Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение 2
Методы дозиметрического контроля внешнего облучения
Для индивидуальной дозиметрии можно применять различные дозиметрические методы, детекторы ионизирующего излучения и технические средства (системы и приборы) на их основе.
В методах, основанных на использовании ионизационных камер, измеряют разряд конденсаторной ионизационной камеры, вызванный излучением, и по нему определяют дозу фотонного излучения. Энергетическая зависимость их чувствительности обычно не превышает % в диапазоне энергии фотонов 40 кэВ - 1,25 МэВ. Однако они имеют существенную угловую зависимость чувствительности. К сопутствующему нейтронному излучению без специально принятых мер они на порядок менее чувствительны. Эти дозиметры пригодны для решения многих задач индивидуальной дозиметрии фотонного излучения.
Полупроводниковые дозиметры с применением р-n, p-i-n диодов и МОП-транзисторов основаны на изменении их параметров вследствие воздействия ионизирующего излучения. Диффузионные дрейфовые и поверхностно-барьерные кремниевые полупроводниковые детекторы работают подобно ионизационной камере. МОП-транзисторы работают как ионизационная камера с очень тонким чувствительным слоем. Для обеспечения избирательной чувствительности к различным видам излучений применяют соответствующие конверторы. Диапазон измерения дозы с помощью таких дозиметров от 0,01 мЗв до 10 Зв.
Фотопленочный метод основан на измерении почернения эмульсии, вызванного облучением и зависящего от дозы. Проявленные пленки сравнивают с образцами, облученными известными дозами. Нижний предел измерения 0,1-0,2 мЗв, поэтому они пригодны для текущего контроля. Аварийный контроль можно обеспечить, применяя вторую низкочувствительную фотопленку. Метод может использоваться и для контроля бета-излучения, но его чувствительность сильно зависит от энергии бета-частиц.
Термолюминесцентный метод основан на использовании активированных добавками веществ, надолго запасающих энергию, переданную им излучением, и освобождающих ее при нагревании в виде фотонов термолюминесценции. В современных модификациях этот метод обладает очень широким диапазоном по дозам - от 10 мкЗв до 10-50 Зв. Это позволяет использовать его одновременно для текущего и аварийного контроля. В качестве люминофоров нашли применение:
- алюмофосфатные стекла, активированные марганцем;
- монокристаллы фторида лития, активированные магнием и титаном;
- монокристаллы фторида лития, активированные магнием, фосфором и медью;
- монокристаллы корунда;
- поликристаллы бората магния, активированные диспрозием.
Второй и третий материалы тканеэквивалентны, 1-й и 4-й требуют применения компенсирующих фильтров. Наиболее чувствительны 3-й, 4-й и 5-й; 2-ой материал чувствителен к медленным нейтронам, и для разделения показаний от фотонного и нейтронного излучений используют два разных детектора, либо обеспечивают поглощение нейтронов фильтрами, либо разделяют излучения по пикам термолюминесценции.
Наряду с термолюминесцентным методом используют радиофотолюминесцентный метод. Радиофотолюминесцентный метод заключается в образовании в люминофоре под действием ИИИ стабильных центров люминесценции. При дополнительном возбуждении люминофора ультрафиолетовым светом возникает люминесценция, которая служит мерой поглощенной энергии. В выпускаемых моделях метод обеспечивает диапазон измерений от 0,25 до 5000 мЗв, в новых моделях нижний предел измерения будет уменьшен до 0,1 мЗв. Дозиметры не чувствительны к нейтронам. Особенностью РФЛД является то, что информация о зарегистрированной дозе не утрачивается в процессе считывания. Отжиг РФЛД можно проводить по мере необходимости. РФЛД могут быть использованы для текущего, оперативного и аварийного контроля.
Трековый метод основан на регистрации треков заряженных частиц излучения в соответствующем материале. Широкое применение для индивидуальной дозиметрии нейтронов нашел органический полимер CR-39, позволяющий регистрировать треки от протонов отдачи в материале детектора. Для аварийной дозиметрии применяют регистрацию осколков деления из нептуниевой мишени. После облучения детекторы протравливают для выявления треков, которые подсчитывают в микроскопе или автоматически на искровом счетчике.
Пузырьковые детекторы нейтронов основаны на закипании перегретого органического полимера в месте прохождения вторичной заряженной частицы, что приводит к образованию газового пузырька. Число пузырьков пропорционально тканевой дозе нейтронов и может быть подсчитано визуально или аппаратурно по щелчкам при вскипании пузырьков. Метод обладает высокой чувствительностью (до 1 мкЗв). Он нечувствителен к фотонному излучению, но чувствителен к температуре окружающей среды. Для обеспечения измерений в пределах, указанных в Табл. 12, требуется применение набора дозиметров с разной чувствительностью.
Электронные прямопоказывающие дозиметры основаны на применении дискретных детекторов: газоразрядных счетчиков, полупроводниковых или сцинтилляционных детекторов. Эти дозиметры обеспечивают обработку информации с детекторов и представление результатов измерения дозы и/или мощности дозы на прямопоказывающие цифровое, аналоговое или цифро-аналоговое табло в реальном времени. Диапазон измерения фотонного и бета-излучения таких дозиметров от 0,1 мкЗв до 10 Зв. Дозиметры обеспечивают измерение не только интегральной дозы и мощности дозы, но и сигнализацию о превышении заданных значений дозы и мощности дозы. В дозиметрах со сцинтилляционными детекторами применяют малогабаритные сцинтилляторы с малогабаритными ФЭУ или фотодиодами. Такие дозиметры имеют высокую чувствительность и избирательность, позволяет достигнуть малой анизотропии чувствительности. Дополнительным преимуществом приборов со сцинтилляционными и спектрометрическими полупроводниковыми детекторами является возможность измерения спектра излучения. Электронные прямопоказывающие дозиметры удобны при обеспечении оперативного аварийного контроля. Они должны иметь автономный источник питания, обеспечивающий непрерывную работу прибора не менее 8 ч.
