Вы можете открыть актуальную версию документа прямо сейчас.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение В
(справочное)
Особые испытания
В.1 Особые методы испытаний
Следующие методы особых испытаний даны для информации и подлежат использованию только по указанию заказчика. Испытания должны проводиться при согласованном источнике питания.
В.2 Повышение температуры обмотки
Изменение сопротивления обмотки по возможности должно использоваться для измерения нагрева шагового двигателя. Установить двигатель изолированно от теплопроводящих поверхностей и сквозняков и, где требуется, следует прикрепить теплоотвод. При стабилизации двигателя при температуре внешней среды зафиксировать температуру двигателя и сопротивление обмотки ; возбудить соответствующие обмотки в подходящем режиме включения до тех пор, пока температура двигателя не станет стабильной.
Для двигателей с питанием от источника напряжения требуется возбуждение одной или более фаз, но при нулевой частоте следования импульсов, т.е., когда данные фазы возбуждаются постоянно, другие разомкнуты; использовать один из углов переключения для измерения нагрева.
Следует запустить двигатель с питанием от источника тока на скорости, при которой достигается максимальная входная мощность (вал на холостом ходу). Как правило, это будет максимальная скорость втягивания. Затем достигается максимальная температура. Там, где невозможна работа двигателя в этих условиях (на его максимальной скорости втягивания), следует выбрать частоту следования импульсов и указать ее вместе с величиной нагрева и типом использованной схемы возбуждения.
Нагрев должен определяться в соответствии с требованиями IEC 60034-1 (см. 7.6.2).
B.3 Механическая характеристика
Следует подать номинальный ток или напряжение и измерить момент, добавив грузы на удерживающий рычаг. Однако при достижении пикового удерживающего момента необходимо использовать динамометр, чтобы не дать удерживающему рычагу бесконтрольно вращаться при получении значений в отрицательной области кривой. Для обеспечения стабильности измерений жесткость динамометра должна быть выше, чем жесткость двигателя. Это может означать необходимость использования балансировки на высоких скоростях, что приведет к снижению точности показаний. Следует отслеживать угол вала в большеугловых шаговых двигателях с помощью транспортира и стрелки. Для двигателей с малыми углами необходимо использовать более сложное испытательное оборудование. Если на каждом конце двигателя имеется выступающий конец вала, следует использовать оптический датчик положения для отслеживания угла, а также датчик крутящего момента для отслеживания приложенного момента. Затем можно ввести нагрузку вручную с помощью рычага, а показания датчика положения и датчика крутящего момента непосредственно нанести на диаграмму при помощи графопостроителя. Если у двигателя имеется только один вал, нагрузку следует подавать в виде комбинации грузов и динамометра или рычага, как предписано для большеугловых шаговых двигателей, и вновь отследить угол с помощью датчика положения.
В.4 Выходной сигнал, собственная частота и время установления
Подключить непрерывно вращающийся потенциометр к выходящему валу двигателя и подать напряжение на концы дорожки потенциометра. Подсоединить записывающее оборудование между скользящим контактом потенциометра и одним из полюсов источника питания. Когда двигатель совершает один шаг за единицу времени, нарисованная линия покажет единичную характеристику. Следует позаботиться о том, чтобы инерция потенциометра была мала по сравнению с инерцией ротора двигателя и чтобы трение было очень мало по сравнению с моментом двигателя. Для больших двигателей может оказаться возможным отслеживать положение вала при помощи оптического датчика положения, как при измерениях механической характеристики.
В.5 Максимальная скорость нарастания выходного напряжения
Подать серию импульсов на двигатель в соответствии с описанием в В.6. Постепенно увеличивать частоту следования импульсов, начиная с низкой частоты следования импульсов (ниже скорости втягивания), до значения, пограничного с тем, при котором ротор теряет синхронизм. Получившаяся частота следования импульсов является максимальной скоростью нарастания выходного напряжения. Повторить это испытание для противоположного направления вращения. Следить за тем, чтобы не возникал резонанс.
В.6 Скорость втягивания
Схема возбуждения должна быть такой, чтобы данный двигатель мог начать работу от подачи последовательности импульсов и одновременно последовательно питать обмотку (обмотки) следующего двигателя. Кроме того, серия импульсов должна иметь правильную длительность и не изменяться от включения выключателя.
Подать нагрузку на вал двигателя следует таким образом, чтобы момент, приложенный к валу, был в значительной степени постоянным при изменяющейся скорости вращения вала. Это может быть достигнуто несколькими способами. Для высокогабаритных двигателей удобно использование магнитного тормоза с добавкой железного порошка для покрытия нагрузки, так как момент примерно пропорционален току питания. Из-за высокой инерции невозможно использование магнитного тормоза с добавкой железного порошка для малых двигателей (размер 34 и меньше), поэтому могут употребляться другие устройства, например, тормоз Прони. Если низкоинерционный чугунный барабан установлен на вал двигателя, а подкладка или прокладки из твердых пород дерева плотно прилегают к поверхности (при условии, что она чистая), может быть получено некоторое прилипание к поверхности, сравнимое с вращающим моментом (см. рисунок В.1).
Момент будет зависеть от силы между прокладками и барабаном и должен быть предварительно калиброван. Из-за трудности установки момента удобнее менять частоту привода. Тогда процесс будет следующим:
- установить тормоз Прони на низкое значение момента (10% удерживающего момента);
- установить частоту следования импульсов на низкое значение (например, 20 импульсов в секунду);
- начать подачу серии импульсов и определить, корректна ли скорость втягивания двигателя;
- остановить серию импульсов, увеличить частоту, начать серию импульсов снова и наблюдать за двигателем;
- остановить серию импульсов.
