Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение В
(справочное)
Метод измерений
В.1 Средства измерения
В.1.1 Двойной монохроматор: рекомендуемый прибор
Измерения источника в целях классификации опасности требует точности при калибровке и испытаниях. Широкая спектральная чувствительность приемника излучения и высокая спектральная разрешающая способность, необходимые для обеспечения точной оценки, приводят к жестким требованиям для случайного внеполосного светового отклонения. Источники для калибровки обеспечивают широкое спектральное выходное значение характеристики, которое должно быть исключено из полосы пропускания. Отношение внеполосной энергии к энергии полосы пропускания при 270 нм для вольфрамовых или вольфрамовых галогенных ламп для калибровки - должно быть менее . Двойной монохроматор - это единственный прибор, который обеспечивает необходимую селективность, и он рекомендован для измерений опасности, УФ и видимого излучений. Признано, что система монохроматора ограничивает удобство и скорость. Единичный монохроматор используют в УФ или видимом спектре только тогда, если результаты сравнимы с теми результатами, которые могут быть получены с двойным монохроматором. Например, единичный монохроматор может быть достаточен для таких ламп, как светодиодные, которые имеют очень ограниченную спектральную полосу излучения.
В.1.2 Широкополосные приемники излучения
Можно использовать современные широкополосные приемники излучения, откалиброванные по соответствующему спектру действия и с соответствующей точностью. Они удобны для использования с импульсными источниками короткой продолжительности или малоинтенсивными источниками. Широкополосные сенсоры опасности обычно выравнивают взвешенный спектр путем использования фильтров. Выравнивание никогда не бывает точным и приводит к некоторым погрешностям. Спектральная погрешность вносится в неопределенность только в том случае, когда спектр источника и спектральная чувствительность приемника излучения неизвестны.
Если спектр источника неизвестен, то пик наибольшего отклонения в процентном соотношении между показаниями приемника и спектром действия должен быть представлен как неопределенность. Это определение неопределенности должно включать рассмотрение спектральной зоны, где спектр действия равен нулю.
Когда известны чувствительность приемника излучения и спектр источника, тогда прямые подсчеты могут установить поправочный коэффициент. Используя соответствующие поправочные коэффициенты, широкополосный приемник излучения обеспечивает обоснованный метод измерений по настоящему стандарту. Метролог должен показать, что поправочный коэффициент обоснован в каждом конкретном случае. Варианты, которые приводят или могут привести к изменениям в спектре, требуют пересмотра поправочного коэффициента.
Примечание - Комбинация широкополосных радиометров и двойного монохроматора может улучшить процесс измерений во многих случаях. Исследование пространственных, временных или случайных изменений от типов источников света можно быстро провести с использованием приемника излучения с фильтром.
В.2 Ограничения средств измерения
В.2.1 Шум, эквивалентный энергетической освещенности
Все средства измерения имеют предел, ниже которого измерения невозможны. Для анализа опасности ошибочно отмечать нулевой сигнал, в том случае, когда измеренное значение находится ниже предела средства измерения. Средство измерения, используемое для проверки опасности, должно иметь характеристику, определяющую уровень или уровни предела измерений. При нулевом показании средства измерения - или ниже предела измерений должен быть указан соответствующий предел измерений. Если величина предела средства измерения имеет такой значительный уровень, что влияет на классификацию источников, то необходимо средство измерения более высокого качества.
Примечание - Предел измерений спектрорадиометра обычно связан с пределом шума приемника излучений. Предел шума приемника излучения может быть принят как среднее квадратичное изменение темнового сигнала приемника излучения. Значение предела шума приемника излучения, умноженное на значение диапазона спектра калибровки системы, для получения спектра в том же диапазоне, что и при измерении, называют "эквивалентный входной сигнал шума. Указанное спектральное измерение имеет большее значение при каждой длине волны измеренного спектра и эквивалентном входном сигнале шума.
