Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение АА
(справочное)
Обоснование
Приложение содержит обоснование некоторых требований настоящего стандарта и предназначено для тех, кто знаком с тематикой настоящего стандарта, но не принимал участие в его разработке. Понимание обоснования, лежащего в основе этих требований, является важным условием для их правильного применения. Более того, в клинической практике и изменяющихся технических решениях считается, что такое обоснование облегчит пересмотр настоящего стандарта, вызванный этими изменениями.
Нумерация пунктов обоснования соответствует нумерации разделов настоящего стандарта, поэтому она не является последовательной.
Пульсовая оксиметрия облегчает управление процессом ухода за пациентом, обеспечивая получение приближенных значений насыщения гемоглобина кислородом, и позволяет на ранней стадии обнаруживать пагубные для пациента явления, связанные с гипоксемией.
Существующая технология требует определенной концентрации гемоглобина, изменения пульсирующего кровотока и пропускания света через ткань для того, чтобы обеспечивать эффективную оценку насыщения гемоглобина крови человека in vivo. Пульсовые оксиметры не способны эффективно работать при искусственном кровообращении или в экстремальных условиях низкого кровотока, и в настоящее время они не рассматриваются как средства, предназначенные для измерения потока или объема крови.
При имеющихся ограничениях в современных технологиях пульсовой оксиметр не позволяет делать точные измерения. Образцы пульсовых оксиметров in vivo, имеющиеся в настоящее время на рынке, не заменяют оптические оксиметры, предназначенные для измерения проб крови in vitro. Значения, полученные с помощью пульсовой оксиметрии не являются результатами измерения давления кислорода в крови или ткани. Пульсовая оксиметрия дает косвенные показания поступления кислорода к ткани или поглощения его этой тканью.
АА.1 Область применения
Приборы для лабораторных исследований часто являются экспериментальными и, в основном, не предназначены для медицинского применения. Распространение требований настоящего стандарта на приборы, используемые для исследовательских работ, могут значительно ограничивать развитие новых технологий или приборов.
АА.3.23 Повторная обработка
Термин повторная обработка был выбран вместо таких терминов, как полная модернизация или восстановление, потому что комитет искал наиболее широкий термин. Любая деятельность, не указанная в инструкциях изготовителя, для последующего повторного использования рассматривается как повторная обработка. К ней относится чистка и повторное использование одноразового датчика, а также использование одноразового датчика в качестве исходного материала для процесса модернизации с целью создания "нового" датчика.
АА.6.8.3 Техническое описание
аа) 1)
Надлежащее применение функциональных тестеров было неправильно понято некоторыми операторами или пользователями. См. приложение FF о дискуссии по этому вопросу.
АА.21 Механическая прочность
Изделие, включая пульсовые оксиметры, при нормальной эксплуатации подвергается механическому напряжению (например, вибрации, удару) и случайно может подвергаться воздействию дополнительных напряжений. Поэтому необходимо, чтобы это изделие было достаточно прочным, чтобы выдерживать вибрацию, удары, толчки и падения, которые имеют место при нормальной эксплуатации.
Эти испытания выбраны по первой качественной оценке относительной жесткости сценариев в различных окружающих условиях [т.е. дом, больница и транспорт (крылья и колеса)] и проводятся на изделиях различных размеров и типов (т.е. на ручном изделии, переносном и передвижном). Результат анализа, проведенного комитетом, для различных видов вибрации и удара, которые могут произойти, показан в таблице АА.1.
