Вы можете открыть актуальную версию документа прямо сейчас.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение С
(справочное)
История вопроса и обоснование
С.1 Введение
Подход в этой части ISO 8124 основан на принципе биодоступности, как было определено в Европейской директиве 88/378/ЕЕС от мая 1988 [2] о безопасности игрушек. Это привело к рассмотрению миграции растворимых токсичных элементов из игрушечных материалов. Цифры биодоступности, указанные во введении, могут быть объединены с предполагаемым ежедневным потреблением организмом ребенка порядка 8 мг/сут материала игрушки для того, чтобы получить максимально допустимые уровни в мг/кг элементов в конкретном материале. Точное соотношение максимальных пределов и биодоступности, как в случае бария (см. С.3), происходит не всегда, так как некоторые корректировки были внесены в EN 71-3 [1] для того, чтобы принимать во внимание научные и политические консультации по уровням, которые обеспечивают приемлемые или исключаемые нагрузки на организм.
Попытки указания всех определяемых элементов были отменены по следующим причинам:
a) Директива ЕС определяет пределы для биодоступности. На сегодняшний день не установлено никакого соотношения между общим содержанием элемента материалов игрушки с биологической доступностью;
b) Некоторые вещества, например, сульфат бария, в больших концентрациях используются в качестве контрастного вещества при рентгеновских исследованиях. Поэтому есть основания для введения дополнительных требований к содержанию (концентрации) бария в материале, которые будут обеспечивать его биодопустимые пределы.
c) Кадмиевые соединения могут быть использованы в качестве стабилизаторов в пластмассах, таких как поливинилхлорид (ПВХ). Биодоступность кадмия, используемого для этой цели, не имеет отношения к общему количеству присутствующего элемента. Пример можно привести для селена, который может присутствовать в качестве компонента нерастворимых пигментов, и т.д. (См. также С.4.)
С.2 Область рассмотрения
С.2.1 Требования
См.1.3.
Подпункт 1.3 предназначен для обозначения подхода к решению, какие игрушки или их компоненты не подпадают под требования настоящего стандарта из-за характеристик, которые делают их не представляющими опасности нанесения вреда от поглощения токсичных элементов после попадания в желудок ребенка частиц материалов, которые могут в них содержаться.
Настоящий стандарт не определяет требования к недоступным материалам (см. ISO 8124-1), из которых миграция токсичных элементов не представляется возможной или вероятной при нормальном или предсказуемом использовании игрушек.
Не предъявляются требования к игрушкам или частям игрушки, которые в силу их доступности, функционального предназначения, массы, размеров и других особенностей невозможно сосать, лизать или проглотить при нормальном и предсказуемом поведении ребенка (например, покрытие на перекладине качели, шины детского велосипеда).
Этот подход считается логическим, включая следующее:
Три отдельных исследования (см. ссылки [4], [5], [6]) показали, что опасность загрязнения от игрушек прежде всего возникает у детей в возрасте до 18 месяцев и значительно снижается по мере их роста. Четвертое исследование, в котором наблюдалась опасность загрязнения от игрушек у детей в возрасте до восьми лет, подтвердило, что она незначительна у детей старшего возраста. В соответствии с особенностями развития ребенка пиковым периодом для его возможного загрязнения от игрушек является время прорезывания зубов, который снижается, когда дети становятся более подвижными (см. [7]). Поэтому игрушки, предназначенные для детей в возрасте старше шести лет, считаются не представляющими собой значительного риска причинения вреда по причине попадания в организм токсичных элементов. Тем не менее, независимо от возрастной градации или рекомендованной изготовителем возрастной адресованности, безопасность покрытий - это отдельный вопрос, поскольку при игре эти покрытия могут отделяться и попадать в организм ребенка непосредственно с рук и пальцев;
- чем больше размер игрушки или менее доступен материал, тем меньше риск проникновения токсичных элементов;
- считается, что все игрушки, которые ребенок может взять в рот или поднести близко ко рту (например, имитации пищевых продуктов, карандаши) следует подвергать испытаниям независимо от независимо от возрастной градации или рекомендованной изготовителем возрастной адресованности;
- игрушки, которые в значительных количествах могут легко попасть в организм (например, жидкие краски, компаунды для моделирования, гели), следует подвергать испытаниям независимо от возрастной градации или рекомендованной изготовителем возрастной адресованности.
