Межгосударственный стандарт ГОСТ 8.631-2013 (OIML R 60:2000) "Государственная система обеспечения единства измерений. Датчики весоизмерительные. Общие технические требования. Методы испытаний" (введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. N 2086-ст)
State system for ensuring the uniformity of measurements Load cells. General technical requirements. Testing methods
Дата введения - 1 июля 2015 г.
Введен впервые
Предисловие
Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"
Предисловие к международной рекомендации МОЗМ MP 60:2000
Международная организация законодательной метрологии (МОЗМ) - всемирно известная межправительственная организация, главная цель которой заключается в гармонизации предписаний к средствам измерений и правил метрологического контроля, применяемых национальными метрологическими службами или подобными организациями стран - членов МОЗМ.
Две основные категории публикаций МОЗМ:
- Международная рекомендация (МОЗМ MP) - документ, устанавливающий требования к метрологическим характеристикам средства измерений, а также определяющий методы и оборудование для проверки соответствия характеристик установленным требованиям. Государства - члены МОЗМ должны придерживаться положений настоящей рекомендации в возможно максимальной степени;
- Международный документ (МОЗМ Д) - информационный документ, служащий для гармонизации и совершенствования работы в сфере законодательной метрологии.
Проекты рекомендаций, документов и руководств подготавливают технические комитеты и подкомитеты, в которые входят представители стран - членов МОЗМ. На консультационной основе также участвуют определенные международные и региональные организации.
Во избежание противоречивых требований к средствам измерений установлены взаимные соглашения между МОЗМ и такими организациями, как Международная организация по стандартизации (ИСО) и Международная электротехническая комиссия (МЭК). В результате изготовители и потребители средств измерений, испытательные лаборатории и т.д. могут пользоваться одновременно публикациями МОЗМ и этих организаций.
Международные рекомендации, документы, руководства и основополагающие документы издают на английском языке, их перевод осуществляют на французский язык (F) и подвергают периодическому пересмотру.
Настоящая публикация МОЗМ MP 60, издания 2000 г., подготовлена Техническим подкомитетом ТС 9 "Инструменты для измерений массы и плотности". Она была одобрена в 1999 г. Международным Комитетом по законодательной метрологии для окончательной публикации и была представлена на Международной Конференции по законодательной метрологии в 2000 г. для формального утверждения. Публикация заменяет предыдущую редакцию МОЗМ MP 60 1991 (включая приложение А, опубликованной в 1993).
Публикации МОЗМ может быть получена в штаб-квартире организации:
Bureau International de Metrologie Legale
11, rue Turgot - 75009 Paris - France
Telephone: 33 (0)1 48 78 12 82
Fax: 33 (0)1 42 82 17 27
E-mail: biml@oiml.org
Internet: www.oiml.org
1 Область применения
1.1 Настоящий стандарт устанавливает основные метрологические статические характеристики и статические методики испытаний для весоизмерительных датчиков (далее - датчиков), применяемых при измерении массы. Настоящий стандарт предназначен для обеспечения организаций единообразными средствами для определения метрологических характеристик весоизмерительных датчиков, применяемых в измерительных приборах, которые являются объектами метрологического контроля.
1.2 В настоящем стандарте составляющие погрешности весоизмерительного датчика следует рассматривать в совокупности, применяя технические характеристики весоизмерительного датчика в пределах допускаемой погрешности. Настоящий стандарт предназначен не для учета отдельных составляющих погрешности таких характеристик, как нелинейность, гистерезис и т.д., а для рассмотрения общей суммарной погрешности, допускаемой для весоизмерительного датчика. Применение кривой погрешности позволяет уравновесить отдельные составляющие суммарной погрешности измерений.
Примечание - Суммарную погрешность можно представить кривыми, определяющими границу пределов допускаемых погрешностей (см. таблицу 5), и являющуюся функцией от приложенной нагрузки (массы) во всем измерительном диапазоне. Определяемые суммарные погрешности могут быть положительными или отрицательными и учитывают влияния нелинейности, гистерезиса и температуры.
1.3 Приборы, присоединенные к весоизмерительным датчикам, и выдающие показания массы, являются предметами отдельного рассмотрения.
2 Термины, определения и обозначения
Термины, наиболее часто применяемые в области весоизмерительных датчиков, и их определения приводятся ниже (см. 2.6 для иллюстрации некоторых определений). Терминология, применяемая в настоящем стандарте, соответствует Международному словарю основополагающих терминов в метрологии [1]. Для помощи в нахождении соответствующих определений в конце настоящего стандарта, опубликован указатель терминов.
2.1 Общие термины
2.1.1 приложение нагрузки
2.1.1.1 сжимающее нагружение (compression loading): Сила сжатия, приложенная к весоизмерительному датчику.
2.1.1.2 растягивающее нагружение (tension loading): Растягивающая сила, приложенная к весоизмерительному датчику.
2.1.2 весоизмерительный датчик (load cell): Преобразователь силы в измеряемую физическую величину, применяемый в весах для измерений массы взвешиваемого объекта с учетом влияния ускорения силы тяжести и выталкивающей силы воздуха в месте измерения.
2.1.3 весоизмерительный датчик с электроникой (load cell equipped with electronics): Весоизмерительный датчик, в котором применяется группа электронных компонентов, имеющих собственные распознаваемые функции.
Примеры электроники: р-n-переход, усилитель, кодирующее устройство, A/D-преобразователь, центральный процессор (CPU), I/О-интерфейс и т.д. (не включая мостовые схемы тензорезисторов).
2.1.3.1 электронный компонент (electronic component): Наименьший физический объект, который использует электронную или дырочную проводимость в полупроводниках, газах или в вакууме.
2.1.4 эксплуатационное испытание (performance test): Испытание для подтверждения способности испытуемого датчика выполнять предписанные ему функции.
2.2 Метрологические характеристики весоизмерительных датчиков
2.2.1 класс точности (accuracy class): Класс весоизмерительных датчиков, содержащий одинаковые условия по точности.