Таблица АА.1 - Качественная оценка ударной и вибрационной среды, влияющей на пульсовой оксиметр
Категория оборудования |
Местонахождение |
|||||||||||||||
Стандартная среда |
Транспортные средства |
|||||||||||||||
Дом |
Больница |
Автомобиль |
Самолет/Вертолет |
|||||||||||||
Передвижное |
D1 |
S1 |
V1 |
В1 |
D1 |
S2 |
V1 |
В1 |
D1 |
S3 |
V2 |
В3 |
D1 |
S3 |
V3 |
В1 |
Переносное |
D1 |
S2 |
V0 |
В0 |
D1 |
S2 |
V1 |
В1 |
D1 |
S3 |
V2 |
В3 |
D1 |
S3 |
V3 |
В1 |
Ручное |
D3 |
S0 |
V0 |
В0 |
D3 |
S0 |
V1 |
В0 |
D3 |
S3 |
V2 |
В3 |
D3 |
S3 |
V3 |
В1 |
Стационарное |
Нет |
Нет |
Не применяется |
|||||||||||||
S - удар; V - вибрация; D - падение; В - толчок. Оценка: 0 - испытания не проводились; 1 - наименее жесткие; 2 - средней жесткости; 3 - наиболее жесткие. |
Обоснование для совмещения домашней и больничной среды: комитет признал, что в случае удара, вибрации и толчка условия в доме должны быть менее жесткими, чем в больнице. Комитет предпочел объединять эти две категории как для простоты, так и из-за того, что многие части медицинских электрических изделий регулярно переносят из больницы домой и обратно.
После качественной оценки комитет дал оценку стандартам серии IEC 60068, относящимся к испытаниям при заданных условиях окружающей среды, и обосновал их, а также руководящим документам серии IEC 60721 [66], [67].
В выборе требований комитет рассмотрел другие источники данных, относящихся к этим испытаниям (например, Руководство FDA Reviewers [23] для представления сообщений до поступления изделий на рынок, Mil Std 810 и т.д.), но пришел к заключению, что наибольшее соответствие было установлено с IEC 60721-3-7 [66]. Этот международный стандарт наиболее соответствует требованиям, приведенным в таблице АА.1. Существует также руководящий документ IEC/TR 60721-4-7 [67], который помогает сопоставить классы состояния окружающей среды согласно IЕС 60721-3 с испытаниями на воздействие окружающей среды согласно стандартам IЕС серии 60068. Вышеупомянутый международный стандарт устанавливает три класса механических условий: 7М1, 7М2 и 7М3. Комитет полагает, что классы 7М1 и 7М3 наилучшим образом представляют условия, выявленные при транспортировании пациентов внутри лечебного учреждения и за его пределы. Комитет согласился с тем, что к изделиям, предназначенным для использования в лечебном учреждении, в отличие от изделий, предназначенных для использования за его пределами, должны применяться разные методы и уровни испытаний.
Предполагается, что необязательно проверять изделия, которые работают в соответствии с требованиями изготовителя, в процессе испытаний на вибрацию (случайную и синусоидальную). Это мнение комитет рассмотрел и принял решение, что испытания, проводимые таким образом, будут слишком обременительны и дадут только минимальный дополнительный уровень безопасности изделий, который не компенсирует затраты. Признано, что наиболее подходящей является проверка правильной работы после завершения испытаний.
АА.21.101 Удар и вибрация
Изделия, включая пульсовой оксиметр, применяемые в учреждениях здравоохранения или в домашней среде при нормальной эксплуатации, подвергаются механическим воздействиям (например, вибрации и удару) и могут случайно подвергаться дополнительным воздействиям. Поэтому изделие, предназначенное для применения в больничной и домашней среде, должно быть достаточно прочным, чтобы выдерживать испытание на вибрацию и удар, описанное в IEC 60721-3-7 [66], уровень 7М1. В IEC 60721-3-7 [66] указано, что этот класс применяется только в местах с низким уровнем вибрации или средним уровнем ударов. В этих условиях требуются осторожное обращение и транспортирование.
