Вы можете открыть актуальную версию документа прямо сейчас.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение К
(обязательное)
Анализ поперечных колебаний
К.1 Анализ поперечных колебаний
К.1.1 Общие положения
Если необходимо провести анализ поперечных колебаний согласно 9.2.4.1, используемый метод и способ оценки результатов должны соответствовать требованиям К.1.2 - К.1.5. В таблице К.1 указан процесс такого анализа. Вышеуказанные методы анализа и оценки результатов применимы для жидкостных турбомашин с горизонтальной осью.
Таблица К.1 - Логическая блок-схема анализа поперечных колебаний ротора
Этап |
Если... |
то... |
1 |
Насос и условия его работы идентичны либо аналогичны соответствующим параметрам установленных насосов с официально установленными эксплуатационными характеристиками |
Анализ не требуется |
2 |
Классически жесткий ротор (6.9.1.2) |
Анализ не требуется |
3 |
Условия 1 и 2 не выполнены |
Анализ требуется |
К.1.2 Собственные частоты
Отчет должен содержать следующую информацию:
а) первая, вторая и третья "сухие" критические частоты собственных колебаний ротора 6.9.1.2.
Примечание 1 - Данные "сухие" собственные изгибающие скорости колебаний используются как реперные точки для последующего анализа собственных демпфированных частот.
Примечание 2 - Стандартной практикой является исследование различных вариантов сочетаний консолей, муфт и упорных колец, фиксации их первой критической собственной частоты при не менее 20% разделительном запасе над высшей потенциальной частотой возбуждения (полученной на основе максимальной непрерывной скорости) перед проведением анализа поперечных колебаний ротора;
б) все демпфированные собственные частоты ротора в диапазоне от нуля до частоты, в 2,2 раза превышающей максимальную постоянную частоту вращения, при номинальных частотах ротора должны вычисляться в диапазоне частот вращения от 25% до 125% номинальной с учетом следующих моментов:
1) жесткость и демпфирование в следующих внутренних зазорах при предполагаемой температуре:
- восстановленные зазоры с водой;
- восстановленные зазоры с перекачиваемой жидкостью;
- в два раза большие зазоры с перекачиваемой жидкостью;
2) жесткость и демпфирование уплотнений вала (лабиринтного типа);
3) жесткость и демпфирование подшипников при усредненном зазоре и температуре масла. Влияние жесткости и демпфирования подшипников в насосах обычно мало по сравнению с внутренними зазорами, поэтому достаточно провести анализ подшипников при среднем зазоре и температуре масла;
4) масса и жесткость опоры подшипников;
5) инерция ступицы полумуфты и 1/2 проставки муфты.
Примечание - Несмотря на то что демпфированные собственные частоты более высокого порядка могут быть близкими к скорости вращения лопастей рабочего колеса, на практике не имеется зарегистрированных нарушений динамических характеристик роторов жидкостных турбомашин, вызванных указанной близостью. Такое отсутствие проблем, по-видимому, связано со сложным режимом колебаний, сравнительно низкой энергией возбуждения и удовлетворительным демпфированием при высоких частотах;
с) значения или основа для определения коэффициентов жесткости и демпфирования, используемых в вычислениях.
К.1.3 Разделение частот и демпфирование
Для обычного и двойного значений восстановленных зазоров зависимость коэффициента демпфирования от разности собственной частоты изгибных колебаний и синхронизированной рабочей частоты должен находиться в пределах "допустимого" диапазона, как показано на рисунке К.1. Если это условие не может быть выполнено, то должен быть определен демпфированный отклик на дисбаланс согласно К.1.4.
Примечание - В жидкостных турбомашинах первая оценка динамических характеристик ротора основывается на зависимости демпфирования от разности частот, а не на зависимости коэффициента усиления от указанной разности. Это обстоятельство объясняется двумя факторами. Во-первых, собственные частоты ротора возрастают с увеличением скорости вращения, вследствие того, что перепад давления в направлении, перпендикулярном внутреннему зазору, также растет с увеличением скорости вращения. На диаграмме Кэмпбелла, согласно рисунку К.2, это означает меньшее разделение рабочей скорости и собственных частот, а не рабочей скорости и критических скоростей. Поскольку коэффициент усиления при меньшем разделение частот не связан с синхронным (дисбалансным) возбуждением ротора вызванным дисбалансом, то он может быть определен только путем приближенных вычислений, основанных на демпфировании. Во-вторых, используемое демпфирование позволяет определить минимальное значение собственной частоты для отношений рабочих скоростей в диапазоне от 0,8 до 0,4, тем самым, предохраняя ротор от значимой субсинхронной вибрации.