На основе применения термолюминесцентных, прямопоказывающих электронных и полупроводниковых дозиметров используют автоматизированные системы ИДК.
При контроле работ, где возможно аварийное облучение и работ, связанных с планируемым повышенным облучением и с облучением, не равномерным по телу, необходимо использовать дополнительные дозиметры, расположенные на участках тела, которые могут быть подвергнуты повышенному облучению.
При аварийном контроле облучения кожи применяют многослойные, например, термолюминесцентные дозиметры, для измерения глубинного распределения доз в коже до глубин около 500 .
При аварийном облучении наряду с применением индивидуальных дозиметров аварийного контроля могут быть привлечены специализированные лаборатории, использующие методы ретроспективной дозиметрии. К ним относятся методы, основанные на подсчете частоты появления хромосомных аберраций в лимфоцитах периферической крови или подсчете концентрации клеток в пункции костного мозга.
При наличии зубов, удаленных по медицинским показаниям у пострадавших при аварии, по сигналу ЭПР образцов эмалей зуба может быть определена эквивалентная доза фотонного излучения в месте, где он находился. По сигналу ЭПР образцов ногтей может быть определена поглощенная доза бета-фотонного излучения в месте отбора пробы, а по образцам волос с различных участков кожи, образцам тканей одежды пострадавшего и сопутствующих предметов может быть определено распределение поглощенной дозы фотонного излучения по поверхности тела пострадавшего.
При наличии нейтронного излучения может быть использована гамма-спектрометрия всего тела и радиометрия крови для определения по активации натрия флюенса тепловых нейтронов. При наличии сведений о действовавших спектрах нейтронов по этому флюенсу могут быть определены тканевые дозы от всех нейтронов. По активации серы в волосах, ногтях и одежде из шерсти может быть определен флюенс быстрых нейтронов и аналогично их доза в соответствующих точках на поверхности тела. Для оценки поля нейтронного излучения может быть использована активация окружающих предметов, попавших в поле излучения.
В случаях, когда возможно моделировать условия аварии, необходимо использовать антропоморфные фантомы, снаряженные набором дозиметров, а в случае нейтронного излучения, набором активационных детекторов. Фантомы размещают в местах и в позах, которые были у пострадавших в момент аварии. По показаниям детекторов может быть определено распределение дозы гамма-нейтронного излучения по телу пострадавшего и спектры нейтронов. Может быть применено и компьютерное моделирование условий аварийного облучения.
При выборе средства измерения, используемого в ИДК внешнего облучения, следует руководствоваться следующими соображениями относительно диапазонов измерения.
Диапазон измерения для эквивалента индивидуальной дозы , который должен охватываться индивидуальным дозиметром текущего контроля, определяется НРБ-99, согласно которым предел эффективной дозы персонала группы А устанавливается 20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год, а при планируемом повышенном облучении - до 200 мЗв. Поэтому верхнюю границу диапазона следует установить не менее 500 мЗв. Нижняя граница диапазона должна быть на уровне 1/10 от предела дозы в год в среднем за любые последовательные 5 лет (20 мЗв), а в полях смешанного гамма-нейтронного излучения при раздельных измерениях (определении) компонентов - 1/20 от этого значения. Таким образом, при месячной периодичности контроля диапазон дозы при текущем контроле должен быть от 0,2 (0,1) мЗв до 500 мЗв. Нижний предел измерения 0,1 мЗв соответствует 1/10 от значения уровня регистрации или месячного значения годовой эффективной дозы.
При текущем контроле облучения кожи, кистей и стоп НРБ-99 регламентирует только годовой уровень облучения. Поэтому нижняя граница диапазона определяется как 1/2 уровня регистрации годовой эквивалентной дозы облучения кожи, кистей и стоп (5 мЗв) и принимается равной 2 мЗв. Диапазон измерений (определения) , а также при текущем контроле должен находиться в пределах от 2 мЗв до 5 Зв. Поскольку уровень регистрации годовой эквивалентной дозы облучения хрусталика глаза составляет 2 мЗв, диапазон определения при текущем контроле должен находиться в пределах от 0,5 мЗв до 1500 мЗв.
Оперативный контроль распространяется на одну рабочую операцию. Поэтому диапазон измерения (определения) должен составлять от 0,1 мЗв до 200 мЗв. Для и диапазон измерения при оперативном контроле, если существует подозрение о возможном облучении кожи, должен быть как и при текущем контроле - от 2,0 мЗв до 5 Зв. Для он должен находиться в пределах от 0,1 мЗв до 1500 мЗв.
Необходимость проведения оперативного контроля определяется службой радиационной безопасности организации (СРБ) на основании данных радиационного контроля и характера выполненных работ.
Аварийный контроль должен обеспечивать измерения (определения) доз, приводящих к острому общему или локальному лучевому поражению. Поэтому диапазон измерения (определения) при аварийном контроле должен составлять 10-5000 мЗв. При аварийном контроле доз диапазон измерения (определения) должен быть в пределах от 1 Зв до 80 Зв, для от 0,05 до 10 Зв. Нижние границы диапазона измерения (определения) и К должны быть 0,05 Гр, а в полях смешанного гамма-нейтронного излучения при раздельном измерении (определении) компонентов - 0,02 Гр. Верхние границы диапазона и К должны составлять 50 Гр и 50 Гр соответственно, учитывая возможность локальных переоблучений.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.