АА.21.102 Удар и вибрация при транспортировании
Изделия, включая пульсовой оксиметр, при нормальной эксплуатации, предназначенные для применения во время перевозки пациента за пределами лечебного учреждения, подвергаются механическим воздействиям (например, вибрации и удару, толчкам и падению) и могут случайно подвергаться дополнительным воздействиям. Поэтому изделие, предназначенное для применения во время перевозки пациента за пределами лечебного учреждения, должно быть достаточно прочным, чтобы выдерживать испытание на механическую прочность, описанное в IЕС 60721-3-7 [66], уровень 7М1. В IЕС 60721-3-7 [66] указано, что в дополнение к условиям, относящимся к классу 7М2, применяется класс 7М3, но только в местах с высоким уровнем вибрации или ударов. В этих условиях возможно небрежное обращение при транспортировании изделия.
Не существует признанных общих программ испытаний, позволяющих точно воспроизвести условия вибрации и удара в заданном диапазоне, которым может удовлетворять оборудование, устанавливаемое в наземных транспортных средствах или самолетах. Поэтому на основе того, что оборудование, испытываемое согласно этим уровням, вероятно, сможет выдерживать нормальные динамические помехи, которые могут появиться при его использовании в автомобилях или самолетах (включая вертолеты), предназначенных для перевозки пациентов, были выбраны динамические испытания, описанные в этом разделе.
Для использования изделия в таких различных условиях окружающей среды, как машины скорой помощи, воздушные суда с неподвижным крылом или несущим винтом, военные корабли и т.д., могут потребоваться дополнительные испытания и проверка безопасности.
Для испытаний в свободном падении, описанных в IEC 60068-2-32, комитет дал обоснование различных уровней для оценки жесткости требований к испытанию на основе значений из таблицы АА.1. Переносные чемоданчики были выбраны в качестве категории уровня испытаний переносного изделия. Комитет согласился с тем, что пульсовой оксиметр должен удовлетворять уровню испытания на падение для транспортной среды. Кроме того, комитет также решил, что большинство пульсовых оксиметров следует поставлять в защитном или переносном чемодане для использования их при транспортировании. Члены комитета решили, что это будет подходящим испытанием на падение для переносного изделия, когда оно находится в переносном чемоданчике, так как наиболее реально отражает окружающую среду. Для передвижного оборудования был выбран менее жесткий уровень, так как оборудование на колесах обычно более тяжелое.
АА.36 Электромагнитная совместимость
Требования к устойчивости среды к излучению во время транспортирования пациента за пределами лечебного учреждения (например, наземный и воздушный санитарный транспорт) более жесткие, чем к типичной среде внутри него. Основной причиной этого различия является наличие сложных дуплексных систем радиосвязи, которые преднамеренно излучают электромагнитную энергию. В обеих этих средах пульсовой оксиметр, соответствующий требованиям IEC 60601-1-2, защищен от случайных источников электромагнитных помех. Дополнительные испытания для оценки работы оксиметров при транспортировании пациента за пределами лечебного учреждения требуются только для определения конкретной дополнительной опасности.
Дуплексные системы радиосвязи используют для передачи речевой информации и информации о пациенте. Опыт показал, что типичная напряженность поля [13], измеряемая в этой среде, может достигать 20 В/м. Речевая информация и информация о пациенте, как правило, имеют ширину полосы частот модуляции, превышающую 1 кГц, а в центральной точке речевой модуляции 1 кГц. Комитет выбрал единственную контрольную точку, представляющую типичную полосу модуляции при передаче информации. Был выбран сигнал с 80%-ной амплитудной модуляцией при 1 кГц, который не противоречит требованиям IEC 61000-4-3 к невосприимчивости к излучению, также использующему 80%-ный амплитудно-модулированный сигнал при 1 кГц, 80%-ный амплитудно-модулированный сигнал 20 имеет двойную амплитуду 90,5 В.
Изменение на 20 В/м также совместимо с требованиями FDA reviewer's guidance [23].
АА.42.3
Общий стандарт устанавливает, что рабочие части изделия, не предназначенные для подачи тепла пациенту, не должны иметь температуру поверхности, превышающую 41°С. Отклонения от этого предела неизвестны.