С.2.2 Упаковка
См. 1.4.
Используемая в настоящем стандарте формулировка "за исключением тех случаев, когда он является составной частью игрушки и используется при игре" предполагает упаковочный материал, например, коробки, на которых имеются картинки для сбора пазлов, или написаны инструкции по игре и т.д., но, принимая во внимание второй подпункт п. 1.3, это требование ограничивают, адресовав его для детей в возрасте младше 72 месяцев.
Блистерные упаковки с простыми инструкциями не являются частью игрушки.
С.3 Особые требования
См. 4.1.
Предел миграции растворимого бария был изменен с 500 мг/кг до 1000 мг/кг по следующим причинам:
- использование сульфата бария в игрушках привело к тому, что содержание растворимого бария при экстрагировании [раствор концентрации C (HCI) = (0,070.005) моль/л при 37°С] составило от 400 до 600 мг/кг. Этот уровень, с учетом статистической погрешности определения, не может служить критерием ни браковки, ни приемки;
- образование кристаллов коллоидного сульфата бария в биологически недоступной (нерастворимой) форме в фильтрате обуславливает при испытаниях получение уровня содержания растворимого бария выше 500 мг/кг, что связано с проблемами фильтрации этой формы соединений бария;
- кроме того предел миграции бария, содержащегося в материалах игрушек, порядка 500 мг/кг, не согласуется ни с уровнем биологической доступности 25,0 мкг/сутки, ни с показателем проникновения в организм 8 мкг/сутки материала игрушки; 25,0 мкг соответствуют пределу миграции 3125 мг/кг. Вполне очевидно, что предел 500 мг/кг был выбран произвольно, несмотря на "теоретическое" значение 3125 мг/кг. Введение предела 500 мг/кг вызвало снижение показателя биологической предрасположенности с рекомендованных 25,0 до 4,0 мкг. Следует отметить, что цифра 25,0 мкг была введена для снижения уровня, изначально установленного равным 50,0 мкг, не по токсикологическим соображениям, а согласно решению Комиссии Европейских Сообществ "в целях уменьшения устранимого количества вещества, попадающих в организм".
С.4 Статистическая неопределенность процедуры испытания и интерпретация результатов
См. 4.2.
Химические методы испытаний, как правило, предназначены для измерения общего количества вещества в образце материала. Методы определения общего количества дают достаточно точные результаты и обычно статистически хорошо согласуются при межлабораторных испытаниях.
Биодоступность определяется в Директиве Европейского Совета 88/378/ЕЕС [2] и с помощью аналитических методов испытаний, указанных в настоящем стандарте, которые измеряют миграцию растворимых элементов, содержащихся в материале данной игрушки. При таких испытаниях результат зависит от условий их проведения, применяемых способов экстракции, поэтому имеется причина для появления аналитических неопределенностей. В результате сложнее получить строгое статистическое согласование результатов при межлабораторных испытаниях.
Это иллюстрирует статистическая информации в EN 71-3 [1], полученная при проведении в 1987 г межлабораторных испытаний с участием 17 европейских лабораторий. Результаты на идентичном материале различались от 30 до 50% в зависимости от используемых инструментальных методов измерения концентрации элементов в фильтрате. Более того, эти значения оказались бы примерно в три раза больше, если бы их скорректировали для получения доверительного уровня порядка 95%.
Столь высокая степень статистической неопределенности ставит перед производителями и законодателями проблемы в тех случаях, когда результаты испытаний приближаются к максимально допустимым пределам, указанным в настоящем стандарте. Руководствуясь только статистикой, невозможно решить, следует ли игрушку забраковать ли ее можно принять, и этим объясняется несогласованность при интерпретации результатов.
Не существует прямой зависимости между общим содержанием данного элемента в материале игрушки и количеством экстрагируемого при растворении этого элемента в обычных условиях испытания. Поэтому сам факт измерения общего содержания и преобразования результата для получения значения, соответствующего определяемому элементу, еще не решает проблему. Установить максимальный предел общего содержания элемента возможно, но это потребует внесения поправок к Директиве Европейского Совета 88/378/ЕЕС (см. также С.1).