2.2.2 обозначение по влажности (humidity symbol): Обозначение, присваиваемое датчику и указывающее режим влажности, при котором испытывался весоизмерительный датчик.
2.2.3 семейство датчиков (load cell family): Семейство весоизмерительных датчиков состоит из датчиков, имеющих:
- одинаковый материал или сочетание материалов (например, низкоуглеродистую сталь, нержавеющую сталь или алюминий);
- одинаковый принцип измерения (например, с помощью тензорезисторов, наклеенных на металл);
- одинаковую конструкцию (например, форму, герметизацию тензорезисторов, метод монтажа, метод изготовления);
- одинаковый набор характеристик (например, выходной сигнал, входной импеданс, напряжение питания, характеристики кабеля) и
- одну или несколько групп весоизмерительных датчиков.
Примечание - Определение семейства датчиков не ограничивается приведенными примерами.
2.2.3.1 группа весоизмерительных датчиков (load cell group): Все датчики в пределах семейства, обладающие идентичными метрологическими характеристиками (например, класс точности, , диапазон температур и т.д.).
Примечание - Определение группы датчиков не ограничивается приведенными примерами.
2.3 Диапазон измерений, нагрузки и выходной сигнал
2.3.1 интервал весоизмерительного датчика (load cell interval): Часть диапазона измерений весоизмерительного датчика.
2.3.2 диапазон измерений весоизмерительного датчика (load cell measuring range): Диапазон значений измеряемой величины (массы), в котором погрешность результатов измерений не превышает пределов допускаемой погрешности (mpe) (см. 2.4.9).
2.3.3 выходной сигнал весоизмерительного датчика (load cell output): Величина, поддающаяся измерению, в которую датчик преобразует измеряемую величину (массу).
2.3.4 поверочный интервал весоизмерительного датчика (load cell verification interval); : Интервал весоизмерительного датчика, выраженный в единицах массы, применяемый при классификации по точности.
2.3.5 максимальная статическая нагрузка (maximum capacity); : Наибольшее значение массы, которая может быть приложена к весоизмерительному датчику без превышения mpe (см. 2.4.9).
2.3.6 максимальная нагрузка диапазона измерений (maximum load of the measuring range); : Наибольшее значение массы, которая прилагается к весоизмерительному датчику в процессе испытания или применения; это значение не должно превышать (см. 2.3.5).
Примечание - О предельных значениях в процессе испытания см. А.3.2.4 (приложение А).
2.3.7 максимальное число поверочных интервалов весоизмерительного датчика (maximum number of load cell verification intervals); : Наибольшее число поверочных интервалов, на которое может быть разделен диапазон измерений весоизмерительного датчика и для которого погрешность результата измерений не превышает mpe (см. 2.4.9).
2.3.8 минимальная статическая нагрузка (minimum dead load); : Наименьшее значение массы, которое может быть приложено к весоизмерительному датчику без превышения mpe (см. 2.4.9).
2.3.9 невозврат выходного сигнала при возврате к минимальной нагрузке (minimum dead load output return); DR: Разность выходных сигналов датчика при наименьшей статической нагрузке, измеренных до и после приложения нагрузки.
2.3.10 минимальный поверочный интервал весоизмерительного датчика (minimum load cell verification interval); : Наименьший поверочный интервал (в единицах массы), на который можно разделить диапазон измерений датчика.
2.3.11 минимальная нагрузка диапазона измерений (minimum load of the measuring range); : Наименьшее значение величины (массы), которое прикладывается к весоизмерительному датчику в процессе испытания или применения, это значение не должно быть менее (см. 2.3.8).
Примечание - Об ограничениях по в период испытания см. А.3.2.4 (приложение А).
2.3.12 число поверочных интервалов весоизмерительных датчиков (number of load cell verification intervals); n: Число поверочных интервалов весоизмерительного датчика, на которые может быть разделен диапазон измерений датчика.
2.3.13 относительное DR или Z (relative DR or Z): Отношение максимальной нагрузки к двукратному невозврату выходного сигнала при возврате к минимальной нагрузке DR. Это отношение применяется для характеристики приборов с несколькими поверочными интервалами.
2.3.14 относительный или Y (relative or Y): Отношение нагрузки к минимальному поверочному интервалу весоизмерительного датчика .
Примечание - Это отношение характеризует разрешающую способность весоизмерительного датчика, не зависящую от нагрузки датчика.
2.3.15 предел допустимой статической нагрузки (safe load limit); : Максимальная нагрузка, которая может быть приложена без создания постоянного смещения рабочих характеристик, выходящих за установленные пределы.
2.3.16 время прогрева (warm-up time): Промежуток времени между моментом подачи питания к датчику и моментом, при котором весоизмерительный датчик становится способным соответствовать требованиям.
2.4 Измерения и выражения погрешностей
2.4.1 ползучесть (creep): Изменение выходного сигнала датчика, происходящее со временем, тогда как нагрузка, условия окружающей среды и другие изменяемые показатели остаются постоянными.
2.4.2 доля от пределов допускаемой погрешности весов (apportionment factor) : Значение безразмерной десятичной дроби (например, 0,7), применяемое при определении mpe (см. 2.4.9); доля показывает часть mpe весов, приписываемую только весоизмерительному датчику.
2.4.3 расширенная неопределенность (expanded uncertainty): Величина, определяющая ожидаемый интервал вокруг результата измерений, для охвата большей части распределения значений, которые могут быть обосновано приписаны измеряемой величине [2].
2.4.4 ошибка (fault): Разность между погрешностью весоизмерительного датчика и основной погрешностью весоизмерительного датчика (см. 2.4.8).
2.4.5 выходной сигнал обнаружения ошибки (fault detection output): Электронное сообщение, выданное весоизмерительным датчиком, показывающее наличие ошибки при измерении.
