 1%.

Каналы, как правило, выполняются железобетонными с облицовкой из камнелитых изделий. По длине каналов устанавливаются побудительные сопла. Каналы должны быть перекрыты легкосъемными конструкциями на уровне пола.

5.3.3. Багерная насосная станция располагается в котельном отделении. В случае невозможности расположения насосной в главном корпусе, при соответствующем обосновании допускается располагать багерную насосную за пределами главного корпуса.

На всасе багерных насосов предусматривается приемная емкость не менее чем на две минуты работы насоса для насосной, расположенной в главном корпусе, и не менее трех минут - для выносной багерной насосной.

5.3.4. К одной багерной насосной подсоединяется не менее 6 котлов паропроизводительностью 320-500 т/ч; не менее 4 котлов по 640-1000 т/ч, не менее 2 котлов по 1650-2650 т/ч.

5.3.5. Насосное оборудование систем золошлакоудаления принимается по возможности крупных типоразмеров. Насосы орошающей, смывной, эжектирующей, уплотняющей воды и шламовые (золовые) насосы устанавливаются с одним резервным агрегатом в каждой группе насосов.

Багерные насосы устанавливаются с одним резервным и одним ремонтным агрегатом в каждой насосной станции.

При опасности образования минеральных отложений в системе в каждой группе насосов (кроме багерных и шламовых) устанавливается по одному дополнительному насосу для возможности проведения очисток.

При необходимости перекачки шлакозоловой пульпы несколькими ступенями багерных и шламовых насосов в одной насосной станции устанавливается 2 ступени насосов.

5.3.6. При РН осветленной воды не допускается смешение ее с технической подпиточной водой.

5.3.7. Шлакодробилки, как правило, устанавливаются под котлами. Установка шлакодробилок в багерной насосной предусматривается при необходимости получения более мелких фракций шлака по условиям применения на золошлакоотвале рассредоточенного намыва.

5.3.8. При проектировании электростанций, необходимо предусматривать возможность сбора и выдачи золошлаков потребителям. Следует выявлять потребителей золошлаков и с учетом их заявок проектировать устройства для выдачи золы и шлака.

5.3.9. Для сбора сухой золы в промбункер и транспорта ее на склад принимаются пневмосистемы с аэрожелобами и пневмоподъемниками, вакуумные системы, низконапорные трубные системы. При значительной приведенной длине транспорта до склада (до 1000 м) применяются напорные пневмосистемы с пневмовинтовыми или камерными насосами.

Склад сухой золы для выдачи ее потребителям принимается емкостью ни более двухсуточного запаса при среднегодовой выдаче золы.

5.3.10. При необходимости выдачи шлака потребителям предусматриваются гидравлические системы с трехсекционным шлакоотстойником, системы намыва шлака в бурты или в расходные отвалы.

Шлакоотстойник выполняется железобетонным, с дренируемым основанием. Емкость одной секции отстойника принимается не менее суточного запаса и отстоя шлака.

5.3.11. Для промывки пульпопроводов, подачи воды на уплотнения багерных и шламовых насосов и регулировки уровня в приемной емкости перед багерными насосами используется оборотная ответвленная вода.

5.3.12. При опасности образования минеральных отложений в пульпопроводах и трубопроводах осветленной воды следует предусматривать установку для очистки трубопроводов гидрозолоудаления смесью воды и дымовых газов или другие способы очистки трубопроводов.

5.3.13. Отвод сточных вод от гидросмыва из помещений топливоподачи предусматривается в систему гидрозолоудаления - в багерную насосную станцию или в самотечные лотки.

 

6. Турбинное отделение

 

6.1. Единичная мощность турбоагрегатов конденсационных блоков на электростанциях, входящих в объединенные энергосистемы, выбирается возможно более крупной для данного вида топлива с учетом перспективного развития объединенной системы, а на электростанциях, входящих в изолированные системы, - на основе технико-экономического анализа с учетом величины аварийного резерва и затрат на сетевое строительство, а также перспективного развития.

6.2. Единичная мощность и тип теплофикационных агрегатов на ТЭЦ, входящих в энергосистемы, выбираются возможно более крупными с учетом характера и перспективной величины тепловых нагрузок района.

Турбины с производственным отбором пара выбираются с учетом длительного использования этого отбора в течение года.

Турбины с противодавлением выбирается для покрытия базовой части производственной паровой и отопительной нагрузок и не устанавливаются первым агрегатом ТЭЦ.

В схеме трубопроводов ТЭЦ предусматривается (в случае необходимости) возможность осуществления мероприятий по максимальной загрузке противодавленческих турбин за счет сокращения производственных и отопительных отборов у конденсационных турбин.

Для изолированных электростанций выбор агрегатов производится таким образом, чтобы при выходе одного из них оставшиеся обеспечили покрытие электрических нагрузок с учетом допускаемого потребителями регулирования.

6.3. При установке турбин с двойным значением номинальной мощности (например, Т-250/300-240), установленная электрическая мощность ТЭЦ определяется по максимальному значению мощности турбин.

Рабочая мощность таких агрегатов и выработка ими электроэнергии определяется в проекте ТЭЦ в соответствии с графиком тепловой нагрузки. В зимнем режиме использование максимальной электрической мощности агрегата в проекте не учитывается, так как оно допускается только в аварийных ситуациях.

6.4. Тепловая схема блочных электростанций должна обеспечивать возможность пуска блока на скользящих параметрах и из любого температурного состояния котлоагрегата, трубопроводов и турбины с минимальными потерями тепла и конденсата, а также деаэрацию питательной воды в процессе пуска.

Тепловая схема и оборудование блоков с закритическим давлением пара должны обеспечивать возможность работы блока на скользящем давлении.

6.5. Для пуска первых двух блоков на электростанциях предусматриваются пусковые котельные или другие устройства, которые должны обеспечивать паром отопление зданий, деаэрацию питательной воды, разогрев мазута, приводные турбины вспомогательных механизмов при отсутствии пускорезервных агрегатов с электроприводами и другие предпусковые нужды.

Для теплоэлектроцентралей, а также неблочных конденсационных электростанций рекомендуется использовать в качестве пусковой временную котельную, сооружаемую для обслуживания строительно-монтажных работ.

6.6. Загрязненные дренажи должны подвергаться очистке для их повторного использования в цикле.

6.7. Схемы трубопроводов должны предусматривать возможность проведения паровых продувок, предпусковых и эксплуатационных химических промывок, а также консервацию оборудования.

6.8. Производительность и число регенеративных подогревателей для основного конденсата определяются числом имеющихся у турбин для этих целей отборов пара. При этом каждому отбору пара должен соответствовать один корпус подогревателя (за исключением деаэраторов). Для блоков мощностью 800 МВт и более подогреватели высокого давления допускается выполнять в двух корпусах.

Регенеративные подогреватели низкого давления, как правило, принимаются смешивающего типа. Число их определяется технико-экономическим обоснованием.

6.9. Количество и производительность питательных насосов должны соответствовать нижеследующим нормам.

Для электростанций с блочными схемами:

- производительность питательных насосов определяется максимальными расходами питательной воды на питание котлов с запасом не менее 5%;

- на блоках с давлением пара 13 МПа (130 ) на каждый блок устанавливается, как правило, один питательный насос производительностью 100%, на складе предусматривается один резервный насос для всей электростанции. Питательные насосы принимаются с электроприводами и гидромуфтами; при соответствующем обосновании допускается применение турбопривода;

- на блоках с закритическим давлением пара устанавливаются питательные насосы с турбоприводами, один производительностью 100% или два по 50%; при установке на блок одного турбонасоса производительностью 100% дополнительно устанавливается насос с электроприводом и гидромуфтой производительностью 30-50%. При установке на блок двух турбонасосов производительностью по 50% насос с электроприводом не устанавливается, к турбонасосам предусматривается резервный подвод пара.