Начиная с 1988 г., способ испытаний лакокрасочных покрытий, применяющихся в игрушках, подвергается углубленному изучению с целью установления параметров, существенно влияющих на результаты. Было установлено, что определяющими параметрами являются форма, размеры и масса частиц краски, полученных при ее соскабливании и последующем измельчении. Метод встряхивания, температура, а также тип и пористость фильтровальной бумаги являются менее значимыми параметрами.
В связи с этим для улучшения воспроизводимости результатов испытаний был предложен определенный метод соскабливания и измельчения покрытий, позволяющий подготовить образец краски дисперсностью в диапазоне от 300 до 500 мкм. Для сравнения измененного способа подготовки образца, внесенного в EN 71-3, с ранее предложенным в 1993 г. способом были проведены межлабораторные испытания при участии 29 европейских лабораторий.
Испытания показали, что результаты, полученные на идентичном материале, могут отличаться от 25 до 80% в зависимости от способа подготовки образцов и используемых инструментальных методов измерения концентрации растворимых элементов в фильтрате.
Согласованность статистических данных различных лабораторий повысилось при использовании определенного метода соскабливания, но осталось на прежнем уровне при использовании образца с размером частиц от 300 до 500 мкм. Ситуация в целом не настолько улучшилась, чтобы было целесообразно вводить предложенные изменения.
Испытания подтвердили, что использование различных инструментальных методик приводит к статистической погрешности в зависимости от способа выполнения испытания. Было также отмечено, что лабораториям необходимо регулярно контролировать и поверять оборудование для гарантии точности измерений. Спектрофотометрия с индуктивной связанной плазмой (ICP), широко используемая лабораториями для указанных целей, может обеспечить высокую степень согласованности результатов для большинства элементов, в частности, для мышьяка, сурьмы и селена. Однако, этот метод не столь точен, как некоторые другие, применительно к низким концентрациям этих элементов (например, атомная адсорбция с гидрированием).
Метод, дающий результаты, которые расходятся, в лучшем случае, на 25% при проведении испытаний в различных лабораториях, обычно считается технически непригодным в качестве стандартного метода. Тем не менее, на практике приемка или браковка игрушек, прошедших это испытание, осуществляется достаточно легко, и результат относительно редко попадает в область погрешности. Если такой случай имеет место, то важно, чтобы лаборатории интерпретировали результаты одинаково.
Вполне очевидно, что совершенствование способа выполнения испытания влечет за собой повышение расходов лаборатории, приводит к потере времени, а в некоторых случаях просто невыполнимо или же дает лишь ограниченные преимущества по безопасности и соответствию статистических данных. Поэтому способ выполнения исследований должен позволять лабораториям применять свою привычную проверенную технику путем соскабливания краски с поверхности игрушек, собирая ее часть, которая проходит через 500 мкм сито, и определяя концентрации растворимых элементов в фильтрате.
В целях логичной интерпретации результатов в настоящем стандарте введен поправочный коэффициент для каждого элемента, применяемый при любых инструментальных методах. Эти коэффициенты, основанные на данных в EN-71-3, учитывающих точность метода, применяют в тех случаях, когда результат анализа равен или превышает максимальный предел. Результат корректируется согласно указаниям 4.2 настоящего стандарта с помощью соответствующего поправочного коэффициента. Такой способ интерпретации результатов на практике позволяет отличить безопасные игрушки от опасных, а также обеспечить безопасность детей.
Настоятельно рекомендуется, чтобы лаборатории контролировали и сравнивали результаты своих испытаний, используя для этого:
a) аттестованные стандартные образцы и/или внутренний контроль качества;
b) участие в межлабораторных испытаниях или аттестационных испытаниях;
с) проведение повторных испытаний или калибровок с использованием одинаковых или различных методов. Лабораториям, имеющим систему качества в соответствии с ISO/IEC 17025 [8], следует осуществлять все необходимые процедуры контроля.
С.5 Аппаратура
См. 6.2.
С.5.3 Центрифуга
Подпункт 6.2.4 устанавливает требования к рабочим характеристикам центрифуги.