В.2.2 Спектральная чувствительность средства измерения
Вид спектральной чувствительность (функция щели) и отношение измеренного интервала к ширине полосы будут определять способность системы точно измерять сигналы с узким спектром, например, линии излучения атома (см. Kostkowski, 1997 г., глава 5).
Монохроматор с совершенной треугольной спектральной чувствительностью - (функция щели) используют в системе, которая имеет указанный интервал, который ровно разделен на ширину полосы со всеми точно измеренными сигналами независимо от их вида спектральной чувствительности (см. МКО 63 - 1984, п. 1.8.4.2.1 или Kostkowski, 1997 г., п. 5.9). Отклонение от этого может привести к ошибкам при измерениях энергии. Спектральная чувствительность системы должна быть определена высокой спектральной разрешающей способностью для измерения источника света с узкой длиной волны. Измеренный спектр должен быть симметричен длине волны источника, чтобы представлять чувствительность системы при установлении на единственную длину волны. Способность системы точно измерять энергию от узкополосного сигнала - точность получения суммы спектральных чувствительностей для каждой объявленной длины волны. Колебание в суммированном спектре - это потенциальная погрешность в общем измеренном сигнале, которая должна быть учтена при анализе неопределенности.
Характеристики средства измерений будут влиять на результаты оценок опасностей. Ширина полосы монохроматора будет изменять взвешенные результаты любого спектра при измерениях уровней. Все средства измерений с ограниченной шириной полосы дают сигнал при неправильной длине волны, приводя к погрешностям во взвешенной сумме.
Таблица В.1 показывает рекомендуемую ширину полосы на 2% более границы и неопределенности во взвешенных суммах.
Таблица В.1
Диапазон , нм |
Ширина полосы (FWHM) |
200 < 400 |
Не более 4 нм |
400 < 600 |
Не более 8 нм |
600 < 1400 |
Не более 20 нм |
1400 |
Без ограничения |
Более сложный анализ, который учитывает спектр источника, может быть использован для уменьшения предлагаемой точности ширины полосы. Результаты анализа должны быть включены в объявленную неопределенность измерений.
Примечание - Системы, которые постоянно суммируют сигнал в течение спектрального сканирования, не будут создавать погрешностей в полной измеренной мощности от вида спектральной чувствительности или от отношения ширины полосы к объявленному интервалу. Большие значения ширины полос все еще будут приводить к погрешностям во взвешенных результатах с этим типом прибора.
В.2.3 Точность длины волны
Точность длины волны средства измерения, используемого для определения спектрального вида источника, имеет большое влияние на взвешенные значения. Например, опасная взвешенная функция УФ изменяется с чрезвычайной скоростью, т.е. 250% на 3 нм при 300 нм. Если требуется приемлемый предел погрешности, то измеренная энергия должна быть оценена на определенной длине волны, тем самым она становиться приблизительно взвешенной.
Таблица В.2 представляет собой пример изменения взвешенных результатов от заданного интервала измерения 0,1 нм. Измеренные значения определяют с помощью спектрорадиометра с треугольной чувствительностью, шириной полосы 2 нм, заданным интервалом 1 нм. Сумма измеренных значений одинакова как указано в смещенной строке из-за положений В.2.2. Взвешенное значение меняется на 2,5% при изменении длины волны на 0,1 нм. Погрешность этой величины может возникнуть тогда, когда длина волны средства измерения - имеет погрешность 0,1 нм.