Для электростанций с общими питательными трубопроводами:

- на электростанциях, включенных в энергосистемы, суммарная производительность всех питательных насосов должна быть такой, чтобы в случае останова любого из них оставшиеся должны обеспечивать номинальную производительность всех установленных котлов.

Резервный питательный насос на ТЭЦ не устанавливается, а предусматривается на складе, один питательный насос для всей электростанции (на каждый тип насоса).

- на электростанциях, не включенных в энергосистемы, суммарная производительность питательных насосов должна обеспечивать работу всех установленных котлов при номинальной паропроизводительности, кроме того, должно устанавливаться не менее двух резервных питательных насосов с паровым приводом, или электроприводом, имеющим независимое питание;

- допускается применение турбонасосов в качестве основных, постоянно работающих питательных насосов, с установкой по крайней мере одного питательного насоса с электроприводом для пуска электростанции с нуля.

6.10. В турбинном отделении устанавливаются мостовые электрические краны:

Грузоподъемность мостовых кранов турбинного отделения принимается из расчета подъема самой тяжелой детали турбоагрегата, кроме статора генератора, для которого предусматривается бескрановый монтаж. Грузоподъемность одного крана, как правило, принимается из расчета подъема и транспортировки самой тяжелой детали при ремонте.

В турбинном отделении устанавливается два крана независимо от числа турбоагрегатов. Для турбоагрегатов мощностью 250/300 МВт и выше допускается установка трех кранов при числе турбогенераторов семь и более, при этом третий кран должен применяться пониженной грузоподъемности.

Вспомогательное оборудование, расположенное в турбинном отделении, компонуется с учетом обслуживания его краном.

При расположении вспомогательного оборудования, деаэраторов, арматуры трубопроводов и др. вне зоны действия кранов для его обслуживания и ремонта, применяются соответствующие грузоподъемные устройства с возможностью погрузки на транспортные средства основных грузопотоков.

В турбинном отделении со стороны постоянного и временного торцов предусматриваются монтажно-ремонтные площадки со сквозным проездом автотранспорта. Через каждые четыре турбины предусматривается промежуточная ремонтная площадка. В тех случаях, когда по условиям компоновки котлоагрегатов между турбоагрегатами образуются свободные площадки, которые могут быть использованы для ремонта, промежуточные ремонтные площадки через четыре турбоагрегата не предусматриваются.

В турбинном отделении электростанции с временного торца предусматривается железнодорожный въезд.

6.11. Суммарная производительность деаэраторов питательной воды выбирается по максимальному ее расходу.

На каждый блок устанавливается по возможности один деаэратор. На неблочных электростанциях обеспечивается возможность ремонта любого деаэратора при работе остальных.

Сопротивление водяного тракта от деаэратора до насоса питательных или бустерных насосов не должно превышать 10 кПа (1000 мм.в.ст.).

Суммарный запас питательной воды в баках основных деаэраторов должен обеспечивать работу блочных электростанций в течение не менее 3,5 минут и для неблочных электростанций - 7 минут.

На конденсационных электростанциях, а также на ТЭС с малыми добавками воды в цикл в качестве первой ступени деаэрации питательной воды, как правило, используются конденсаторы турбин. На ТЭЦ с большими добавками воды в цикл в качестве первой ступени деаэрации, как правило, применяются вакуумные деаэраторы.

Деаэрации подлежат:

а) обессоленная вода для восполнения потерь в цикле;

б) вода из дренажных баков, куда должны направляться все потоки, имеющие открытый слив;

в) слив конденсата от привода систем регулирования турбин, охлаждения электродвигателей, привода арматуры БРОУ, РОУ и т.д.

К основным деаэраторам предусматривается подвод резервного пара для удержания в них давления при сбросах нагрузки и деаэрации воды при пусках. На линиях подвода резервного пара устанавливается автоматически действующая арматура.

Тепло выпара деаэраторов питательной воды используется в тепловой схеме электростанции.

В проекте должны быть приняты меры по предотвращению присосов кислорода в конденсатных насосах и конденсатном тракте путем применения рациональных схем вакуумной части конденсатного тракта, а также соответствующего типа арматуры и фланцевых соединений.

6.12. На электростанциях создается дополнительный запас обессоленной воды в баках без давления, устанавливаемых вне зданий. На блочных электростанциях емкость баков принимается на 30 минут работы электростанции с максимальной нагрузкой, но не менее 4000 . На стальных электростанциях на 40 минут, но не менее 2000 . Указанные емкости включают емкость для сбора загрязненного конденсата.

Баки должны иметь антикоррозионную и тепловую защиту и систему контроля за состоянием металла.

Производительность и количество насосов, откачивающих воду из указанных баков, обеспечивает одновременно нормальную подпитку цикла и 30% расхода питательной воды в наибольшей турбоустановке. Насосы устанавливаются в количестве не менее двух без резерва.

Емкость баков и производительность насосов должны обеспечивать совмещенный пуск блоков:

- для ГРЭС трех блоков по 200 МВт и двух блоков по 300 МВт и более;

- для ТЭЦ не более 2 котлов наибольшей паропроизводительности.

6.13. На каждый блок предусматривается установка одного дренажного бака емкостью 15 с двумя насосами и регулятором уровня. На неблочных электростанциях допускается установка одного такого бака на две-три турбины. Откачка воды из дренажных баков должна производиться в баки запаса обессоленной воды или деаэратор.

6.14. На электростанциях устанавливается, как правило, на каждые четыре-шесть котлов один общий бак слива емкостью 40-60 .

К каждому баку слива из котлов устанавливается по одному насосу, производительность которого должна обеспечить откачку сливаемой воды в течение 1-1,5 часа в баки запаса конденсата.

ГАРАНТ:

Нумерация пунктов приводится в соответствии с источником

6.18. На ТЭЦ подогрев сырой воды, поступающей на химводоочистку, для подпитки сетей с открытым водозабором осуществляется, как правило, в выделенных пунктах конденсаторов теплофикационных труб.

6.16. Редукционно-охладительные установки, предназначенные для резервирования регулируемых отборов пара для производства, устанавливаются в одной для данных параметров пара производительности равной максимальному отбору наиболее крупной турбины. Резервные РОУ на давление отопительных отборов не устанавливаются.

При выходе из работы одной из турбин остальные турбины, пиковые котлы в РОУ для пиковых сетевых подогревателей должны обеспечить отпуск тепла, отопление, вентиляцию и горячее водоснабжение в размере 70% от отпуска тепла на эти цели при расчетной для проектирования систем отопления температуре наружного воздуха.

Для обеспечения необходимого напора на всасе сетевого насоса II ступени рабочее давление в горизонтальных встроенных бойлерах теплофикационных турбин принимается не менее 0,8 МПа (8 ).

6.17. Для неблочных электростанций главные паропроводы выполняются по схеме с переключательной перемычкой, как правило, однониточной, секционированной задвижками.

Диаметр перемычки выбирается таким образом, чтобы при пропуске по ней пара к любой турбине от соседнего котла давление перед турбиной не падало ниже оговоренного ГОСТ минимального предела.

Отключение котлов, турбин, турбонасосов и другого оборудования от работающей системы производится двумя последовательно установленными запорными органами.

Для электростанций с моноблоками при однобайпасной схеме запорные задвижки в системе промперегрева не устанавливаются и отключение промежуточных перегревателей для опрессовки производится заглушками или арматурой турбины.