2.4.6 составляющая погрешности, связанная с гистерезисом (hysteresis error): Разность между показаниями на выходе весоизмерительного датчика при одной и той же приложенной нагрузке, причем одно показание получено при увеличении нагрузки от минимальной , а другое - при уменьшении нагрузки от максимальной .
2.4.7 погрешность весоизмерительного датчика (load cell error): Разность между результатом измерения весоизмерительного датчика и истинным значением измеряемой величины (приложенная сила, выраженная в единицах массы) [1].
2.4.8 основная погрешность весоизмерительного датчика (load cell intrinsic error): Погрешность весоизмерительного датчика, определенная при нормальных условиях (см. 2.5.3) [1].
2.4.9 пределы допускаемой погрешности; mpe (maximum permissible error): Предельные значения погрешности, допустимые настоящим стандартом (см. 5) для весоизмерительного датчика [1].
2.4.10 нелинейность (non-linearity): Отклонение значений выходных сигналов весоизмерительного датчика от прямой линии при нагружении.
2.4.11 повторяемость (repeatability): Способность весоизмерительного датчика выдавать последовательные согласованные результаты при одной и той же нагрузке, приложенной к весоизмерительному датчику несколько раз одним и тем же способом при постоянных условиях испытаний [1].
2.4.12 составляющая погрешности, связанная с повторяемостью (repeatability error): Разность между показаниями на выходе весоизмерительного датчика, взятыми при последовательных испытаниях при одинаковых нагрузках и условиях измерений [1].
2.4.13 чувствительность (sensitivity): Отношение изменения в отклике (выходном сигнале) весоизмерительного датчика к соответствующему изменению задающего воздействия (приложенной нагрузки).
2.4.14 промах (significant fault): Ошибка большая, чем поверочный интервал весоизмерительного датчика .
Примечание - Приведенные ниже показатели не следует рассматривать как промах, даже если они превышают поверочный интервал весоизмерительного датчика :
- ошибки, возникающие при одновременных и взаимно независимых случаях;
- ошибки, означающие невозможность выполнения любых измерений;
- ошибки, являющиеся столь очевидными, что не могут остаться незамеченными всеми заинтересованными в результате измерений сторонами;
- преходящие ошибки, мгновенно изменяемые на выходе датчика, которые нельзя объяснить, запомнить или передать в качестве результата измерения.
2.4.15 стабильность диапазона измерения (span stability): Способность весоизмерительного датчика поддерживать разность между выходным сигналом при максимальной нагрузке и выходным сигналом при минимальной нагрузке в указанных пределах за весь период применения.
2.4.16 влияние температуры на выходной сигнал при минимальной статической нагрузке (temperature effect on minimum dead load output): Изменение выходного сигнала при минимальной статической нагрузке, обусловленное изменением окружающей температуры.
2.4.17 влияние температуры на чувствительность (temperature effect on sensitivity): Изменение чувствительности, обусловленное изменением окружающей температуры.
2.5 Влияющие и нормальные условия
2.5.1 влияющая величина (influence quantity): Величина, которая не является измеряемой, но оказывает влияние на результат измерений (например, температуру или уровень влажности наблюдают или записывают в момент измерений) [1].
2.5.1.1 помеха (disturbance): Влияющая величина, имеющая значения в пределах, определенных в настоящем стандарте, но вне номинального эксплуатационного режима весоизмерительного датчика.
2.5.1.2 влияющий фактор (influence factor): Влияющая величина, имеющая значение в пределах назначенных условий эксплуатации весоизмерительного датчика (например, определенная температура или определенное напряжение питания, при которых может быть испытан датчик).
2.5.2 назначенные условия эксплуатации (rated operating conditions): Условия применения, при которых метрологические характеристики весоизмерительного датчика должны быть в пределах указанного mpe (см. 2.4.9).
Примечание - Назначенные условия эксплуатации, как правило, определяют диапазоны или определенные значения измеряемой величины и влияющих величин.
2.5.3 нормальные условия (reference conditions): Условия применения, нормированные для проверки характеристик весоизмерительного датчика или для сравнения результатов измерений.
Примечание - Нормальные условия, как правило, включают в себя опорные значения или нормированные области значений влияющих величин, воздействующих на весоизмерительный датчик.
2.6 Иллюстрация некоторых определений
На рисунке 1 термины, приведенные выше центральной горизонтальной линии, являются параметрами, присущими конструкции весоизмерительного датчика. Термины, приведенные ниже этой линии, являются параметрами, изменяемыми в зависимости от условий применения, или при испытании датчика.
3 Единицы измерения
Единицы измерений массы - грамм (г), килограмм (кг), тонна (т).
4 Метрологические требования
4.1 Классификация весоизмерительных датчиков
Классификация весоизмерительных датчиков по классам точности облегчает их применение в различных системах измерений массы. При применении настоящего стандарта следует признать, что эффективные рабочие характеристики конкретного весоизмерительного датчика могут быть улучшены путем компенсации в пределах измерительной системы, в которой он применяется. Поэтому настоящий стандарт не требует, чтобы датчик имел тот же класс точности, что и измерительная система, в которой он может применяться. И не требуется, чтобы в измерительном приборе, выдающем показания массы, применялся весоизмерительный датчик, тип которого утвержден отдельно.
4.2 Классы точности
Весоизмерительные датчики следует разделять в соответствии с их общими эксплуатационными возможностями на четыре класса точности, которые обозначают следующим образом:
- класс А;
- класс В;
- класс С;
- класс D.
4.3 Максимальное число поверочных интервалов
Наибольшее число поверочных интервалов весоизмерительного датчика , на которые может быть разделен диапазон измерений датчика в измерительной системе, должно быть в пределах, установленных в таблице 1.
Таблица 1 - Наибольшее число поверочных интервалов , соответствующее классу точности
Класс точности |
А |
В |
С |
D |
Нижний предел |
50 000 |
5000 |
500 |
100 |
Верхний предел |
Неограничен |
100 000 |
10 000 |
1000 |
4.4 Минимальный поверочный интервал весоизмерительного датчика
Следует определить минимальный поверочный интервал датчика .