Раздел 8 определяет требования к характеристикам центрифугирования и его допустимой продолжительности (до 10 мин), которые должны быть занесены в протокол испытаний. Это необходимо, так как есть сведения, что центрифугирование способствует увеличению экстрагирования бария.
С.5.4 Комплект контейнеров
См. 6.2.6
Указание общего объема контейнеров предназначено для обеспечения адекватного движения раствора, что приводит к более эффективной экстракции.
С.6 Выбор испытуемых образцов
См. раздел 7.
Практика показала, что испытания составных образцов (сочетание нескольких материалов или цветов) не практичны и не являются обязательными при наличии метода испытаний "5,0 мл". Анализ составных материалов может оказаться неудовлетворительным, так как теоретически он может обусловить меньшее выделение токсичных элементов, которое в других условиях не было бы ограничено. Можно привести в качестве простого" примера случай, когда экстрагирование бария, содержащегося в краске, оказалось неполным при его проведении вместе с другой краской. Возможно, это было вызвано присутствием во второй краске иона, вызвавшего осаждение бария. Одним из таких ионов является сульфат, но точно неизвестно, было ли это обусловлено его действием. Таким образом, за исключением тех случаев, когда разделение цветов или материалов игрушки невыполнимо (например, при точечной набивке ткани), каждую дискретную поверхность обрабатывают как единый образец.
Испытывать материалы, взятые не из готовых игрушек, можно только для справочно-контрольных целей. Стандарт четко определяет, чтобы образцы для прямых испытаний следует отбирать непосредственно от игрушки.
Нумерация пунктов приводится в соответствии с источником
В.7 Бумага и картон - Подготовка образцов для испытаний
См. 8.3.1.
Бумагу и картон рассматривают как единый материал, т.е. поверхностные покрытия (если изделие имеет такие покрытия) не удаляют, при этом образцы для испытаний должны включать представительные части поверхности, на которую нанесены покрытия. Данный способ выбран потому, что на практике маловероятно, что при жевании ребенком бумаги или картона может произойти отделение покрытия от основы, поэтому основа в этой ситуации не менее важна.
В.8 Ткани натуральные или химические - Подготовка образцов для испытаний
См. 8.4.
Поскольку получение отдельных окрашенных образцов от тканей со сложным рисунком не представляется возможным, следует брать один образец, представляющий всю цветовую гамму материала.
В.9 Стекло, керамика, металлические материалы - Подготовка образцов для испытаний
См.8.5.1.
Игрушки или их компоненты, которые не помещаются полностью в "цилиндр для мелких деталей", указанный в 8.2 ISO 8124-1, не подвергают испытаниям, поскольку не представляют никакого риска и экстрагирование в растворе, имитирующем слюну, не имеет смысла. Указанный цилиндр используется для оценки размера игрушки (компонентов игрушки) для соответствующих возрастных групп. Измельчение стекла, керамики и металлических материалов нецелесообразно. Встряхивание испытуемого раствора во многих случаях невыполнимо, в связи с чем экстрагирование производится без него.
Диаметр сосуда и положение образца выбирают таким образом, чтобы свести к минимуму расхождение результатов.
Стекло, керамика и металлические материалы, на которые покрытие нанесено таким образом, что стекло, керамика или металл недоступны для определения по 8.10 ISO 8124-1, не подвергают испытанию в соответствии с этим требованием.
Если металлические, стеклянные или керамические поверхности доступны, то даже если они частично закрыты нанесенным покрытием, их следует подвергать испытанию в соответствии с 8.5.2 после удаления всего упомянутого покрытия по методу, указанному в 8.1.1 настоящего стандарта. Данный способ выполнения является некоторым компромиссом, т.к. в соответствии с разделом 7 настоящего стандарта единичную игрушку можно рассматривать как единый образец.
С.10 Другие материалы, окрашенные в массе или нет
См. 8.6.
Подпункт 8.6 относится к бумаге и картону с массой на единицу площади, превышающей 400 , и включает также ДВП, фибролит и т.д. Кроме того, это относится к окрашенным в массе и неокрашенным другим материалам, таким как дерево, кожа, кость и т.д., которые могут иметь некоторую другую обработку, и на которые не распространяется EN 71-3.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.