Для неблочных электростанций всасывающая магистраль, напорная магистраль питающих насосов перед подогревателями высокого давления и напорная питательная магистраль в котельной выполняются одинарными с секционирующими задвижками.

6.19. При проектировании трубопроводов, включая трубопроводы малых диаметров, их прокладка производятся с учетом кабельной раскладки. Трассы основных потоков кабелей должны быть свободными от трубопроводов и другого оборудования.

Не допускается применение чугунной арматуры:

- на газопроводах горючего газа, мазутопроводах с условным проходом 50 мм и более;

- на трубопроводах воды и пара с условным проходом 80 мм и более и температурой теплоносителя 120°С;

- на маслопроводах;

- на трубопроводах от деаэраторов к питательному насосу;

- на трубопроводах всех диаметров с температурой тепловодоносителя 120°С при арматуре, имеющей электрические приводы.

При разработке проектов выхлопных устройств от предохранительных клапанов прорабатываются специальные устройства для снижения шума.

6.20. Поверхность теплосилового оборудования с температурой теплоносителя выше 50°С внутри помещений и выше 60°С вне помещений должны иметь тепловую изоляцию. При температуре наружного воздуха плюс 25°С температура на поверхности изоляции должна быть в пределах 45-48°С в помещении и 60°С на открытом воздухе. Конструкция тепловой изоляции фланцевых соединений, арматура трубопроводов и участков, подвергающихся периодическому контролю, должна быть съемной. Тепловая изоляция основных трубопроводов, а также трубопроводов диаметром 100 м и более при теплоносителе выше 100°С, участков поверхностей, находящихся вблизи маслопроводов, мазутопроводов и против их фланцевых соединений, вблизи кабельных линий, а также изоляции циклонов, сепараторов, баков запасного конденсата и деаэраторов, установленных снаружи, должна иметь металлические и другие водонепроницаемые негорючие покрытия.

6.21. Для маслоохладителей турбоагрегатов применяется система охлаждения масла, исключающая попадание масла в природные источники водоснабжения (реки, водоемы и др.).

7. Водоподготовка и химический контроль

 

7.1. Выбор способа обработки добавочной воды котлов тепловых электростанций производится в зависимости от качества исходной воды.

На конденсационных электростанциях и отопительных ТЭЦ.

При среднегодовом суммарном содержании анионов сильных кислот () в исходной воде до 5,0 мг-экв/л, а также при отсутствии специфических органических соединений, которые не могут в должной мере удаляться при коагуляции и известковании, - химически обессоленной водой, независимо от условий сброса регенерационных вод.

Применение испарителей взамен обессоливания допускается при технико-экономическом обосновании целесообразности такого решения, а также при наличии в исходной воде упомянутых органических загрязнений.

При среднегодовом содержании анионов сильных кислот в исходной воде более 5,0 мг-экв/л - химически обессоленной водой, получаемой путем сочетания химобессоливания с мембранными методами обработки, или дистиллатом испарителей. Выбор метода производится на основе технико-экономического анализа.

При невозможности сброса нейтрализованных стоков с водоочистительной установки последняя дополняется устройством для обработки стоков в испарителях или в аппаратах использующих мембранные методы. Производительность обессоливающей установки определяется с учетом возвращаемого дистиллата.

На ТЭЦ с отдачей пара на производство, восполнение потерь может производиться химически обессоленной водой (при необходимости в сочетании с мембранным и другими методами) или дистиллатом испарителей в зависимости от качества исходной воды и при технико-экономическом обосновании; возможен вариант с использованием паропреобразователей.

На электростанциях при восполнении потерь питательной воды дистиллатом испарителей, последние, независимо от типа применяемых котлов, дополняются общестанционной испарительной или обессоленной установкой.

С первым блоком ГРЭС включается водоподготовительная установка на производительность, обеспечивающую восполнение потерь конденсата первой очереди электростанции.

С первым котлоагрегатом ТЭЦ включается водоподготовка на производительность, определяемую конкретными условиями развития обслуживаемых теплосетей и промпредприятий.

7.2. На электростанциях для приготовления исходной добавочной воды котлов следует применять при соответствующем технико-экономическом обосновании;

- воды поверхностных источников;

- воды артезианских скважин не питьевого качества, если по основным показателям они не хуже вод открытых водоемов;

- воды прямоточных и циркуляционных систем охлаждения конденсаторов турбин;

- очищенные промышленные сточные воды, очищенные сточные воды электростанций, хозяйственно-бытовые сточные воды после их биологической очистки и проверки возможности их использования.

7.3. Расчетную производительность обессоливающей или испарительной установки для конденсационных электростанций и отопительных ТЭЦ следует принимать равной 2% паропроизводительности устанавливаемых котлов. Производительность общестанционной испарительной установки или величина дополнительной производительности обессоливающей установки (сверх 2%) принимаются:

- для электростанций с прямоточными котлами:

 

Мощность блоков, МВт

Дополнительная производительность установки, т/ч

200, 250, 300

25

500

50

800

75

 

- для электростанций с барабанными котлами - 25 т/ч.

На газомазутных электростанциях, при использовании пара на разогрев мазута без возврата конденсата, преимущественно предусматриваются испарители (паропреобразователи), устанавливаемые без резерва. Для покрытия потерь химобессоленной водой производительность химобессоливающей установки увеличивается на 0,15 т на каждую тонну сжигаемого мазута.

Расчетная производительность химической водоподготовки для питания испарителей принимается равной максимальной полезной производительности всех установленных испарителей с учетом их продувки и за вычетом используемых для питания испарителей других вод (вод продувки барабанных котлов, загрязненные конденсаты из дренажных баков, загрязненные производственные конденсаты и т.д.).

7.4. Устройство по обработке конденсатов, возвращаемых с производства, должно обеспечивать соблюдение норм питательной воды котлов в соответствии с ПТЭ.

Необходимость сооружения конденсатоочисток в каждом случае обосновывается технико-экономическими расчетами в сопоставлении с установкой испарителей или паропреобразователей, питаемых возвращаемым конденсатом.

Возвращаемый на конденсатоочистку ТЭЦ производственный конденсат должен отвечать следующим требованиям не более:

 

жесткость общая

50 мкг-экв/л

содержание железа

100 мкг/л

содержание меди

20 -"-

содержание цинка

20 -"-

содержание никеля

20 -"-

содержанием кремнекислоты

150 мкг/л

содержание нефтепродуктов (типа масел и мазута)

0,5 мг/л

сухой остаток за вычетом окислов металлов (Ге, Cu, Zn, Ni)

1 мг/л

хроматная окисляемость по кислороду

20 мг/л

 

Если предприятие не может обеспечить качество конденсата, обусловленное этими величинами или если конденсат содержит или может содержать вещества, не вошедшие в указанный перечень, то следует применять испарители.

Те потоки конденсата, которые могут быть загрязнены соединениями, содержащими органически связанные серу, селен, мышьяк, фосфор, азот и другие элементы, образующие при термолизе минеральные кислоты используются только для питания испарителей или паропреобразователей если их полная кислотность в результате 100% термолиза будет выше 200 мкг-экв/л. При более низких значениях кислотности конденсаты могут направляться на конденсатоочистку.

Для снижения интенсивности коррозии конденсатопроводов предприятия, возвращающие конденсат, должны обеспечивать значение рН конденсата в пределах 8,5-9,5. В тех случаях, когда производственный конденсат имеет рН ниже 8,5 значение этой величины приводится потребителем к указанным пределам дозированием в конденсат аммиака или едкого натра. Допускается введение в конденсат или пар, направляемый на производство, веществ, ослабляющих коррозию (амины, этилен и т.п.).