4.5 Дополнительные классификации
Весоизмерительные датчики также следует классифицировать по типу нагрузки, прилагаемой к датчику: нагружение сжатия или нагружение расстяжения. Датчики могут применяться для измерений разных типов нагрузки. Необходимо определить тип нагрузки, для которой применяется классификация. Для датчиков с несколькими типами нагрузки, каждый тип нагрузки следует классифицировать отдельно.
4.6 Полная маркировка весоизмерительных датчиков
Весоизмерительные датчики следует классифицировать по шести разделам:
- указанию класса точности (см. 4.2 и 4.6.1);
- максимальному числу поверочных интервалов (см. 4.3 и 4.6.2);
- виду нагрузки, если требуется (см. 4.5 и 4.6.3);
- особым границам рабочей температуры, если требуется (см. 4.6.4);
- обозначению по влажности, если требуется (4.6.5) и
- дополнительной информации по характеристикам, как приведено ниже.
Пример маркировки весоизмерительного датчика по шести разделам приведен на рисунке 2.
4.6.1 Указание класса точности
Весоизмерительные датчики класса А следует обозначать буквой "А", класса В - буквой "В", класса С - буквой "С" и класса D - буквой "D".
4.6.2 Максимальное число поверочных интервалов весоизмерительных датчиков
Максимальное число поверочных интервалов датчиков конкретного класса точности, следует обозначать в действительных (фактических) единицах (например, 3000) или при объединении с обозначением класса точности (см. 4.6.1) для создания символа классификации (см. 4.6.7) следует указывать в единицах 1000.
4.6.3 Обозначение вида нагрузки, прикладываемой к весоизмерительному датчику
Необходимо указать обозначение вида нагрузки, прикладываемой к весоизмерительному датчику, применяя символы, приведенные в таблице 2, если оно не представляется очевидным из конструкции весоизмерительного датчика.
Таблица 2
Вид нагрузки |
Символ |
Вид нагрузки |
Символ |
Растяжение |
Балка (сдвиг или изгиб) |
или |
|
Сжатие |
Универсальная |
4.6.4 Указание предельных значений температуры
Если пределы допускаемой погрешности весоизмерительного датчика не соответствуют, определенным по 5.1-5.5, во всем диапазоне температур, определенном по 5.5.1.1, то необходимо установить особые предельные значения температуры по 5.5.1.2. В таких случаях температурные границы следует указывать в градусах Цельсия.
4.6.5 Обозначение по влажности
4.6.5.1 Если весоизмерительный датчик не подвергается испытанию на воздействие влажности, как указано в А.4.5 и А.4.6 (приложение А), это следует обозначить символом "NH".
4.6.5.2 Если весоизмерительный датчик подвергают испытанию на воздействие влажности, как указано в А.4.5 (приложение А), его можно обозначить символом "СН" или не наносить символ классификации по влажности.
4.6.5.3 Если весоизмерительный датчик подвергают испытанию на влагоустойчивость, как указано в А.4.6 (приложение А), это следует обозначить символом "SH".
4.6.6 Дополнительная информация
4.6.6.1 Обязательная дополнительная информация
Дополнительно к сведениям по 4.6.1-4.6.5, необходимо указывать следующие данные:
a) наименование или торговую марку изготовителя;
b) обозначение модели весоизмерительного датчика;
c) серийный номер и год изготовления;
d) минимальную статическую нагрузку , наибольшую нагрузку , предел допустимой нагрузки (в граммах (г), килограммах (кг) или тоннах (т));
e) наименьший поверочный интервал весоизмерительного датчика ;
f) другие условия, которые необходимо соблюдать для получения определенных рабочих характеристик (например, электрические характеристики весоизмерительного датчика, такие как выходной сигнал, входной импеданс, напряжение питания, характеристики кабеля и т.д.);
g) значение доли от пределов допускаемой погрешности весов , не равное 0,7.
4.6.6.2 Необязательная дополнительная информация
Дополнительно к сведениям по 4.6.1-4.6.6.1, по желанию может быть представлена следующая информация:
4.6.7 Стандартная классификация
Следует применять стандартную классификацию; примеры приведены в таблице 3.
Таблица 3
Классификационное обозначение |
Описание |
С2 |
Класс С, 2000 интервалов |
С3 5/35 |
Класс С, 3000 интервалов, сжатие, температура от 5°С до 35°С |
С2 NH |
Класс С, 2000 интервалов, не подвергается испытаниям на влажность |
4.6.8 Многофакторная классификация
На весоизмерительных датчиках, имеющих сложную классификацию для нагрузки различных видов, следует указывать информацию для каждой классификации. Примеры приведены в таблице 4.
Иллюстрация символов стандартной классификации с использованием примера приведена на рисунке 2.
Таблица 4 - Примеры многофакторных классификаций
Классификационное обозначение |
Описание |
С2 |
Класс С, 2000 интервалов, сдвиг (балка) |
С1.5 |
Класс С, 1500 интервалов, изгиб (балка) |
С1 -5/30 |
Класс С, 1000 интервалов, сжатие от минус 5°С до плюс 30°С |
С3 -5/30 |
Класс С, 3000 интервалов, растяжение от минус 5°С до плюс 30°С |
4.7 Представление информации
4.7.1 Минимальные требования к маркировке весоизмерительных датчиков
На каждом датчике должно быть нанесено следующее минимальное количество информации по 4.6:
a) наименование или торговая марка изготовителя;
b) модель весоизмерительного датчика;
c) серийный номер;
4.7.2 Необходимая информация, не нанесенная на весоизмерительный датчик
Если сведения по 4.6, не нанесены на весоизмерительный датчик, изготовитель приводит их в прилагаемой к весоизмерительному датчику документации. Если такая документация предоставляется, то в ней также приводят сведения по 4.7.1.
4.8 Испытания в целях утверждения типа
4.8.1 Свидетельство
Свидетельство должно быть составлено в соответствии с требованиями национального законодательства. В приложении Е приведены характеристики датчиков, которые обязательно должны быть указаны в описании типа.
