Вы можете открыть актуальную версию документа прямо сейчас.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение А
(обязательное)
Принципы диффузионного отбора проб
А.1 Основные положения
Общий обзор принципов диффузионного отбора проб приведен в [29].
Массу аналита , который может диффундировать на подходящий сорбент за определенный промежуток времени, вычисляют (на основе первого закона диффузии Фика) по формуле
,
(А.1)
где А - площадь поперечного сечения потока;
D - коэффициент диффузии;
- массовая концентрация аналита в окружающем воздухе вблизи диффузионной крышки;
- массовая концентрация аналита после слоя сорбента;
- расстояние от диффузионной крышки до поверхности сорбента;
- время.
Формула А.1 относится к случаю, когда может отличаться от нуля. В идеале равна массовой концентрации аналита в воздухе за пределами диффузионного пробоотборного устройства, а равно нулю (условие "нулевого проскока"). В этом случае скорость диффузионного поглощения равна (см. также формулу А.2) и зависит только от коэффициента диффузии данного аналита и от геометрических размеров используемого диффузионного пробоотборного устройства (см. рисунок А.1).
Входное отверстие пробоотборного устройства с поперечным сечением А (см. позицию 1 на рисунке А.1) определяет начало диффузионного пути аналита массовой концентрацией . Сорбент S (см. позицию 2 на рисунке А.1) служит движущей силой диффузии по длине и уменьшает массовую концентрацию аналита до нуля (в идеале) за счет сорбции либо химической реакции.
"Рисунок А.1 - Схема диффузионного отбора проб"
А.2 Единицы измерений скорости диффузионного поглощения
Для заданной массовой концентрации паров ЛОС , , скорость диффузионного поглощения вычисляют по формуле
,
(А.2)
где - масса аналита, пикограмм (пг);
- время экспонирования, мин.
Примечания
1 Хотя скорость поглощения измеряется в кубических сантиметрах в минуту, на практике она может измеряться в пикограммах на микрограмм на кубический метр на минуту, пг, что не отражает реальный объемный расход (аналита) в воздухе.
2 Значения скорости диффузионного поглощения на практике часто выражают в пикограммах на миллиардную долю на минуту, пг(). Это единица, используемая на практике, т.к. большинство аналитиков для выражения содержания загрязняющих воздух газов и паров используют объемную долю, выражаемую в миллиардных долях ()*. Зависимость скорости поглощения от температуры и давления объяснена ниже (см. А. 4.1). Таким образом, для заданной объемной доли (газа или пара) (в миллиардных долях) скорость поглощения вычисляют по формуле
,
(А.3)
где - объемная .
3 Идеальные и практические значения скорости диффузионного поглощения связаны формулой (А.4) [(см. также формулу (4)].
.
(А.4)
А.3 Систематическая погрешность, обусловленная выбором неидеального сорбента
Эффективность диффузионного пробоотборного устройства в значительной степени зависит от выбора и применения сорбента либо другого сорбирующего материала, имеющего высокую степень сорбции. Массовая концентрация пара отбираемого соединения на поверхности сорбента будет очень маленькой по сравнению с содержанием в окружающей среде, и наблюдаемая скорость поглощения будет близка к идеальному равновесному значению, которое обычно может быть вычислено исходя из геометрических размеров пробоотборного устройства и коэффициента диффузии аналита в воздухе.
В случае использования сорбента с относительно низкой емкостью в формуле (А.1) не равно нулю, и будет уменьшаться в ходе отбора проб. Следовательно, в формуле (А.2) также будет уменьшаться в ходе отбора проб. Размер этого эффекта зависит от изотермы адсорбции для аналита и используемого сорбента и может быть рассчитана при помощи компьютерных моделей (см. [30], [31]).
Другим проявлением этого же эффекта является обратная диффузия, имеющая место в случае, если через некоторое время после начала отбора пробы давление пара у поверхности будет больше, чем внешняя массовая концентрация , например, если пробоотборное устройство вначале экспонируют в контролируемой газовой среде с высоким содержанием аналита, а затем в среде с гораздо более низким или даже нулевым его содержанием. Такой тип экспонирования может иметь место при некоторых применениях, и вклад любой вносимой погрешности будет зависеть от того, в какой момент пробоотборное устройство было экспонировано в среде с высоким содержанием аналита (в начале, середине или конце периода отбора пробы). Данное явление было изучено в [32], [33] и [34], и была предложена простая проверка [35] для оценки максимального отклонения между экспонированием при переменном содержании от экспонирования при постоянном содержании аналита, который обычно дает основание для калибровки пробоотборного устройства. Проверка заключается в экспонировании пробоотборного устройства в среде с высоким содержанием аналита в течение 30 мин, затем в чистом воздухе в течение 7,5 ч и принята в ЕН 838. Однако при отборе проб атмосферного воздуха режим экспонирования в среде с высокой и низкой концентрациями [т.е. 12 ч при двукратном предельном значении концентрации, затем 12 ч при нулевой концентрации попеременно в течение семи дней] считается более типичным, т.к. основан на обычных значениях суточных изменений массовой концентрации. Также возможно построение теоретической модели степени обратной диффузии [31], [36].