Таблица В.2 - Пример погрешности во взвешенном значении из-за погрешности в длине волны
Длина волны, нм |
Опасная взвешенная функция УФ |
305 нм |
305,1 нм |
Отношение сумм |
||
Измеренное значение |
Взвешенное значение |
Измеренное значение |
Взвешенное значение |
|||
304 |
0,08485 |
0,25000 |
0,02121 |
0,22500 |
0,01909 |
- |
305 |
0,06000 |
0,50000 |
0,03000 |
0,47500 |
0,02850 |
- |
306 |
0,04540 |
0,25000 |
0,01135 |
0,27500 |
0,01249 |
- |
307 |
0,03436 |
0,00000 |
0,00000 |
0,02500 |
0,00086 |
- |
Сумма |
- |
1,0000 |
- |
1,0000 |
- |
Не менее 100% |
Сумма |
- |
- |
0,06256 |
- |
0,06094 |
Не менее 97,4% |
Точность длины волны монохроматора, используемого для проверки опасности, должна быть достаточной для обеспечения взвешенных результатов с погрешностью, возникающей от неточности длины волны, менее 3%. Следовательно, необходимая точность зависит от зоны спектра и используемой взвешенной функции. В таблице В.3 указана предлагаемая точность с погрешностью около 3%.
Таблица В.3 - Рекомендуемая точность длины волны
Диапазон , нм |
Точность длины волны, нм |
200 < 300 |
0,2 |
300 < 325 |
0,1 |
325 < 600 |
0,2 |
600 < 1400 |
2 |
Более сложный анализ, учитывающий спектр источника, может быть использован для снижения предлагаемой точности длины волны. Результаты анализа должны быть включены в объявленную неопределенность измерений.
В.2.4 Случайная лучистая мощность
Абсолютная калибровка спектрорадиометров требует использования источников с широким спектральным выходом и высокой энергией. Если спектрального отражения недостаточно, то при калибровке должна быть учтена дополнительная энергия из других частей спектра. Результатом этого вида погрешности является недостаток калибровки спектрорадиометра, что приводит к уменьшению значения потенциальной опасности. Обычное отношение между полной энергией и сигналом, принимаемым монохроматором, составляет порядка . Для получения точности 1% необходимо, чтобы отказ от внеполосного излучения составлял порядка . (См. МКО 63-1984).
В.2.5 Входная оптика для измерений спектральной энергетической освещенности: Рекомендация
Несколько результатов получают с помощью монохроматоров со стандартной входной оптикой. Источник для калибровки и измеряемый источник могут иметь разную полярность или разный размер, приводящие к изменениям входного угла. Кроме того, измеренные источники будут иметь малые и большие угловые размеры. Эта разница может привести к погрешностям в измерениях. Используя фотометрический шар в качестве входного устройства монохроматора, рекомендуется метод измерений энергетической освещенности, так как случайный коэффициент отражения покрытия деполяризует входящий свет и правильный расчет должен выравнивать насколько возможно косинусную чувствительность и, кроме того, увеличить отражения в фотометрическом шаре, которые постоянно попадают во вход радиометра. Еще большие трудности возможны с косинусной чувствительностью УФ приемников излучения.
В качестве входного устройства для монохроматора или радиометра также может быть использован правильно рассчитанный рассеиватель.
В.2.6 Линейность
Предполагается, что отдельная испытуемая лампа или средство измерения, имеет другую радиометрическую величину, чем источник, используемый для калибровки испытательной системы. Для калибровки предпочтительно, чтобы была известна линейность системы, и измерения следует выполнять в пределах этой линейности. Нелинейность в пределах системы может быть исправлена путем использования функции калибровки, приводящей систему к линейности. Это регулирование должно быть применено к калибровке и измерениям.
В.3 Источники для калибровки
Рекомендуемыми источниками для калибровки являются дейтериевая разрядная лампа для УФ области и калиброванная вольфрамовая или вольфрамовая галогенная лампа для более высоких длин волн, УФ, видимой и ближней ИК области спектра. У дейтериевой лампы может меняться световой поток при сохранении вида спектра. Поэтому калибровка системы в области от 200 до 350 нм с использованием дейтериевой лампы должна быть скоррелирована уровнем калибровки вольфрамовой (вольфрамовой галогенной) лампы от 250 до 350 нм. Длина волны, ниже которой используют дейтериевую лампу, должна быть как короткой, так и учитывающей шум при калибровке вольфрамовой (или вольфрамовой галогенной) лампы на практике.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.