В проекте IEC/CDV 60601-1:2004 появляется новый текст:
11.1.2.2 Рабочие части, не предназначенные для подачи тепла пациенту
Следует применять предельные значения из таблицы 22. Если температура поверхности превышает 41°С, то максимальные температуры должны быть указаны в руководстве по применению, а клиническое воздействие таких характеристик, как поверхность тела, полная готовность пациентов, применяемое лечение или поверхностное давление должны быть установлены и занесены в файл по управлению рисками. Обоснование не требуется, если температура не превышает 41°С.
После ознакомления с опубликованными экспериментальными исследованиями комитет пришел к выводу, что при некоторых обстоятельствах повышение температуры датчиков пульсовых оксиметров свыше 41°С не представляет опасности и что потенциальным преимуществом возможности работы датчиков при более высоких значениях тока является предоставление выбора самому врачу-клиницисту. Это обоснование объясняет наше решение и выделяет те области, в которых новые экспериментальные данные могли бы привести к еще менее строгим ограничениям.
В настоящее время пульсовые оксиметры абсолютно безопасны. В период между 1996 и 1997 гг. в заключении FDA (Управление США по контролю за продуктами и лекарствами) по работе медицинских приборов было указано только 14 случаев подозрительных ожогов, вызванных датчиками. В США ежегодно за этот же период огромное количество раз в течение длительного времени для обследования пациентов применялись датчики пульсовых оксиметров. Более того, исследование этих редких случаев подозрительных ожогов позволяет промышленным экспертам комитета сделать вывод о том, что пульсовые оксиметры, изготовленные, по крайней мере, в последние несколько лет и применяющиеся в соответствии с рекомендациями изготовителя,
- не стали причиной термических повреждений (наиболее общее альтернативное объяснение появления ожогов, вызванных неправильным приложением датчика) или что
- некоторые компоненты оксиметра были неисправны, что вызвало прохождение большего электрического тока через датчик, чем было рассчитано.
Таблица АА.2 - Допустимые максимальные температуры при контакте кожи с рабочими частями медицинского электрического изделия (IEC/CDV 60601-1:2004)
Время контакта рабочей части с кожей пациента t, мин |
максимальная температура(a), (b) °С |
||
Материал прилагаемой части | |||
Металл и жидкость |
Стекло, фарфор, стекловидный материал |
Рельефный материал, пластик, каучук, дерево |
|
t < 1 |
51 |
56 |
60 |
48 |
48 |
48 |
|
43 |
43 |
43 |
|
(а) Максимальная температура подходит для здоровой кожи взрослых пациентов. Максимальная температура не применима, если большие области кожи (более 10% общей поверхности тела) могут находиться в контакте с горячей поверхностью. Они не применимы в случае контакта с более 10% поверхности кожи головы. Если это имеет место, то должны быть определены и занесены в файл по управлению рисками соответствующие предельные значения. (b) Если необходимо, чтобы температура прилагаемых частей превысила температурные пределы для достижения клинического эффекта, в файл по управлению рисками следует включать документы, в которых будет обосновано, что ожидаемый эффект покрывает все возможные риски. |
Наряду с тем, что работа по снижению частоты появления неисправностей продолжается, стоит пересматривать температурный пороге разрабатываемых нормах. Повышение допустимой температуры позволяет увеличивать мощность источников света для датчиков пульсовых оксиметров. Это приводит к большей светоотдаче, что повышает отношение сигнал - шум. В пограничных случаях это может приводить к расхождению между показаниями уровня насыщения кислородом.
Можно увеличивать выходной сигнал датчиков без повышения максимальной температуры кожи, используя более эффективные светодиоды или детекторы большего размера. Однако для датчика любой конструкции, как правило, можно увеличивать сигнал путем увеличения тока возбуждения в светодиодах, но это приводит к повышению температуры кожи.