Потребитель пара должен обеспечивать непрерывный и равномерный возврат конденсата; насосы, подающие конденсат, должны обеспечивать течение жидкости по трубопроводам полным сечением.

Для приема производственного конденсата устанавливаются два бака каждый на двухчасовой возврат конденсата.

7.5. Производительность водоподготовительной установки для ТЭЦ с отдачей пара на производство рассчитывается исходя из покрытия внутристанционных потерь конденсата в размере 2% установленной паропроизводительности котельной, покрытия потерь конденсата на производстве с 50%-ным запасом на невозврат конденсата и покрытия потерь с продувкой котлов и испарителей, а для мазутных ТЭС с учетом потерь конденсата в мазутном хозяйстве.

7.6. При проектировании установок для очистки добавочной воды котлов, тепловых сетей, питательной воды испарителей, очистки производственных конденсатов предусматривается максимальная блокировка их с очистными сооружениями, а также со складскими помещениями. Должна предусматриваться возможность дальнейшего расширения установок водоподготовки с учетом подвоза реагентов к складу без промежуточной перегрузки на территории электростанции. При размещении вне здания осветителей, промежуточных баков, декарбонизаторов, применяется обогрев и тепловая изоляция. Для обогрева баков, как правило, используется обратная вода теплосети. Целесообразность расположения указанного оборудования вне здания определяется технико-экономическими расчетами. При установке любого оборудования вне здания арматура для управления этим оборудованием размещается в закрытом помещении.

На всех водоочистках, предусматривается механизация работ по ремонту оборудования, арматуры и трубопроводов. Для проведения ремонтных работ предусматривается помещение площадью не менее 50 с оборудованием для восстановления химических покрытий.

7.7. Трубопроводы воды и растворов реагентов диаметром 100 мм и менее прокладываются к осветлителю в пределах здания и теплых переходов. При этом должны быть соблюдены необходимые уклоны реагентных трубопроводов.

Все трубопроводы, располагаемые вне здания, должны быть утеплены, чтобы предохранить реагенты от замерзания и кристаллизации. В случае размещения трубопроводов в каналах предусматриваются съемные плиты и люки для ревизии и ремонта.

7.8. Для электростанций с барабанными котлами в зависимости от параметров пара, способа регулирования температуры перегретого пара и качества холодной воды применяются при соответствующем технико-экономическом обосновании различные схемы одно- или двухступенчатого химического обессоливания при необходимости совмещаемые с мембранными методами. На электростанциях с прямоточными котлами применяется трехступенчатое обессоливание добавочной воды. Третьей ступенью обессоливания добавочной воды, являются фильтры смешанного действия установки очистки турбинного конденсата.

7.9. Выбор ионитов (катионитов и анионитов) производится в зависимости от качества исходной воды и схемы обессоливания.

При питании обессоливающей установки водой поверхностного источника предусматривается предварительная ее очистка в осветлителях и механических фильтрах.

Для электростанций с барабанными котлами необходимость известкования воды перед обессоливанием решается с учетом качества исходной воды и вопросов, связанных с нейтрализацией кислых сбросных вод. Для электростанций с прямоточными котлами преимущественно применяется известкование.

7.10. Для подготовки подпиточной воды закрытых систем теплоснабжения могут применяться, как правило, вода поверхностных водоисточников и очищенные сбросные воды.

Для очистки подпиточной воды теплосетей с закрытой системой горячего водоснабжения могут применяться следующие схемы:

а) при наличии на ТЭЦ водогрейных котлов:

- известкование с коагуляцией или без нее с последующим катионированием; при наличии ограничений по сбросам минерализованных стоков рассматриваются схемы обработки воды содоизвестковым методом;

- известкование или в отдельных случаях содоизвесткование для вод с высокой карбонатной и некарбонатной жесткостью;

б) при подогреве сетевой воды только в основных и пиковых сетевых подогревателях:

- известкование с коагуляцией или без нее. Для подпитки открытых систем теплоснабжения должна применяться вода, удовлетворяющая по своим качествам ГОСТ на питьевую воду.

Для очистки подпиточной воды теплосетей с открытой системой горячего водоснабжения при наличии на ТЭЦ водогрейных котлов могут применяться следующие схемы:

- Н-катионирование с голодной регенерацией для вод с ;

- подкисление серной или соляной кислотой для вод мг-экв/л;

- подкисление сырой воды серной или соляной кислотой с полным или частичным натрий-катионированием;

- известкование (при необходимости с коагуляцией) или содоизвесткование с подкислением при наличии ограничений по сбросу минерализованных стоков и невозможности ограничиться одним подкислением.

Выбор той или иной схемы водоподготовки, в том числе и подкисление, должны производиться, исходя на требования растворимости сульфата кальция () при максимальной температуре воды.

7.11. При проектировании ионитной части водоочистительных установок разного назначения их расчет производится по полным зимним анализам исходной воды (декабрь, январь, февраль) за последние 5 лет с учетом прогнозных данных. Осветлители и реагентное хозяйство для предварительной очистки выбираются по наименее благоприятному качеству воды для проведения коагуляции и известкования. Технико-экономические подсчеты для оценки вариантов обработки добавочной воды котлов производятся исходя из среднегодовых показателей качества исходной воды.

7.12. Система подачи воды в осветлители (каждого потока, если их несколько) должна исключать подсос воздуха подающими насосами и самопроизвольные колебания расхода воды. Увеличение подачи, при необходимости регулирования производительности осветлителей, должно быть плавным. Система должна обеспечивать соблюдение установленного соотношения составляющих потоков и возможность его изменения в процессе эксплуатации.

7.13. В предочистках, работающих по методу осаждения, устанавливается не менее двух осветлителей. Колебания температуры воды, поступающей в осветлитель, допускается в размере °С. Суммарная производительность осветлителей, трубопроводов, перекачивающих насосов и декарбонизаторов выбирается с запасом 10% против расчетной потребности в осветленной воде.

Емкость баков осветленной воды должна учитывать, кроме часового запаса, возможность промывки одного механического фильтра.

7.14. На водоочистках с осветлителями количество механических фильтров выбирается из расчета скорости фильтрования 10, а без осветлителей - 5 м/ч. Предусматривается один фильтр для перегрузки фильтрующего материала (он же является резервным).

7.15. Промывка однокамерных и многокамерных механических фильтров предусматривается, как правило, осветленной водой в течение 20 мин. при интенсивности не менее 12 .

Для повторного использования промывочных вод механических фильтров устанавливается специальный бак и насос для равномерной подачи этой воды (вместе с осадком) в течение суток в линию исходной воды перед осветлителями (при известковании в нижнюю часть осветлителя).

7.16. Дозирование на водоочистках растворов и суспензий реагентов осуществляется с помощью двух насосов-дозаторов (рабочий и резервный) для подачи каждого реагента в каждую точку ввода.

Рекомендуется индивидуальная импульсная система управления электродвигателями дозаторов.

7.17. Расходные емкости растворов и суспензий реагентов принимается не менее двух на всю водоочистку для каждого реагента, причем общая расходная емкость для каждого реагента принимается в размере 12-24 часового его расхода. Принятые устройства должны обеспечивать заданную крепость приготавливаемых рабочих растворов и суспензий реагентов, а также сохранение ее значения при срабатывании расходных емкостей между зарядками.