А.4 Факторы окружающей среды, влияющие на эффективность пробоотборного устройства
А.4.1 Температура и давление
Согласно уравнению Максвелла коэффициент диффузии D является функцией абсолютных температуры и давления
.
(А. 5)
Из общего газового закона следует
;
(А. 6)
,
(А. 7)
где n - число молей газа;
R - газовая постоянная.
После подстановки формул (А.5) и (А.6) в формулу (А.1), получаем
.
(A. 8)
Таким образом, масса аналита не зависит от давления, но зависит от квадратного корня абсолютной температуры, т.е. увеличивается на 0,2% при увеличении температуры на один градус.
При использовании слабого сорбента температура может оказывать влияние на сорбционную способность, что может понизить массу собираемого аналита. Например, скорость поглощения бензола, собранного на Tenax, при изменении температуры от 20°С до 60°С уменьшается соответственно с 1,33 до 1,23 [37].
А.4.2 Влажность
Высокая влажность может оказывать воздействие на сорбционную способность гидрофильных сорбентов, таких как древесный уголь и молекулярное сито. Обычно при этом уменьшается время отбора пробы (при данном содержании аналита) до наступления насыщения сорбента, когда из-за значительного увеличения члена зависимость, представленная формулой (А.1), становится нелинейной. Высокая влажность может также изменить сорбционное поведение внутренних стенок пробоотборных устройств в виде трубок, особенно в случае появления конденсата.
А.4.3 Неустойчивые соединения
Простейшие выводы из закона Фика подразумевают равновесные условия, но при практическом применении диффузионных пробоотборных устройств уровень загрязнителей в окружающем воздухе вероятно может меняться в широких пределах. Тогда выясняют, дает ли пробоотборное устройство действительно суммарный отклик (без учета эффектов, приведенных в А.4.1) либо оно может не учитывать короткоживущие неустойчивые соединения, которые могли бы быть уловлены сорбентом. Теория по этой проблеме приведена в [32], [37], [38] и [39], а практика - в [37], [40] и [41]. Согласно данным источникам, это не является проблемой при условии, что общее время отбора проб значительно превосходит (например, в 10 раз) постоянную времени диффузионного пробоотборного устройства, т.е. времени, необходимому молекуле, чтобы диффундировать в пробоотборное устройство в условиях равновесия. Постоянную времени , которая для большинства серийных пробоотборных устройств составляет от 1 до 10 с, вычисляют по формуле
.
А.4.4 Скорость потока воздуха
А.4.4.1 Влияние низкой и высокой скоростей ветра
Скорость и направление потока окружающего воздуха могут влиять на эффективность диффузионного пробоотборного устройства, т.к. эти параметры оказывают влияние на эффективную длину диффузионного пути [42], [43], [44], [45]. Масса аналита, поглощенного диффузионным пробоотборным устройством [см. формулу (А.1)], является функцией длины и площади поперечного сечения А диффузионного воздушного зазора внутри пробоотборного устройства. Номинальное значение длины диффузионного пути определяется геометрическими размерами пробоотборного устройства и равно расстоянию между поверхностью сорбента и внешним торцом пробоотборного устройства. Площадь поперечного сечения также определяется геометрическими размерами пробоотборного устройства, а если поперечное сечение диффузионного воздушного зазора изменяется вдоль его длины, то она определяется по самой узкой части. Эффективная длина не всегда равна номинальной длине и при различных обстоятельствах может быть более или менее этой длины.
При низких скоростях ветра эффективная длина диффузионного пути может увеличиваться [44], [45] из-за наличия "граничного слоя" [42], [43], существующего между застойным воздухом внутри пробоотборного устройства и турбулентным потоком воздуха вне пробоотборного устройства, что приводит к увеличению эффективной длины диффузионного пути . На практике за пределами пробоотборного устройства существует зона, в которой происходит переход от неподвижного воздуха к турбулентному потоку, что эквивалентно дополнительной длине зоны статического воздуха, которую включают в значение . Значение зависит от внешних геометрических размеров пробоотборного устройства и примерно пропорционально линейному поперечному сечению его сорбирующей поверхности. Эта величина уменьшается с увеличением скорости потока воздуха. Значимость данной величины зависит от значения номинальной длины диффузионного пути пробоотборного устройства. Следовательно, пробоотборное устройство с небольшим поперечным сечением и длинным внутренним воздушным зазором не будет подвержено влиянию скорости потока воздуха в такой мере, как пробоотборное устройство с большим поперечным сечением и коротким внутренним воздушным зазором. Это было подтверждено на практике с использованием пробоотборных устройств различных размеров [44], [45]. При низких скоростях потока воздуха наблюдают низкие скорости поглощения, при этом влиянием "граничного слоя" можно пренебречь, так как будет незначительное увеличение до значения плато.