Если двигатель втягивается в синхронизм без замедления, повторять процесс до тех пор, пока это не возникнет. Когда двигатель перестанет корректно реагировать на импульсы, следует слегка уменьшить частоту следования импульсов и вновь запустить его. Увеличивая, уменьшая и вновь увеличивая частоту следования импульсов, может быть определено весьма точное значение скорости втягивания для приложенного момента. Важно проверить момент тормоза Прони после испытания. Затем установить более высокое значение момента и повторить испытание. В конце следует построить кривую зависимости скорости втягивания от момента. Необходимо указать момент инерции нагрузки (барабана) у кривой. При использовании магнитного тормоза с добавкой железного порошка может быть предпочтительнее изменить ток тормоза и тем самым - нагрузку двигателя вместо изменения частоты следования импульсов.
В.7 Опрокидывающий момент
Как и в В.6, инерция испытательного оборудования влияет на результаты. Поэтому методы испытаний с использованием магнитного тормоза с добавкой железного порошка и динамометр следует использовать только для высокогабаритных двигателей, а комбинацию шнур/динамометр - для малых двигателей (размер 34 и меньше). Принципиальная схема использования магнитного тормоза с добавкой железного порошка и датчика крутящего момента показана на рисунке В.2, а реакционного динамометра - на рисунке В.3. Если убрать магнитный тормоз с добавкой железного порошка и надавить пальцем на датчик крутящего момента вала, инерция снизится настолько, что станет возможным испытывать меньшие двигатели в зависимости от инерции датчика крутящего момента.
Следует установить низкую частоту серии импульсов, как описано в В.6 и запустить двигатель; увеличивать нагрузку до тех пор, пока двигатель не выйдет из синхронизма; зафиксировать величину приложенной нагрузки в момент, предшествующий потере синхронизма; убрав нагрузку, вновь запустить двигатель и увеличивать частоту следования импульсов. Затем снова приложить нагрузку и увеличивать ее до тех пор, пока двигатель опять не выйдет из синхронизма. Вновь зафиксировать величину приложенной нагрузки в момент, предшествующий потере синхронизма; повторить процедуру для нескольких величин частоты следования импульсов до тех пор, пока скорость двигателя не достигнет предельного значения. Необходимо будет начать с низких значений частоты и увеличивать ее до более высоких скоростей, когда двигатель работает с максимальной скоростью нарастания напряжения.
Два метода с использованием шнура и динамометра показаны на рисунках В.4 и В.5, и оба они обеспечивают похожие результаты. Система на рисунке В.5, предусматривающая только один динамометр, требует петли из шнура и свободно вращающегося блока на подвижном манипуляторе. Когда манипулятор поднят, натяжение шнура увеличивается, как и приложенный момент. Таким образом, момент зависит от радиуса блока и показания динамометра. Система, изображенная на рисунке В.5, требует показаний обоих динамометров одновременно. Таким образом, момент зависит от разницы в показаниях динамометров и от радиуса блока. Диаметр самого шнура включается в расчеты, только если не удалось воспользоваться таким шнуром, диаметром которого можно пренебречь. Во всех случаях следует указать момент инерции испытательной нагрузки.
В.8 Максимальная скорость обратного хода
Определив скорость втягивания в соответствии с описанием в В.6, установить такую частоту следования импульсов при холостой работе двигателя, чтобы последний работал с частотой следования импульсов, меньше половины максимальной скорости втягивания. Запустить двигатель в обратную сторону, как правило, путем изменения логического уровня на входе схемы возбуждения, следя, чтобы последний импульс в одном направлении и начальный импульс в противоположном направлении не совпали. Увеличивать частоту следования импульсов до тех пор, пока двигатель не перестанет корректно реагировать (пропускать шаги). Затем снижать ее до тех пор, пока двигатель не заработает корректно. Данное значение частоты следования импульсов является максимальной скоростью обратного хода.
Нередко случается, что неправильная работа двигателя (некорректная реакция) может наблюдаться визуально. Однако рекомендуется получить более явное доказательство пропуска шагов. Если ротор совершает определенное количество шагов в каждом направлении, любой пропуск или дополнительный набор шагов приведет к смене окончательного положения вала. Это можно зафиксировать гораздо более легко, чем замедление двигателя. Если используется датчик положения вала (например, как обсуждалось в В.4), следует позаботиться о достаточно низкой инерции, которая в противном случае может привести к появлению некорректного результата.
В.9 Резонанс
Подать серию импульсов на двигатель в соответствии с описанием в В.6. Постепенно увеличивать частоту следования импульсов до тех пор, пока двигатель не выйдет из синхронизма. Зафиксировать частоту следования импульсов. Начиная с чуть меньшей частоты следования импульсов (при которой двигатель работает удовлетворительно) и быстро, но плавно превысить предварительно заданную частоту следования импульсов. Вновь постепенно повышать частоту следования импульсов до тех пор, пока двигатель не выйдет из синхронизма. Повторить данный процесс для обнаружения всех резонансных значений до тех пор, пока двигатель не потеряет работоспособность. Повторить процесс в обратном порядке (уменьшая частоту следования импульсов) для обнаружения верхних границ порогов областей резонанса.
Альтернативный метод запуска шагового двигателя - поворачивать вал со скоростью, превышающей заданную синхронную частоту вращения, и позволить ротору войти в синхронизм, продолжая испытание, как и раньше.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.