ГАРАНТ:

Нумерация пунктов приводится в соответствии с источником

7.17 Для обеспечения минимальных удельных расходов реагентов (кислоты и щелочи) на регенерацию ионитов при требуемой глубине обессоливания и обескремнивания добавочной воды котлов применяются:

- противоточное Н-катионирование в Н-катионитных фильтрах первой ступени при использовании в них сульфоугля или КУ-2 (при соотношении А меньшим или равном 0,15);

- ступенчато-противоточное Н-катионирование воды;

- повторное использование кислых регенерационных растворов Н-катионитных фильтров второй ступени для регенерации Н-катионитных фильтров первой ступени;

- при наличии на водоочистке наряду со схемой химического обессоливания, схемы частичного Н-катионирования воды (например, для подпитки закрытой теплосети) подача кислых регенерационных вод, от Н-фильтров обессоливающей установки к Н-фильтрам, обслуживающим нужды теплосети, которые эксплуатируются в режиме "голодной" регенерации;

- ступенчато-противоточное анионирование воды с применением сильноосновного анионита второго типа на первой стадии анионирования и анионита первого типа на второй стадии при одновременной (варкой) регенерации;

- повторное использование щелочного регенерационного раствора путем одновременной регенерации пары фильтров (второй и первой ступени) и при обязательном наличии бака для сбора щелочных вод от фильтров с сильноосновным анионитом и насоса для прокачивания этих вод через анионитные фильтры первой ступени;

- подача щелочных и кислых регенерационных отмывочных вод от ионитных фильтров, конденсатоочистки для регенерации ионитных фильтров установка, обессоливающей добавочную воду котлов (на тех электростанциях, где это возможно по условиям компоновки оборудования);

- ионитные фильтры непрерывного действия;

- блочное включение ионитных фильтров (цепочки), когда это экономически обосновано.

7.18. При проектировании химических водоподготовительных установок необходимо принимать минимальное количество оборудования за счет высокой его единичной производительности.

7.19. При производительности химводоочистки свыше 400 предусматривается разбивка механических и ионитных фильтров (при параллельном их включении) на блоки, производительностью от 200 до 500 каждого блока. Количество цепочек блочной ионитной установки должно выбираться из условий обеспечения номинальной (расчетной) производительности водоочистки по обессоленной воде при принятом для расчета качества исходной воды и при выходе на ремонт одной цепочки. При этих условиях рабочий цикл каждой цепочки должен быть не менее 10 час и не более 24 час. При этом для гидроперегрузки ионитов предусматриваются два пустых фильтра.

При параллельной схеме включения размеры и количество ионитных фильтров первой ступени выбираются такими, чтобы при расчетном качестве исходной воды и при выводе в ремонт одного из одноименных фильтров, расчетное количество регенераций каждого фильтра было, как правило, не более трех и не менее одной в сутки в зависимости от степени автоматизации водоочистки.

При выборе числа и размеров ионитных фильтров на установках для очистки добавочной воды котлов, принимаются:

- высота слоя загрузки анионитов, сильно- и слабокислотных катионитов не менее 0,8 м; сульфоугля - не менее 1,0 м;

- расчетная скорость фильтрования воды в катионитных фильтрах второй ступени, а также в ФСД с внутренней регенерацией 40-50 м/ч, в анионитных фильтрах с анионитом АН-31 15-20 м/ч, а во всех остальных ионитных фильтрах 20-30 м/ч.

В целях уменьшения капитальных затрат в обессоливающей установке допускается применение ионитных фильтров разных типоразмеров. При этом в каждой группе следует укрупнять фильтры.

Фильтры гидроперегрузки катионита и анионита обеспечиваются подводом растворов кислоты, сохи, щелочи и сжатого воздуха.

При проектировании на электростанции водоочисток разного назначения (добавочная вода котлов, питательная вода испарителей, добавочная вода теплосетей без непосредственного водозабора и т.д.) предусматриваются перемычки между отдельными группами одноименного оборудования, позволяющие, в случае необходимости, использовать их в схеме водоочистки того или иного назначения.

7.20. На электростанциях с прямоточными котлами любых параметров пара и производительности предусматривается обезжелезивание и обессоливание конденсата турбин. У каждой турбины предусматривается установка для очистки 100% конденсата, выходящего из конденсатора (или конденсаторов) турбин.

7.21. На электростанциях с барабанными котлами предусматривается обессоливание всего турбинного конденсата при охлаждении конденсаторов водой с общим солесодержанием более 5000 мг/л. В остальных случаях обезжелезивание или обезжелезивание с обессоливанием всей питательной воды допускается при соответствующем технико-экономическом обосновании.

7.22. Для обессоливания турбинных конденсатов применяются, как правило, ФСД с выносной регенерацией ионитов при расчетной скорости фильтрования 100 м/ч (при одном фильтре выведенном на регенерацию).

В целях уменьшения расхода конденсата на собственные нужды конденсатоочисток разного назначения предусматриваются устройства (баки, коммуникации, механический фильтр, насосы для рециркуляции и т.д.), необходимые для повторного использования конденсата расходуемого на выполнение отдельных технических операций в процессе гидроперегрузки, разделения и отмывки ионитов.

7.23. На электростанциях с прямоточными котлами применяется обезжелезивание и обессоливание дистиллата испарителей.

7.24. В тех случаях, когда сооружаются вспомогательные котельные, конденсат пара от них, используемый на питание прямоточных котлов электростанций, подвергается обезжелезиванию и обессоливанию.

7.25. Для электростанций с прямоточными, а также с барабанными котлами, работающими в режиме частых пусков и остановов, предусматривается обезжелезивание и обессоливание всех общестанционных загрязненных конденсатов на автономной конденсатоочистке. Вопрос о способе охлаждения этих конденсатов решается при проектировании конкретных станций. Автономная конденсатоочистка для электростанций с прямоточными котлами рассчитывается на многократную циркуляцию через нее загрязненных конденсатов с расходом 150 для блоков мощностью до 500 МВт и 300 - для блоков большей мощности. Для обессоливания конденсатов применяются ФСД с внутренней регенерацией при расчетной скорости фильтрования 50 м/ч.

Для электростанций с барабанными котлами производительность и расход циркулирующего конденсата для автономной конденсатоочистки определяется расчетом.

7.26. Для очистки конденсатов от продуктов коррозии, с учетом температуры конденсата могут применяться:

- механические фильтры, а также катионитные фильтры, загруженные либо сульфоуглем при температуре конденсата не выше 50°С, либо катионитом КУ-2 при температуре до 100°С;

- электромагнитные аппараты;

- намывные ионитовые фильтры;

- целлюлозные намывные фильтры.

В случае применения механических фильтров, а также катионитовых фильтров о сульфоуглем или КУ-2 предусматривается периодическая гидровыгрузка этих материалов в специально устанавливаемый для этого катионитный фильтр с подводом к нему растворов кислоты и сжатого воздуха.

Скорость фильтрации конденсата принимается, м/ч:

в целлюлозных и ионитных фильтрах намывного типа - 10,

в механических и в катионитных фильтрах - 50.

7.27. Для котлов должны предусматриваться устройства для обработки питательной воды аммиаком и гидразингидратом. При необходимости подачи пара на пищевые, фармацевтические и подобные предприятия должно быть предусмотрено независимое пароснабжение этих предприятий.

7.28. Для прямоточных котлов с закритическим давлением пара, работающих на газомазутном топливе могут предусматриваться устройства для коррекционной обработки питательной воды комплексонами.

Для барабанных котлов, при отсутствии обессоливания турбинного конденсата, предусматривается устройство для коррекционной обработки котловой воды фосфатами. Для поддержания щелочности котловой воды на уровне норм ПТЭ при необходимости предусматривается дозирование нелетучих щелочей. При обессоливании добавочной воды сепараторы непрерывной продувки и расширители периодической продувки принимаются по два комплекта на электростанцию.