4.8.2 Ссылка на информацию в свидетельстве
Независимо от результатов испытаний любого датчика из семейства, в описании типа (приложение к свидетельству) не должны указываться характеристики или значения, которые отличаются от заявленных и гарантируемых изготовителем, например, соответствующих характеристик и значений, указанных в прилагаемом изготовителем паспорте.
5 Пределы допускаемой погрешности весоизмерительных датчиков
5.1 Пределы допускаемой погрешности для каждого класса точности
Пределы допускаемой погрешности для каждого класса точности относятся к максимальному числу поверочных интервалов, определенных для весоизмерительного датчика (см. 4.3) и к действительному значению поверочного интервала датчика .
5.1.1 Испытания образца
Значения mpe (см. 2.4.9) при испытании образца следует получать с применением выражений, находящихся в первой графе таблицы 5. Изготовителю необходимо выбрать и заявить значение доли пределов допускаемой погрешности весов (если оно отличается от 0,7), которое должно быть в диапазоне 0,3-0,8 *.
Значение доли пределов допускаемой погрешности весов , если оно не равно 0,7, необходимо указывать в описании типа. Если коэффициент пропорционального распределения не указан в описании типа, то его следует принять равным 0,7.
Пределы допускаемой погрешности весоизмерительных датчиков могут быть положительными или отрицательными и применимы как к увеличивающимся нагрузкам, так и к уменьшающимся.
Предельные значения погрешности весоизмерительных датчиков содержат погрешности, обусловленные нелинейностью, гистерезисом и влиянием температуры на чувствительность в определенных диапазонах температуры, указанных в 5.5.1.1 и 5.5.1.2. Остальные погрешности, не включенные в указанные выше пределы, рассматривают отдельно.
5.2 Правила определения погрешностей
5.2.1 Условия
Приведенные в 5.1 пределы погрешности следует применять ко всем диапазонам измерений весоизмерительных датчиков, удовлетворяющих следующим условиям:
;
.
5.2.2 Пределы погрешности
Пределы допускаемой погрешности следует отнести к кривой погрешности, определенной в 1.2 и 5.1, которую сравнивают с прямой линией, проходящей через значения минимального выходного сигнала и выходного сигнала датчика при нагрузке равной 75% диапазона измерений, снятых при возрастающей нагрузке и температуре 20°С. Это основано на первоначальном испытании нагружением при температуре 20°С (см. С.2.2, приложение С).
5.2.3 Первоначальные показания
В процессе проведения испытаний начальные показания следует снимать в соответствующем промежутке времени после начала нагружения или разгружения, как указано в таблице 6.
Таблица 6 - Суммарное время нагружения и стабилизации перед снятием показаний
Изменение нагрузки, кг |
Время, с |
||||
От |
0 |
до |
10 |
включ. |
10 |
Св. |
10 |
" |
100 |
" |
20 |
" |
100 |
" |
1000 |
" |
30 |
" |
1000 |
" |
10000 |
" |
40 |
" |
10000 |
" |
100000 |
" |
50 |
" |
100000 |
|
|
|
60 |
5.2.3.1 Время нагружения/снятия нагрузки
Время, необходимое для нагружения или снятия нагрузки должно составлять приблизительно половину указанного времени. Оставшееся время необходимо для стабилизации. Испытания следует проводить при постоянных режимах. Время необходимо записывать в протокол испытания в абсолютных единицах.
5.2.3.2 Недостаток времени нагружения/снятия нагрузки
Если невозможно уложиться в указанное время для нагружения или снятия нагрузки, то:
a) в случае испытания на невозврат выходного сигнала при возврате к минимальной нагрузке время может быть увеличено от 100% до предельных 150% от указанного времени при условии, что допустимое отклонение результата пропорционально уменьшенной от 100% до 50% разрешенной разницы между начальным показанием выходного сигнала при минимальной нагрузке после снятия нагрузки и показанием перед нагружением;
b) в других случаях фактическое время записывают в протокол.
5.3 Допускаемые расхождения между результатами
5.3.1 Ползучесть
При постоянной максимальной нагрузке между 90% и 100% , приложенной к весоизмерительному датчику, разность между первоначальным показанием и любым показанием, полученным в течение следующих 30 мин не должна превышать 0,7 абсолютного значения mpe для приложенной нагрузки (см. 5.3.1.1). Разность между показанием, полученным через 20 мин, и показанием, полученным через 30 мин, не должна превышать 0,15 абсолютного значения mpe (см. 5.3.1.1).
5.3.1.1 Максимально допустимая составляющая погрешности, связанная с ползучестью
Независимо от значения, заявленного изготовителем для доли от пределов допускаемой погрешности весов , mpe для ползучести следует определять из таблицы 5, применяя долю от пределов допускаемой погрешности весов , равную 0,7.
5.3.2 Невозврат выходного сигнала при возврате к минимальной нагрузке
Разность между начальным показанием выходного сигнала при минимальной нагрузке и показанием после возвращения к минимальной нагрузке , от наибольшей нагрузки между 90% и 100% от , приложенной в течение 30 мин, не должна превышать половины значения поверочного интервала весоизмерительного датчика .
5.4 Составляющая погрешности, связанная с повторяемостью
Наибольшая разность между результатами пяти идентичных приложений нагрузки к весоизмерительным датчикам классов А и В и трех идентичных приложений нагрузки к весоизмерительным датчикам классов С и D не должна быть больше, чем абсолютное значение mpe для такой нагрузки.
5.5 Влияющие величины
5.5.1 Температура
5.5.1.1 Предельные значения температуры
Исключая влияние температуры на значение выходного сигнала при минимальной статической нагрузке, погрешности весоизмерительного датчика не должны превышать предельных значений, указанных в 5.1.1, во всем диапазоне температуры от минус 10°С до плюс 40°С, если не указан другой диапазон в соответствии с 5.5.1.2.
