Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение D
(справочное)
Заземляющие электроды в грунте
D.1 Общие требования
Сопротивление заземляющего электрода зависит от его размера, формы и удельного сопротивления грунта в который его заглубляют. Это удельное сопротивление часто изменяется по длине и глубине.
Удельное сопротивление почвы выражается в Омах - сопротивление цилиндра площадью поперечного сечения основания 1 и длиной 1 м.
Характер поверхности и растительности может дать некоторую информацию относительно более или менее благоприятной характеристики почвы для установки заземлителя. Более надежная информация обеспечивается при наличии результатов измерений на заземляющих электродах, установленных в подобной почве.
Удельное сопротивление почвы зависит от влажности и температуры, оба эти параметра изменяются в течение года. Влажность - под влиянием гранулирования почвы и ее пористости. Практически, удельное сопротивление почвы увеличивается при уменьшении влажности.
Грунты в зонах подтопления рек, как правило, не подходят для устройства заземлителей. Эти грунты состоят из каменной основы, являются сильно проницаемыми и легко затопляются отфильтрованной водой с высоким удельным сопротивлением. В этом случае должны устанавливаться глубинные электроды, чтобы достигнуть более глубоких слоев грунта, у которых может быть лучшая проводимость.
Мороз значительно увеличивает удельное сопротивление почвы, которое может достигать нескольких тысяч Ом в замороженном слое. Толщина этого замороженного слоя в некоторых областях может составить один метр и более.
Засуха также увеличивает удельное сопротивление почвы. Эффект засухи может наблюдаться в некоторых областях до глубины 2 м. Значения удельного сопротивления при таких условиях могут быть такого же порядка как и во время мороза.
D.2 Удельное сопротивление грунта
Таблица D.54.1 дает информацию о значениях удельного сопротивления для определенных типов почвы.
Таблица D.54.1 - Удельное сопротивление
Характеристика грунта |
Удельное сопротивление, Ом |
Болотистая земля |
От 1 Ом до 30 |
Аллювий |
20-100 |
Перегной |
10-150 |
Влажный торф |
5-100 |
Мягкая глина |
50 |
Известковая глина и уплотненная глина |
100-200 |
Юрский мергель |
30-40 |
Глинистый песок |
50-500 |
Кремнистый песок |
200-3000 |
Голая каменная почва |
1500-3000 |
Каменная почва покрытая лугом |
300-500 |
Мягкий известняк |
100-300 |
Уплотненный известняк |
1000-5000 |
Пористый известняк |
500-1000 |
Кристаллический сланец |
50-300 |
Кристаллический сланец со слюдой |
800 |
Гранит и песчаник согласно погоде |
1500-10000 |
Гранит и сильно измененный песчаник |
100-600 |
Из таблицы D.54.2 видно, что удельное сопротивление может измениться в значительной степени, для того же самого типа грунта.
В первом приближении сопротивление может быть вычислено с применением средних значений таблицы D.54.2.
Очевидно, что вычисления, сделанные исходя только из этих значений, дают сугубо приблизительное значение сопротивления заземляющего электрода. Применяя формулу, приведенную в разделе D.3, измерение сопротивления позволяет оценить среднее значение удельного сопротивления грунта, что может быть полезным для дальнейших работ, выполненных в подобных условиях.
Таблица D.54.2 - Изменение удельного сопротивления для различных типов грунта
Характеристика грунта |
Среднее значение удельного сопротивления, Ом |
Жирная пахотная земля, влажный насыпной грунт |
50 |
Бедная пахотная земля, гравий, грубый насыпной грунт |
500 |
Голый каменистый грунт, сухой, монолитные скалы |
3000 |
D.3 Заземляющие электроды заглубленные в грунт. Номенклатура
Заземляющие электроды заглубленные в грунт могут быть выполнены из:
- стали горячего цинкования,
- стали в медной оболочке,
- стали с медным покрытием,
- нержавеющей стали,
- голой меди.
Соединения между различными металлами не должны быть в контакте с почвой. Не следует применять другие металлы и сплавы.
Минимальная толщина и диаметры деталей принимаются для обычных рисков химического и механического старения. Однако, эти размеры могут быть не достаточными в ситуациях, где присутствуют существенные риски коррозии. С такими рисками можно встретиться в почвах, где распространяют блуждающие токи, например возвратные токи постоянного тока в цепях электрической тяги или вблизи установок катодной защиты. В этом случае должны быть приняты специальные меры предосторожности.
Заземляющие электроды должны быть заглублены в самых влажных частях грунта. Они должны быть расположены вдали от свалок отходов, где возможна фильтрация, например, экскрементов, жидких удобрений, химических продуктов, кокса, и т.д., которые могут их разъесть и расположены максимально далеко от оживленных мест.
Нумерация разделов приводится в соответствии с источником
D.3.2 Оценка сопротивления заземляющего электрода
a) Горизонтально проложенный под землей проводник
Сопротивление заземляющего электрода R, образованного горизонтально проложенным под землей проводником (см. 542.2.3 и таблицу 54.1), может быть приблизительно рассчитано по формуле
,
где - удельное сопротивление почвы, Ом;
L - длина траншеи, занятой проводником, м.
Следует отметить, что укладка проводника в траншее извилистым путем не дает заметного снижения сопротивления заземляющего электрода.
Практически, этот проводник монтируется двумя различными способами:
- фундаментный заземлитель здания: заземляющие электроды укладывают в виде замкнутого контура по периметру здания. Его длину принимают равной периметру здания;
- траншеи: проводники прокладывают под землей на глубине приблизительно 1 м в специальных траншеях, вырытых для этой цели.
Траншеи не следует заполнять камнями, пеплом или подобными материалами, а следует заполнять землей, способной сохранять влажность.
b) Проложенные под землей полосы
Для обеспечения хорошего контакта двух поверхностей с грунтом сплошные полосы следует уложить вертикально (на ребро).
Полосы должны быть проложены под землей таким образом, чтобы их верхний край располагался приблизительно на глубине одного метра.
Сопротивление R проложенного под землей заземляющего электрода в виде полосы на достаточной глубине приблизительно равно
,
где - удельное сопротивление грунта, Ом;
L - периметр полосы, м.
с) Электроды установленные вертикально под землей
Сопротивление R вертикально расположенного под землей заземляющего электрода (см. 542.2.3 и таблицу 54.1) может быть приблизительно рассчитано по формуле
,
где - удельное сопротивление грунта, Ом;
L - длина стержня или канала, м.
Если существует риск мороза или засухи, длина стержней должна быть увеличена на 1 или 2 м.
Значение сопротивления заземляющего электрода возможно уменьшить путем соединения нескольких вертикальных стержней параллельно, на расстоянии друг от друга равном длине одного стержня, в случае, если применяют два или более стержня.
Дополнительно установленные длинные стержни, учитывая неоднородность грунта, могут достигнуть горизонта с низким или незначительным удельным сопротивлением.
D.4 Металлические колонны как заземляющие электроды
Металлические колонны, входящие в металлоконструкцию и расположенные в грунте на определенной глубине, можно использовать в качестве заземляющего электрода.
Сопротивление R расположенной под землей металлической колонны может быть приблизительно рассчитано по формуле
,
где - удельное сопротивление грунта, Ом;
L - расположенная под землей длина колонны, м;
d - диаметр цилиндра, образованного колонной, м.
Ряд соединенных колонн, расположенных вокруг здания, дают сопротивление того же порядка, что и фундаментные заземлители.
Замоноличивание в бетон не исключает возможность применения колонн как заземляющих электродов и не существенно изменяет сопротивление заземляющего электрода.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.