7.29. При доставке реагентов железнодорожным транспортом склада реагентов должны обеспечивать прием не менее одного 60-тонного вагона или цистерны при наличии на складе к моменту разгрузки 15-суточного запаса соответствующего реагента с учетом обеспечения общего запаса не менее, чем на месяц. При доставке реагентов автотранспортом или по трубопроводу запас реагентов принимается не менее, чем на 15 суток. На складе предусматриваются места и емкости для хранения реагентов, которые необходимы для проведения водно-химической промывки любого котла и его питательного тракта.

7.30. Склад реагентов оборудуется устройствами для механизированной выгрузки реагентов из вагонов и цистерн, механизированной транспортировкой реагентов внутри склада и механизированного приготовления растворов и суспензий с очисткой их от посторонних примесей. Удаление отходов также должно быть механизировано. В складе реагентов и фильтрующих материалов температура не должна быть ниже +10°С.

7.31. Для хранения кислот и щелочей устанавливаются не менее двух баков для каждого реагента, для реагентов водно-химической промывки - по одному баку для каждого реагента.

7.32. Трубопроводы кислот и щелочей (растворов любых концентраций), а также токсичных жидкостей прокладываются как внутри склада, так и вне его с учетом обеспечения безопасности работы персонала электростанции.

7.33. Предусматриваются защитные покрытия внутренней поверхности следующего оборудования: деаэраторных баков вакуумных и атмосферных; баков запаса и сбора конденсата; осветлителей в схемах без известкования; верхней части осветлителей в схемах с известкованием на 500 мм ниже распределительной решетки; ионитных фильтров водоочистки для приготовления подпиточной воды котлов независимо от схемы водоподготовки; Н-катионитных фильтров установок по подготовке добавочной воды тепловых сетей; Н-катионитных фильтров водоочистительных установок, проектируемых, по схемам H-Na-катионирования питательной воды испарителей; катионитных фильтров при совместном H-Na-катионировании воды; механических фильтров в схеме без известкования механических и ионитовых фильтров и регенераторов на установках по обессоливанию конденсата турбин, механических, ионитных фильтров на установках по обезжелезиванию и очистке производственных конденсатов; декарбонизаторов; баков кислых вод, кислых реагентов и баков нейтрализаторов; баков осветленной, известкованной, химически очищенной и химически обессоленной воды; трубопроводов очищенного производственного конденсата, трубопроводов водоочисток, соприкасающихся с агрессивной водой (рН ниже 7), а также с обессоленной водой.

Допускается выполнять из полимерных материалов трубопроводы растворов кислот, соли, коагулянта, известкового молока, реагентов для химической очистки оборудования, а также трубопроводов безнапорных сбросов.

Для всех емкостей, соприкасающихся с коррозийноактивными средами (ячейки соли и коагулянта, баки коагулянта, баки кислот и пр.), а также строительных конструкций, соприкасающихся с коррозионными породами (фундаменты насосов, дренажные каналы, приямки и прочее) должны быть предусмотрены кислотостойкие покрытия.

7.34. На всех трубопроводах, по которым транспортируются растворы реагентов и вода с рН ниже 7, устанавливается коррозионно-стойкая арматура.

7.35. Баки водоподготовительных установок, баки запаса питательной воды и конденсата защищаются от попадания внешних загрязнений (пыли, золы, песка и т.д.), а устройства для распределения в них воды, пара и воздуха изготовляются из нержавеющей стали или других коррозионно-стойких материалов.

7.36. Установки для обработки воды и пароводяной тракт электростанций должны быть оснащены необходимыми устройствами для отбора и подготовки проб и приборами химического и технологического контроля. Дистанционное управление и автоматизация химконтроля и технологических процессов подготовки воды принимаются в объеме, определяемом технологическими требованиями.

Пробоотборные линии на химводоочистке выполняются из полимерных труб, а в главном корпусе для среды с t более 40°С из нержавеющей стали.

7.37. На электростанциях предусматриваются центральные химические лаборатории площадью от 280 до 300 и в главном корпусе экспресслаборатории: на блочной станции 100 на каждые два блока, а на неблочной станции 120 на всю электростанцию предусматривается также экспресслаборатория на химводоочистке общей площадью 50 .

Экспресслаборатории в главном корпусе должны иметь изолированные три помещения: для узла подготовки проб, для первичных преобразователей (датчиков) и вторичных приборов автоматического контроля и для выполнения анализов.

7.38. На электростанциях предусматривается аппаратура, насосы, трубопроводы и другое оборудование для предпусковых и эксплуатационных водно-химических промывок, а также устройства для предупреждения стояночной коррозии паровых и водогрейных котлов, турбин и другого оборудования.

9. Управление, автоматизация технологических процессов и теплотехнический контроль

 

9.1. На тепловой электрической станции предусматривается автоматизированная система управления (АСУ) технологическими процессами, обеспечивающая выполнение функций контроля, сигнализации, вычисления, дистанционного управления, автоматического регулирования, автоматического дискретного управления и защиты технологических объектов управления, а также оперативную связь.

9.2. Объем контроля, сигнализации, автоматического регулирования, технологических защит и оперативной связи принимается в соответствии с руководящими указаниями.

9.3. Объем автоматического дискретного управления определяется, главным образом, задачами автоматизации технологических процессов при пуске, глубоких изменениях нагрузки и останове блоков и агрегатов.

9.4. Организация постов управления принимается двух типов: для электростанций блочных и с поперечными связями.

9.5. Для блочных электростанций основными постами управления являются:

- центральный щит (ЦЩУ);

- блочные щиты управления (БЩУ);

- щиты управления (ЩУ) вспомогательных цехов (топливно-транспортного, водоприготовления и очистки воды), а также общестанционных установок (компрессорной, электролизерной и др.).

9.6. С центрального щита управления производится управление элементами связи электростанции с энергосистемой, автотрансформаторами связи, резервными трансформаторами собственных нужд 3-10 кВ и резервными возбудителями (подробный объем управления указан в п. 8.39 "Электротехнической части"), управление неблочной циркуляционной насосной и другими объектами, предусмотренными ПТЭ, а также аварийное отключение мазутных насосов.

На ЦЩУ предусматривается информация о работе блоков и сигнализация о неисправности не обслуживаемых постоянным персоналом участков электростанции.

9.7. Блочный щит управления служит для централизованного управления всем входящим в блок оборудованием: котлоагрегатом, турбоагрегатом, генератором, блочным трансформатором, трансформатором собственных нужд со всеми относящимися к ним вспомогательными устройствами и механизмами во время пуска блока, его нормальной эксплуатации, планового останова и аварийных ситуаций.

Щиты управления блоков располагаются совместно в одном общем изолированном помещении, между блоками на отметке основного обслуживания. В отдельных случаях при технико-экономическом обосновании допускается установка в одном помещении щитов большего или меньшего числа блоков. Для блоков мощностью 500 МВт и более БЩУ может размещаться в изолированных помещениях вне главного корпуса.

Блочный щит управления состоит из оперативной и неоперативной частей. В оперативной части располагаются панели и пульты с приборами и аппаратурой, обеспечивающими контроль основных показателей работы блока и выполнение основных операций по управлению.

В видимой оператору неоперативной части располагаются панели, в отдельных случаях с активной пнемосхемой, оснащенные показывающими и самопишущими приборами, а в невидимой части панели с электронными регуляторами, приборами технологических защит, реле, устройствами логического управления первого уровня и вспомогательной аппаратурой различного назначения.