5.5.1.2 Особые предельные значения температуры
Весоизмерительные датчики, для которых установлены особые предельные значения температуры, должны удовлетворять 5.1.1 в этом диапазоне температур.
Разность между максимальным и минимальным предельными значениями температуры должна быть не менее:
5°С для весоизмерительных датчиков класса А;
15°С для весоизмерительных датчиков класса В;
30°С для весоизмерительных датчиков классов С и D.
5.5.1.3 Влияние температуры на выходной сигнал при минимальной статической нагрузке
Выходной сигнал весоизмерительного датчика при минимальной статической нагрузке во всем температурном диапазоне, указанном в 5.5.1.1 или 5.5.1.2, не должен меняться количественно более чем на минимальный поверочный интервал датчика , умноженный на долю от предела допускаемой погрешности весов , для изменения температуры окружающей среды:
- на 2°С для весоизмерительных датчиков класса А;
- на 5°С для весоизмерительных датчиков классов В, С и D.
Выходной сигнал при минимальной нагрузке следует снимать после того, как весоизмерительный датчик термически стабилизируется при температуре окружающей среды.
5.5.2 Барометрическое давление
Выходной сигнал весоизмерительного датчика не должен меняться количественно больше, чем на минимальный поверочный интервал датчика , при изменении барометрического давления на 1 кПа в диапазоне 95-105 кПа.
5.5.3 Влажность
Если весоизмерительный датчик обозначен символом "NH", то он не подвергается испытанию на воздействие влажности, как указано в А.4.5 или А.4.6 (приложение А).
Когда весоизмерительный датчик обозначен символом "СН" или не содержит обозначения по влажности, следует проводить испытание на воздействие влажности, как указано в А.4.5 (приложение А).
Если весоизмерительный датчик обозначен символом "SH", следует проводить испытание на воздействие влажности, как указано в А.4.6 (приложение А).
5.5.3.1 Погрешность, вызванная воздействием влажности (применимо к весоизмерительным датчикам, обозначенным символом "СН", или без обозначения пo влажности и не применимо к датчикам с символами "NH" и "SH").
Разность между средним значением выходных сигналов при минимальной нагрузке перед проведением испытания на воздействие влажности и средним значением из выходных сигналов для такой же нагрузки, полученным после проведения испытаний на воздействие влажности в соответствии с А.4.5 (приложение А), не должна быть больше, чем 4% разности между выходным сигналом при максимальной нагрузке и сигналом при минимальной статической нагрузке .
Разность между средним из трех значений выходного сигнала при максимальной нагрузке диапазона измерений для весоизмерительных датчиков классов точности С и D или из пяти значений выходного сигнала для весоизмерительных датчиков классов точности А и В (откорректированных на выходной сигнал при минимальной нагрузке), полученных перед проведением испытания на воздействие влажности в соответствии с А.4.5 (приложение А), и средним из трех значений выходного сигнала для весоизмерительных датчиков классов точности С и D или из пяти значений выходного сигнала для весоизмерительных датчиков классов точности А и В, полученных при такой же максимальной нагрузке диапазона измерений (откорректированных на выходной сигнал при минимальной нагрузке) после проведения испытания на воздействие влажности, не должна быть больше, чем значение поверочного интервала весоизмерительного датчика .
5.5.3.2 Погрешность, вызванная воздействием влажности (применимо к весоизмерительным датчикам, обозначенным символом "SH", и не применимо к датчикам с символами "СН" или "NH" или без обозначения по влажности).
Весоизмерительный датчик должен удовлетворять требованиям к погрешности mpe в процессе проведения испытания на воздействие влажности в соответствии с А.4.6 (приложение А).
5.6 Измерительные эталоны
Расширенная неопределенность U (для коэффициента охвата k = 2) для комбинации силовоспроизводящей системы и измерительного прибора (применяемого для наблюдения выходного сигнала весоизмерительного датчика) должна быть менее 1/3 mpe испытуемого датчика [2].
6 Требования к весоизмерительным датчикам с электроникой
6.1 Общие требования
Дополнительно к требованиям настоящего стандарта весоизмерительный датчик с электроникой должен соответствовать следующим требованиям: mpe следует определять с применением доли от пределов допускаемой погрешности весов , заменяющей долю , заявленную изготовителем и применяемую для других требований.
Если в датчик встроены практически все электронные функции электронных весоизмерительных приборов, то необходимо провести дополнительные испытания по другим требованиям, содержащимся в стандарте для весоизмерительных приборов. Такая оценка находится вне области применения настоящего стандарта.
6.1.1 Ошибки (сбои, неисправности)
Весоизмерительный датчик с электроникой необходимо спроектировать и изготовить таким образом, чтобы при нарушении электрических режимов:
a) не происходило промахов или
b) промахи обнаруживались и предпринимались соответствующие действия.
Возможность перепутать сообщение о промахе с другими сообщениями должна быть исключена.
Примечание - Независимо от значения погрешности выходного сигнала допускается ошибка не более чем поверочный интервал v.
6.1.2 Долговечность (срок службы)
Весоизмерительный датчик должен иметь соответствующую долговечность, чтобы удовлетворять требованиям настоящего стандарта при его (датчика) применении по назначению.
6.1.3 Соответствие требованиям
Весоизмерительный датчик с электроникой считают удовлетворяющим требованиям 6.1.1 и 6.1.2, если он выдержал испытания, указанные в 6.3 и 6.4.
6.1.4 Применение требований 6.1.1
Требования, указанные в 6.1.1, могут быть применены отдельно к каждому индивидуальному случаю или промаху. Выбор перечисления а) или перечисления b) 6.1.1 остается за изготовителем.
6.2 Действия при промахах
При обнаружении промаха весоизмерительный датчик должен автоматически отключиться или автоматически должен появиться выходной сигнал обнаружения ошибки. Выходной сигнал обнаружения ошибки должен выдаваться до тех пор, пока пользователь не исправит нарушение или не исчезнет ошибка.