При высоких скоростях ветра эффективная длина диффузионного пути может уменьшаться [44], [46], [47], [48], [49], [50]. Это происходит вследствие того, что турбулентный поток воздуха возмущает слой неподвижного воздуха внутри пробоотборного устройства, что снижает эффективный воздушный зазор на . Значение мало при условии, что отношение длины воздушного зазора к диаметру пробоотборного устройства превышает 2,5 - 3 [44], или им можно пренебречь или значительно уменьшить путем установки защиты от тяги, например, экрана из нержавеющей стали либо мембраны из пластика [49], [50].
Общее влияние описывают синусоидальной зависимостью.
А.4.4.2 Зависимость от конструкции пробоотборного устройства
Пробоотборные устройства в виде трубок обычно не подвержены влиянию низких скоростей ветра [37], [51], [52], а высокие скорости ветра могут оказывать на них влияние при отсутствии экрана, защищающего от тяги.
А.4.5 Транспортирование
В большинстве случаев требуется транспортировать пробоотборные устройства с места отбора проб в аналитическую лабораторию, поэтому важно сохранять целостность пробы во время транспортирования. При этом рекомендуется предпринимать меры предосторожности.
a) Обеспечивать достаточно плотное прилегание любых крышек, чтобы избежать попадание загрязняющих веществ или потери пробы при транспортировании, т.к. плотность прилегания металлопластиковых крышек может уменьшиться, если произойдет большое изменение температуры.
b) Помещать пробоотборные устройства в закрытые контейнеры из инертного материала для сведения к минимуму попадания загрязняющих веществ извне.
c) Не подвергать пробы воздействию отрицательного давления при перевозке их самолетом (например, пробы не допускается размещать в багажном отделении).
d) Избегать воздействия на пробы высоких температур при транспортировании (например, пробы не допускается размещать в багажном отделении автомобиля).
e) По возможности хранить пробы в условиях низких температур вдали от источников загрязняющих веществ (например бензина или авиационного топлива), при этом не допускать появления конденсата на трубках для отбора проб.
Холостые пробы транспортируют вместе с реальными пробами, соблюдая при этом все перечисленные меры предосторожности.
А.5 Защита от неблагоприятных погодных условий
А.5.1 Общие положения
На практике при анализе окружающего воздуха учитывают три основных показателя: скорость потока воздуха, защиту от осадков и безопасность. Рекомендуемые значения расстояний от стен, дверей и окон, а также максимальные и минимальные значения высоты отбора проб приведены в [1].
А.5.2 Скорость потока воздуха
Потенциальное влияние скорости потока воздуха описано в А.4.4. Низкие скорости потока воздуха (приблизительно 10 см/с при отсутствии принудительной вентиляции [51], [53]) наблюдаются внутри замкнутых помещений. Среднемесячная скорость ветра в Европе составляет от 1 до 10 м/с [54], но может быть менее 0,5 м/с в случае стабильных метеорологических условий (инверсий) и (или) в низинах горных районов [55], [56]. Кроме того, содержание в воздухе загрязняющих веществ выделяемых местными стационарными источниками выбросов обратно пропорциональны скорости ветра [54], следовательно, любая ошибка при отборе проб в условиях низкой скорости ветра приведет к значительному увеличению усредненного по времени содержания.
В замкнутых помещениях малое движение воздуха (например от 5 до 10 см/с) не влияет на эффективность работы пробоотборного устройства. На открытом воздухе выпадение осадков, попадание прямых солнечных лучей и высокая скорость ветра могут неблагоприятно влиять на эффективность работы пробоотборного устройства, поэтому пробоотборное устройство защищают при помощи укрытия [57], [58].
А.5.3 Защита от осадков
Пробоотборные устройства любых типов важно защищать от попадания на них осадков. Дождь или мокрый снег могут привести к блокированию поверхности пробоотборного устройства [59], особенно пробоотборных устройств в виде трубок, ориентированных вертикально вниз (что является обычным положением для недопущения проникновения твердых частиц). Простое укрытие для пробоотборных устройств в виде трубок состоит из перевернутой пластмассовой воронки, расположенной таким образом, чтобы трубка плотно входила в горлышко воронки (укороченной при необходимости), а открытый конец находился чуть ниже края горловины воронки [60] (см. рисунок А.2). Другим возможным укрытием является изготовленная из инертного материала "коробка в форме гнезда" с просверленными отверстиями внизу. Трубку(и) помещают внутрь коробки таким образом, чтобы открытый конец трубки был чуть ниже уровня стороны коробки с отверстиями.
"Рисунок А.2 - Трубка для отбора проб в защитном колпаке"
Вместо обеспечения укрытия возможна модификация конструкции диффузионного пробоотборного устройства. Например, диффузионная крышка пробоотборного устройства в виде трубки может быть модифицирована путем добавления кромки из алюминия для защиты от дождевой воды, блокирующей поверхность диффузии [61]. Однако такое приспособление может привести к изменению характеристик пробоотборного устройства в части требования к минимальной скорости потока воздуха.
А.5.4 Безопасность
Пробоотборные устройства в течение больших периодов времени находятся в общественных местах и, следовательно, могут стать объектом кражи или вандализма. Пробоотборные устройства располагают как можно дальше в недоступном, незаметном месте и (или) их внешний вид необходимо замаскировать под другие предметы, например, под птичье гнездо.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.