Приборы и аппаратура управления размещаются на панелях и пультах по принципу их технологической принадлежности. В оперативном контуре допускается выделение основных приборов и аппаратов управления в центральную часть щита.

Последовательность расположения панелей в пультов, а также установка приборов на них для всех блоков электростанции принимаются идентичными.

9.8. Энергоблоки оснащаются приборами автоматического хим. контроля водного режима, устанавливаемыми в двух смежных помещениях общей площадью до 100 с организованными стоками и вентиляцией - одно для устройств подготовки проб и другое для приборов автоматического контроля. Устройства подготовки проб и приборы автоматического контроля двух блоков располагаются в общих помещениях между котельным и турбинным отделениями.

На БЩУ выводится сигнализация о нарушении водного режима блока.

9.9. Для электростанций с поперечными связями основными постами управлений являются:

- главный щит управления (ГЩУ);

- групповые щиты управления (ГрЩУ);

- щиты управления (ЩУ) вспомогательных цехов (топливно-транспортного, водоприготовления и очистки воды) и общестанционных установок (компрессорной, электролизерной и др.).

9.10. С главного щита управления производится управление генераторами и элементами главной схемы электрических соединений, включая питающие элементы собственных нужд 3-10 кВ (объем управления указан в п. 8.38 "Электротехнической части"), управление циркуляционной насосной и другими объектами, предусмотренными ПТЭ, а также аварийное отключение мазутных насосов. При наличии на ТЭЦ только ГрЩУ, управление циркуляционными насосами может выполняться с ГрЩУ.

На ГЩУ предусматривается информация о работе основных агрегатов и сигнализация о неисправности не обслуживаемых постоянным персоналом участком электростанции.

9.11. Для управления четырьмя агрегатами, как правило, сооружается один групповой щит. Групповые щиты управления котлами и турбинами располагаются в одном изолированном помещении по возможности центрально к обслуживаемый агрегатам. Из этого помещения, как правило, осуществляется также управление питательными насосами, деаэраторами и РОУ.

9.12. Электростанции с поперечными связями оснащаются приборами автоматического химконтроля водного режима, устанавливаемыми в двух смежных помещениях с организованными стоками и вентиляцией - одно для устройств подготовки пробы, другое - для автоматических приборов химконтроля. Устройства подготовки пробы и приборы химконтроля группы котлов и турбин располагаются в общих помещениях между котельным и турбогенераторным отделениями. На ГрЩУ выводится сигнал нарушения водного режима.

9.13. Для электростанций с агрегатами мощностью до 200 МВт включительно теплотехнический контроль осуществляется в основном индивидуальными средствами.

Для электростанций общей мощностью 500 МВт и выше выполнение необходимых расчетов, включая сбор и обработку требуемых для расчетов данных, производится средствами вычислительной техники, устанавливаемой для всей станции в целом.

Для электростанций с блоками мощностью 300 МВт и более основной объем теплотехнического контроля, технологической сигнализации, необходимых вычислений и регистрации данных осуществляются с помощью информационно-вычислительного комплекса (ИВК). Дублирование измерений индивидуальными приборами применяется ограниченно только для наиболее ответственных технологических параметров.

9.14. На электростанциях с БЩУ, располагаемым в изолированных помещениях вне главного корпуса, средства вычислительной техники и устройства логического управления высок уровней размещаются в тех же помещениях.

На электростанциях, БЩУ (ГрЩУ) которых располагаются в главном корпусе, средства вычислительной техники размещаются в специальном помещении, выбираемом с учетом допустимых расстояний и допустимого для аппаратуры уровня вибрации и запыленности.

9.15. На БЩУ и ГрЩУ предусматривается необходимая свето-звуковая сигнализация с выделением вновь появившегося сигнала миганием.

9.16. Для блоков мощностью 300 МВт и более выполняется регистрация событий при срабатывании защит, и производится регистрация параметров в аварийных ситуациях.

9.17. Для агрегатов мощностью до 300 МВт включительно дистанционное управление выполняется индивидуальным, избирательным и в отдельных случаях групповым.

9.18. Для блоков мощностью 500 МВт и более в основном применяется функционально-групповое управление. Наиболее ответственные механизмы, охваченные функционально-групповым управлением, оснащаются дублированным индивидуальным или избирательным управлением с БЩУ.

Управление механизмами, не входящими в функциональные группы, может быть индивидуальным или избирательным.

9.19. Допускается применение для дистанционного управления аппаратуры пониженного напряжения (24-60 В).

9.20. Управление общестанционным оборудованием, находящимся вне главного корпуса (топливоподача, мазутонасосная, пиковая котельная, химводоочистка, золоудаление, электролизерная, компрессорная и др.) и контроль работы этого оборудования осуществляется со щитов управления, расположенных в помещениях, где это оборудование установлено или непосредственно по месту соответствующих механизмов.

Во всех случаях, за исключением топливоподачи и химводоочистки, контроль и управление выполняются, исходя из отсутствия на этих участках постоянного дежурного обслуживающего персонала, вследствие чего при появлении неисправности в работе оборудования на центральный (главный) щит управления подается общий для каждого участка сигнал. Расшифровка причин сигнала осуществляется в помещении соответствующего участка.

9.21. В тракте топливоподачи автоматизируются управление механизмами и процесс загрузки бункеров топливом.

Дистанционное управление механизмами выполняется с центрального щита топливоподачи, располагаемого в изолированном помещении с допустимым для аппаратуры уровнем вибрации и запыленности.

9.22. В химводоочистке предусматривается автоматизация технологических процессов, производительности ХВО, режимов регенерации, восстановления фильтров и процесса нейтрализации сточных вод.

9.23. В мазутохозяйстве осуществляется автоматизация технологического процесса. Дистанционное управление механизмами выполняется со щита мазутонасосной.

9.24. Помещения центрального (главного), блочного и группового щитов управления, а также помещения для средств вычислительной техники выполняются со звукоизоляцией и кондиционированием воздуха. Из помещений щита предусматривается два выхода.

Перекрытие щитового помещения должно иметь гидроизоляцию.

Высота центральной части помещения (ЦЩУ, БЩУ, ЩУ и ГрЩУ) в которой располагается оперативный контур, принимается 4 м.

Интерьер щита выполняется по специальному проекту.

В случае установки реле или иной аппаратуры системы управления вне БЩУ в обособленных изолированных помещениях - последние выполняются вентилируемыми.

Вблизи помещения блочного щита управления предусматриваются помещения для дежурного персонала цеха ТАИ и санузел.

9.25. В инженерно-вспомогательном корпусе предусматривается помещение для измерительных лабораторий и ремонта приборов общей площадью:

- для ГРЭС мощностью 1200-2400 МВт и ТЭЦ мощностью 600-1200 КВт - порядка 400 ;

- для ГРЭС мощностью 2400 тыс. кВт и более порядка 600 .

 

11. Теплоснабжение

 

11.1. Проект теплофикационных электростанций разрабатывается, как правило, одновременно с проектом тепловых сетей на основе утвержденной схемы теплоснабжения города и промышленного района и, выполняется на расчетный срок, установленный схемой теплоснабжения.

11.2. Существующие и сооружаемые в городе или промышленном районе котельные, мощностью 100 Гкал/ч и более должны, как правило, использоваться для совместной работы с ТЭЦ в качестве пиковых источников теплоснабжения.

11.3. Тепловые нагрузки горячего водоснабжения в балансах ТЭЦ учитываются:

- бытовые - по среднечасовому расходу за отопительный период;

- технологические - по среднечасовому расходу за смену с наибольшей тепловой нагрузкой.