6.3 Функциональные требования
6.3.1 Специальная процедура для весоизмерительного датчика с индикатором
Если весоизмерительный датчик с электроникой оснащен индикатором, необходимо выполнение специальной процедуры при подаче питания. При этой процедуре должны достаточно долго отражаться все необходимые символы индикатора в их активном и неактивном состояниях, чтобы пользователь мог провести их проверку.
6.3.2 Время прогрева
В режиме прогревания весоизмерительного датчика с электроникой не должна происходить передача результатов измерения.
6.3.3 Подача потребляемой мощности от сети (АС - переменный ток)
Конструкцией весоизмерительного датчика с электроникой, работающего от сети, должно быть обеспечено соответствие метрологическим требованиям при изменении параметров сети:
a) по напряжению: от минус 10% до плюс 10% от подаваемого напряжения, указанного изготовителем, и
b) по частоте: от минус 2% до плюс 2% частоты, указанной изготовителем, при использовании переменного тока (АС).
6.3.4 Подача питания от аккумуляторов (DC - постоянный ток)
Весоизмерительный датчик с электроникой, работающий от аккумуляторов, должен продолжать корректно функционировать или не выдавать результат измерений, когда напряжение питания ниже значения, указанного изготовителем.
6.3.5 Помехи
Если весоизмерительный датчик с электроникой подвергается воздействию помех, указанных в 6.4.1, разность между выходным сигналом датчика при воздействии помехи и без воздействия помехи (основная погрешность весоизмерительного датчика) не должна превышать поверочного интервала или датчик должен обнаружить промах и отреагировать на него.
6.3.6 Требования к стабильности диапазона измерения (не применимы к датчикам класса А)
Весоизмерительный датчик с электроникой подлежит испытанию на стабильность диапазона измерения по А.4.7.8 (приложение А), указанному в 6.4.1.
Изменение диапазона измерения датчика не должно превышать половины поверочного интервала или половины абсолютного значения mpe (0,5mре) в зависимости от того, какое больше для приложенной испытательной нагрузки. Целью такого испытания не является измерение влияния на метрологические характеристики монтажа или демонтажа датчика в силовоспроизводящую систему или влияния самой силовоспроизводящей системы, поэтому установку весоизмерительного датчика в силовоспроизводящую систему следует выполнять с особой тщательностью.
6.4 Дополнительные испытания
6.4.1 Эксплуатационные испытания и испытания на устойчивость к помехам и влияющим факторам
Весоизмерительный датчик с электроникой в соответствии с А.4.7 (приложение А) должен пройти эксплуатационные испытания и испытания на устойчивость к помехам и влияющим факторам, приведенным в таблице 7.
Таблица 7
Испытание |
Процедура испытания |
Характеристика испытания |
|
Время прогрева |
1,0 |
Влияющий фактор |
|
Колебания питающего напряжения |
1,0 |
То же |
|
Кратковременные понижения напряжения |
1,0 |
Помеха |
|
Наносекундные импульсные помехи |
1,0 |
" |
|
Электростатический разряд |
1,0 |
" |
|
Радиочастотные электромагнитные поля |
1,0 |
" |
|
Стабильность диапазона измерений |
1,0 |
Влияющий фактор |
В целом испытания проводят на полностью работающем оборудовании в его нормальном состоянии или в состоянии, наиболее близком к нему. Если весоизмерительный датчик оснащен интерфейсом, который позволяет подключить прибор к внешнему оборудованию, все функции, которые выполняются или инициируются через интерфейс, должны осуществляться корректно.
7 Метрологический контроль
7.1 Обязательность официальных метрологических проверок
7.1.1 Назначение проверок
Обязательные метрологические поверки проводят с целью обеспечения требований национального законодательства.
7.2 Требования к испытаниям
Процедуры испытаний образца весоизмерительного датчика представлены в приложении А, а формы протоколов испытания в приложениях С и D. Первичная и периодическая поверки датчиков отдельно от измерительной системы, в которой они установлены, неуместна, если характеристики всей измерительной системы проверяются другими методами.
7.3 Выбор весоизмерительных датчиков в пределах семейства
Когда на испытание представляется семейство, составленное из одной или нескольких групп датчиков с различными нагрузками и характеристиками, следует применять следующие положения.
7.3.1 Число датчиков, подлежащих испытанию
Отбор датчиков, подлежащих испытанию, должен быть таким, чтобы число весоизмерительных датчиков было минимальным (см. приложение В).
7.3.2 Весоизмерительные датчики на одинаковую нагрузку, принадлежащие к разным группам
Когда датчики на одинаковую нагрузку относятся к разным группам, утверждение типа весоизмерительного датчика с наилучшими метрологическими характеристиками предполагает утверждение типа весоизмерительных датчиков с худшими характеристиками. Поэтому при наличии выбора для испытания следует выбирать датчики с наилучшими метрологическими характеристиками.
7.3.3 Весоизмерительные датчики на нагрузки, находящиеся в интервале между испытуемыми нагрузками
Весоизмерительные датчики на нагрузки, находящиеся в интервале между испытуемыми нагрузками, а также датчики, максимальная нагрузка которых превышает наибольшую испытуемую не более чем в пять раз, считаются утвержденными.
7.3.4 Весоизмерительные датчики с наименьшей нагрузкой в группе
Для любой группы из семейства следует на испытания отбирать датчики на наименьшую нагрузку с лучшими характеристиками. Для любой группы всегда следует отбирать на испытания датчики с наименьшей нагрузкой в группе, кроме случаев, когда значение нагрузки попадает в диапазон допустимых нагрузок выбранных весоизмерительных датчиков, с лучшими метрологическими характеристиками в соответствии с требованиями 7.3.2 и 7.3.3.