Логарифмический декремент связан с коэффициентом демпфирования, , формулой (К.1):
.
(К.1)
При значениях не более 0,4 целесообразно использовать следующую формулу (К.2), устанавливающее зависимость между , и коэффициентом усиления , дает достаточную точность для практической оценки:
.
(К.2)
В жидкостных турбомашинах критические условия демпфирования должны определяться следующими параметрами:
0,15,
0,95,
3,33.
Примечание 1 - Величины, соответствующие критическим условиям демпфирования в жидкостных турбомашинах, отличаются от величин, приведенных в стандартах API для газовых и паровых турбомашин. Эта разница объясняется успешным опытом эксплуатации жидкостных турбомашин, разработанных с использованием данных, приведенных в настоящем приложении.
Примечание 2 - Демпфирование более 0,08 за пределами диапазона от 0,8 до 0,4 обеспечивается конструкцией и подтверждается опытом эксплуатации жидкостных турбомашин, устанавливающим, что конструкции, отвечающие данному требованию, не подвержены субсинхронной вибрации ротора.
К.1.4 Анализ демпфированного отклика на дисбаланс
Если коэффициент демпфирования как функция разности частот для метода или методов является неприемлемым в соответствии с критериями рисунка К.1, демпфированный отклик ротора на дисбаланс должен определяться для рассматриваемого метода/методов исходя из следующего:
а) перекачиваемая жидкость;
б) состояние зазоров (одинарные или двойные) приводящие к несоответствующему разделению частот как функции демпфирования;
в) общий дисбаланс, в четыре раза превышающей допустимое значение по 9.2.4.2.1, сосредоточенный в одной или нескольких точках и вызывающий возбуждение исследуемого метода/методов.
В течение одного цикла компьютерной обработки может быть исследован только один метод.
"Рисунок К.1 - Зависимость декремента затухания от относительной частоты"
"Рисунок К.2 - Типичная диаграмма Кэмпбелла"
К.1.5 Допустимое смещение
Смещение колебаний несбалансированного ротора, соответствующее полному размаху колебаний в точке (точках) максимального смещения не должно превышать 35% величины диаметрального рабочего зазора в этой точке.
Примечание - Стандартный демпфированный отклик для центробежных насосов не дает достаточно большого пика в смещении при резонансе, для определения соответствующего коэффициента усиления. Учитывая данное ограничение, оценка демпфированного отклика на дисбаланс должна ограничиваться в данном случае сравнением смещения ротора с допустимой величиной зазора.
К.2 Заводская проверка динамических характеристик ротора
К.2.1 Если определено, динамические характеристики ротора должны проверяться в процессе заводских испытаний. Фактический отклик ротора на дисбаланс должен быть основой для подтверждения правильности результатов анализа демпфированной поперечной скорости. Этот отклик измеряется либо в процессе работы с переменной частотой вращения в диапазоне частот вращения от номинальной частоты вращения до 75% первой критической частоты вращения, либо в процессе движения по инерции. Если демпфированный отклик на дисбаланс не был определен при первоначальном анализе ротора по К.1.4, то этот отклик должен быть определен с новыми зазорами при работе с водой перед заводской проверкой. Дисбалансы, определенные при испытаниях должны векторно складываться в фазе с остаточным дисбалансом в местах, установленных изготовителем обычно в соединении и/или упорном кольце).
Примечание - Основной целью заводской проверки путем измерения отклика на дисбаланс является проверка нахождения критической скорости (пика вибрации) в пределах допуска для вычисленного значения или, если в результате анализа прогнозируется сильно демпфированная частота вращения, отсутствия пика вибрации в пределах допуска для вычисленного значения. Заводская проверка с использованием этого метода возможна только для насосов, которые имеют подшипники скольжения и поставляются с парами датчиков расстояния для каждого радиального подшипника.