11.4. Схема теплофикационных установок ТЭЦ должна быть секционирована по сетевой воде. Количество секций определяется числом турбоагрегатов и тепломагистралей.

11.5. При проектировании сетевых станционных трубопроводов следует предусматривать возможность локализации отдельных участков сетевых станционных трубопроводов и предотвращения затопления помещений и оборудования электростанций в случае их повреждения, а также создание условий для удобной, безопасной их эксплуатации и ремонта.

11.6. Наружная поверхность сетевых станционных трубопроводов должна иметь антикоррозионное покрытие.

11.7. Производительность основных подогревателей сетевой воды на ТЭЦ выбирается по номинальной величине тепловой мощности теплофикационных отборов.

Основные подогреватели сетевой воды на ТЭЦ устанавливаются индивидуально у каждой турбины без резерва и общая паровая магистраль 0,12 МПа (1,2 ) не предусматривается. При установке на ТЭЦ пиковых водогрейных котлов пиковые подогреватели сетевой воды, как правило, не устанавливаются.

В целях использования паровой мощности котлов и производственных отборов турбин типа ПТ и Р допускается установка резервных пиковых сетевых подогревателей суммарной теплопроизводительностью не более 25% от расчетной тепловой нагрузки ТЭЦ в горячей воде для целей отопления, вентиляции и горячего водоснабжения.

Подогрев сетевой воды в основных сетевых подогревателях выполняется преимущественно в двух ступенях.

На ГРЭС подогреватели сетевой воды устанавливаются не менее чем на двух блоках. При выходе из работы одной из установки сетевых подогревателей оставшиеся должны обеспечить 70% максимальной тепловой нагрузки.

11.8. Насосы системы теплофикации выбираются:

- сетевые насосы принимаются, как групповые (не привязанные к турбоустановкам), так и индивидуальные;

- при групповой установке трех и менее рабочих сетевых насосов дополнительно устанавливается один резервный насос, при установке четырех рабочих сетевых насосов и более резервные насосы не устанавливаются;

- при установке сетевых насосов индивидуально у турбин число рабочих насосов принимается по два у каждой турбины производительностью по 50% каждый, при этом на складе предусматривается один резервный сетевой насос для всей электростанции или один на каждый тип сетевых насосов;

- конденсатные насосы сетевых подогревателей при двухступенчатом подогреве выбираются с резервным насосом на первой ступени подогрева, при одноступенчатом подогреве устанавливается два конденсатных насоса без резерва;

- подпиточные насосы принимаются при закрытых системах не менее двух насосов и при открытых системах не менее трех насосов, в том числе один резервный насос;

- сетевые и подпиточные насосы выбираются в соответствии с гидравлическим расчетом зимних и летних режимов работы тепловых сетей.

11.9. При изменении нагрузок, зависящих от развития системы теплофикации или от сезонности года следует (временно) изменять характеристику насосов, путем изменения числа или диаметра колес.

11.10. Электроснабжение сетевых и подпиточных насосов производится из двух независимых источников.

11.11. Производительность химводоочистки и соответствующего оборудования для подпитки тепловых сетей принимается:

- в закрытых системах теплоснабжения - 0,75% от объема воды в тепловых сетях и, 0,5% от объема транзитных магистралей;

- в открытых системах теплоснабжения - по расчетному среднечасовому расходу воды на горячее водоснабжение за отопительный период с коэффициентом 1,2 плюс 0,75% суммарного объема воды в тепловых сетях и 0,5% от объема в транзитных магистралях.

При отсутствии фактических данных, объем воды тепловых сетей принимается на расчета:

50 на 1 Гкал/ч при наличии транзитных магистралей и

66 на 1 Гкал/ч при их отсутствии.

Объем воды в транзитных магистралях определяется по фактической емкости.

11.12. Для открытых систем теплоснабжения предусматривается установка баков- аккумуляторов подготовленной воды емкостью равной 10 кратной величине среднечасового расхода воды на горячее водоснабжение за отопительный период. Число баков принимается не менее двух по 50% расчетной емкости в каждом.

Размещение баков-аккумуляторов подпиточной воды, возможно как на площадке ТЭЦ, так и в районах теплопотребления.

Для закрытых систем теплоснабжения предусматривается установка на ТЭЦ 2-х баков запаса подготовленной подпиточной воды емкостью равной 3% от объема воды в тепловых сетях.

11.13. Для закрытых и открытых систем теплоснабжения предусматривается дополнительная аварийная подпитка тепловых сетей необработанной водой в размере 2% от объема воды в тепловых сетях.

11.14. При применении открытой системы теплоснабжения подвод воды к площадке электростанций из городского питьевого водопровода производится за счет средств организаций потребителей тепла, согласие которых должно быть подтверждено документально.

При окисляемости воды более 4 мгО/л, как правило, следует применять закрытую систему теплоснабжения.

При карбонатной жесткости воды 7 мг экв/л и более следует принимать открытую систему теплоснабжения.

11.15. Водяные тепловые сети ТЭЦ от сетевых насосов второго подъема выполняются на расчетное давление 2,5 МПа (25 ).

11.16. Тепловые сети внешних потребителей тепла ТЭС и ГРЭС, проходящие на территории станции от задвижек коллекторов (или выходных задвижек пиковых котлов), не входят в состав сооружений ТЭЦ и ГРЭС и относятся к магистральным тепловым сетям.

11.17. Проектирование тепловых сетей осуществляется на основе: "Строительные нормы и правила. Часть II. Нормы проектирования. Глава 36. Тепловые сети. СНиП II-36-73".

11.18. Тепловые сети жилых поселков ТЭЦ и ГРЭС не входят в состав промышленного строительства и относятся к комплексу жилищного строительства.

11.19. Тепловые сети собственных нужд ТЭЦ присоединяются к общим коллекторам сетевой воды через центральный тепловой пункт. Присоединение к выводам магистральных тепловых сетей, расположенных на территории ТЭЦ отдельных зданий не допускается.

Тепловые сети собственных нужд ГРЭС и ее жилого поселка выполняются, как правило, общими и регулируются по общему температурному графику.

Местные системы горячего водоснабжения жилых и общественных зданий поселков ТЭЦ и ГРЭС присоединяются к тепловым сетям.

 

 

Откройте актуальную версию документа прямо сейчас или получите полный доступ к системе ГАРАНТ на 3 дня бесплатно!

Получить доступ к системе ГАРАНТ

Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.


Ведомственные нормы технологического проектирования тепловых электрических станций ВНТП 81 (утв. протоколом Минэнерго СССР от 17 августа 1981 г. N 99)


Текст документа приводится по изданию "Технорматива" (Москва, 2011 г.)


Срок введения в действие 8 октября 1981 г.


Настоящие нормы разработаны Всесоюзным Государственным ордена Ленина и ордена Октябрьской революции проектным институтом "Теплоэлектропрокт", с учетом отзывов и предложений ВТИ им. Ф.Э. Дзержинского, ВНИПИэнергопрома, Союзтехэнерго, ЦКБ Главэнергоремонта, ЦДУ ЕЭС СССР, Госгортехнадзора СССР, НПО ЦКТИ, Минэнергомаша, а также других проектных, научно-исследовательских, эксплуатационных и ремонтных организаций Минэнерго СССР


Нормы рассмотрены, одобрены Научно-техническим Советом Минэнерго СССР и согласованы с Госстроем СССР письмом N АБ-3430-20/4 от 29 июня 1981 г. и являются обязательными при технологическом проектированиии тепловых электрических станций


Взамен норм технологического проектирования тепловых электростанций и тепловых сетей, утвержденных 8 мая 1973 г.


Внесены институтом "Теплоэлектропроект"