7.3.5 Отношение наибольшей нагрузки к ближайшей меньшей нагрузке
Если отношение наибольшей нагрузки весоизмерительного датчика в каждой группе к ближайшей меньшей нагрузке датчика, отбираемого для испытания, больше 5, то следует выбрать другой датчик. Отобранный датчик должен быть рассчитан на нагрузку, в пять-десять раз большую ближайшей меньшей нагрузки датчика, выбранного для испытания. Если нагрузка датчика не удовлетворяет этому критерию, то следует выбирать весоизмерительный датчик с наименьшей нагрузкой, в 10 раз превышающей наименьшую нагрузку выбранного датчика.
7.3.6 Испытание на воздействие влажности
Если на испытание предоставляется больше одного датчика из семейства, то только один датчик следует испытывать на воздействие влажности и только один датчик с электроникой следует подвергать дополнительным испытаниям, и это должен быть датчик с самыми точными характеристиками (например, наибольшее значение или наименьшее значение ).
______________________________
* Если весоизмерительный датчик применяют в весах, то пропорциональное распределение погрешности может быть указано в стандарте на весы. Например, для весов неавтоматического действия такое распределение погрешности приведено в [3] (подпункт 3.10.2.1).
______________________________
* В зависимости от конструкции весоизмерительного датчика это испытание может быть необязательным.
** Испытание не является обязательным, если датчик имеет обозначение "NH" или "SH".
*** Испытание не является обязательным, если весоизмерительный датчик имеет обозначение "NH" или "SH", или не имеет маркировки по влажности.
Указатель терминов
Влияние температуры на выходной сигнал при минимальной статической нагрузке |
|
Влияние температуры на чувствительность |
|
Влияющая величина |
|
Влияющие и нормальные условия |
|
Влияющий фактор |
|
Время прогрева |
|
Выходной сигнал весоизмерительных датчиков |
|
Выходной сигнал с обнаруженной ошибкой |
|
Группа весоизмерительных датчиков |
|
Датчик весоизмерительный |
|
Датчик весоизмерительный, снабженный электронным устройством |
|
Диапазон измерения весоизмерительных датчиков |
|
Иллюстрация некоторых определений |
|
Интервал весоизмерительных датчиков |
|
Класс точности |
|
Коэффициент распределения |
|
Максимальная грузоподъемность |
|
Максимальная допускаемая погрешность (mре) |
|
Максимальная испытательная нагрузка |
|
Максимальная нагрузка измерительного диапазона |
|
Максимальное число поверочных интервалов весоизмерительных датчиков |
|
Метрологические характеристики весоизмерительных датчиков |
|
Минимальная испытательная нагрузка |
|
Минимальная нагрузка измерительного диапазона |
|
Минимальная статическая нагрузка |
|
Минимальный поверочный интервал весоизмерительных датчиков |
|
Нагружение растяжения |
|
Нагружение сжатием |
|
Невозврат выходного сигнала при возврате к минимальной нагрузке (DR) |
|
Нелинейность |
|
Нормальные условия |
|
Нормированные рабочие условия |
|
Общие термины |
|
Основная погрешность весоизмерительных датчиков |
|
Относительные DR и Z |
|
Относительные и Y |
|
Ошибка |
|
Поверочный интервал весоизмерительных датчиков |
|
Повторяемость |
|
Погрешность гистерезиса |
|
Погрешность весоизмерительного датчика |
|
Погрешность повторяемости |
|
Ползучесть |
|
Помеха |
|
Предел безопасной нагрузки |
|
Приложение нагрузки |
|
Расширенная неопределенность |
|
Семейство весоизмерительных датчиков |
|
Символ влажности |
|
Стабильность |
|
Существенная ошибка |
|
Термины диапазона, грузоподъемности и выходного сигнала |
|
Термины измерения и погрешности |
|
Число поверочных интервалов весоизмерительных датчиков (n) |
|
Чувствительность |
|
Эксплуатационные испытания |
|
Электронный компонент |
Библиография
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Межгосударственный стандарт ГОСТ 8.631-2013 (OIML R 60:2000) "Государственная система обеспечения единства измерений. Датчики весоизмерительные. Общие технические требования. Методы испытаний" (введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. N 2086-ст)
Текст ГОСТа приводится по официальному изданию Стандартинформ, 2014 г.
Дата введения - 1 июля 2015 г.
1 Подготовлен Всероссийским научно-исследовательским институтом метрологии им. Д.И. Менделеева Федерального агентства по техническому регулированию и метрологии на основе собственного аутентичного перевода на русский язык международной рекомендации, указанной в пункте 4
2 Внесен Техническим комитетом по стандартизации ТК 310 "Эталоны и поверочные схемы"
3 Принят Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 ноября 2013 г. N 44)
За принятие проголосовали:
Краткое наименование страны по МК (ИСО 3166) 004-97 |
Код страны по МК (ИСО 3166) 004-97 |
Сокращенное наименование национального органа по стандартизации |
Армения |
AM |
Минэкономики Республики Армения |
Беларусь |
BY |
Госстандарт Республики Беларусь |
Казахстан |
KZ |
Госстандарт Республики Казахстан |
Киргизия |
KG |
Кыргызстандарт |
Россия |
RU |
Росстандарт |
Туркмения |
ТМ |
Главгосслужба "Туркменстандартлары" |
Узбекистан |
UZ |
Узстандарт |
4 Настоящий стандарт модифицирован по отношению к международной рекомендации OIML R 60:2000 Metrological regulation for load cells (Метрологическое регулирование весоизмерительных датчиков), путем внесения дополнительного приложения, что обусловлено требованиями законодательства Российской Федерации в области единства измерений.
Наименование настоящего стандарта изменено относительно наименования указанной международной рекомендации для приведения в соответствие с ГОСТ 1.5-2001. Степень соответствия - модифицированная (MOD)
5 Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. N 2086-ст межгосударственный стандарт ГОСТ 8.631-2013 (OIML R 60:2000) введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2015 г.
6 Введен впервые
Текст ГОСТа приводится с учетом поправки, опубликованной в ИУС "Национальные стандарты", 2022, N 6
Текст ГОСТа приводится с учетом поправки, опубликованной в ИУС "Национальные стандарты", 2015 г., N 8