К.2.2 Величина и положение испытательного дисбаланса (испытательных дисбалансов) должны определяться путем калибровки чувствительности ротора к дисбалансу. Калибровка должна выполняться путем определения "орбит" вибрации для каждого подшипника, отфильтрованных по скорости ротора (1), в течение двух опытных прогонов следующим образом:
а) с ротором фактических размеров;
б) с опытными неуравновешенными грузами, добавленными под углом 90° к максимальному смещению при прогоне а).
Величина испытательных дисбалансов должна быть такой, чтобы вычисленное максимальное смещение вала, вызываемое результирующим общим дисбалансом (остаточный дисбаланс плюс испытательный дисбаланс), составляло от 150% до 200% допустимого смещения, установленного в таблицах 8 или 9, в местах расположения датчиков подшипников, но она не должна превышать более чем в восемь раз значения, равного максимальному допустимому дисбалансу ротора.
К.2.3 В процессе испытаний частота вращения ротора, вибрационное смещение и соответствующий фазовый угол, отфильтрованные по скорости ротора (1), должны измеряться и записываться.
К.2.4 Характеристики ротора считаются проверенными, если выполняются следующие требования:
а) Наблюдаемая частота вращения (частота) (отчетливый пик вибрации и соответствующий фазовый сдвиг) находится (находятся) в пределах +10% расчетного значения (значений);
б) Измеренные амплитуды вибрации находятся в пределах 35% расчетных значений.
Сильно демпфированные критические скорости могут не наблюдаться; поэтому отсутствие отклика ротора в области рассчитанной сильно демпфированной критической скорости является проверкой результатов анализа.
К.2.5 Если критерии приемки, установленные в К.2.4, не выполнены, то коэффициент жесткости или коэффициент демпфирования или и тот и другой, используемые в вычислениях собственных частот должны корректироваться для согласования расчетных и измеренных результатов. Коэффициенты элементов одного типа, кольцевых зазоров с L/D < 0,15, кольцевых зазоров с L/D > 0,15, взаимодействия рабочих колес и подшипников должны корректироваться с использованием одного и того же поправочного коэффициента. После согласования такие же поправочные коэффициенты должны использоваться в вычислениях собственных частот и демпфирования для перекачиваемой жидкости, а разделение частот ротора в зависимости от коэффициентов демпфирования должно быть перепроверено на приемлемость.
В отличие от коэффициентов, используемых при проведении анализа поперечных критических частот ротора, коэффициенты демпфирования в кольцевых зазорах характеризуются наибольшей погрешностью и поэтому обычно корректируются в первую очередь. Коэффициенты жесткости кольцевых зазоров обычно характеризуются малой погрешностью и должны корректироваться только на основе соответствующих данных. Корректировка коэффициентов подшипников требует отдельного обоснования, поскольку типичные значения основываются на надежных эмпирических данных.
К.2.6 Существуют альтернативные методы проверки динамических характеристик роторов, например, для определения собственных частот ротора используется возбуждение с переменной частотой при работе насоса с его рабочей частотой вращения. Использование альтернативных методов и интерпретация результатов должны согласовываться потребителем/заказчиком и поставщиком/изготовителем.
К.3 Документация
Отчет по результатам анализа поперечных колебаний должен включать:
а) результаты начальной оценки по 9.2.4.1.1;
б) основные данные по ротору, используемые при проведении анализа, которые могут служить базовой моделью;
в) диаграмма Кэмпбелла на рисунке К.2;
г) зависимость коэффициента демпфирования (декремента затухания) от разделения частот;
д) форма колебаний при критической скорости (скоростях), для которых определен демпфированный отклик на дисбаланс по К.1.4;
е) диаграмма (диаграммы) Боде, полученная на основе заводской проверки дисбаланса по К.2.3;
ж) краткое описание корректировок аналитических расчетов с целью соответствия результатам заводских испытаний по К.2.5.
Позиции д) - ж) должны заполняться только в случае, если документирование действий необходимо для анализа или определено потребителем/заказчиком.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.