Рекомендуя температурные пределы в 42.3, комитет хочет избежать значительного повышения риска получения ожогов. Датчики пульсовых оксиметров, рассчитанные на предел в 41°С, могут показывать эффективную точность на большинстве пациентов. Несмотря на то, что некоторые пациенты получают пользу в результате увеличения производительности работы датчика при повышенных температурах, мы думаем, что она будет неоправданной, если повлечет за собой повышение риска получения ожогов. Поэтому мы с осторожностью пытаемся интерпретировать имеющиеся данные, чтобы рекомендовать приемлемые пороги, при которых случаи ожогов будут чрезвычайно редкими.
Нет практических данных о термических повреждениях от датчика, который используется для кратких проверок (так называемые "выборочные проверки"). Мы хотим убедиться в том, что датчики, применяемые для длительного непрерывного мониторинга пациентов, не вызывают ожогов. В зависимости от способа приложения датчиков к пациенту в руководстве по применению датчиков, как правило, указывается на необходимость контроля места приложения после 4 или 8 ч работы. Поэтому мы попытались выяснить из литературы наиболее эффективные методы оценки безопасных температурных порогов для этих периодов времени.
Специалисты, изучающие термические повреждения, считают, что пороговая температура для повреждения - это функция длительности воздействия. Когда длительность воздействия увеличивается вдвое, безопасная температура снижается на 1°С. Таким образом, если известно, что 44°С безопасны в течение 4 ч, то 43°С могут считаться безопасными в течение 8 ч. При достаточно низких температурах правило множителя два становится слишком консервативным; есть достаточно низкая температура, которая никогда не причиняет никакого вреда, каким бы длительным не было воздействие. Мориц (Moritz) и Хенрикс (Henriques) [45] считают, что:
"...для каждого градуса повышения температуры поверхности от 44°С до 51°С допустимое время [необратимое нарушение клеток эпидермиса] было сокращено приблизительно наполовину. Ниже 44 °С идет быстрое снижение скорости, при которой происходит ожог, и кривая термического цикла представляет собой асимптотическую кривую в направлении оси времени. Возможно, это происходит из-за возросшей эффективности восстановления пластинчатых отростков клетки, так как гипертермический уровень приближается к диапазону температур, который является нормальным для ткани".
О существовании равновесия между повреждением и восстановлением высказался Монкриф (Moncrief) [44].
"Ниже 44°С местного повреждения клеточного строения не наблюдается, если воздействие происходит в течение длительного периода времени. То, что оно должно происходить длительное время, подтверждается тем фактом, что во многих странах принят температурный диапазон термальной ванны, в которую люди погружаются на много часов.
При температуре 44°С степень местного повреждения ткани и ее восстановление находятся в таком слабом равновесии, что хотя его можно поддерживать в течение приблизительно 6 ч, более этого времени происходят глубокие необратимые повреждения базальных клеток эпидермиса".
Чтобы оценивать конструкцию датчика, максимальную местную температуру кожи, вызываемую датчиком, следует измерять температуру, вызываемую этим датчиком в контакте с кожей (или с определенным образом сконструированным термомеханическим имитатором). Так как большая часть тепла, выделяемая излучателями света, обычно проводится через кожу, датчик, открыто лежащий на лабораторной скамье, будет, как правило, теплее, чем на коже пациента. Когда возбужденный датчик прилагается к коже, температура места сопряжения датчика с кожей падает в течение секунд или минут до квазиравновесного значения, которое будет колебаться при изменении местной перфузии. Квазиравновесное значение необходимо измерять, так как оно показывает тепловой режим, который может при длительном воздействии вызывать повреждение кожи. Любое воздействие более высоких температур в равновесный период является достаточно кратковременным, чтобы представлять опасность травмы. Если датчик пульсового оксиметра прикладывают к коже до его включения в работу, время сверх равновесного воздействия никогда не наступит.
При сильном местном кровотоке движущаяся кровь выполняет работу по переносу тепла, исходящего от датчика, так что повышение температуры, индуцируемой датчиком, незначительно. Поэтому задача конструктора датчика заключается в том, чтобы обнаруживать повышение температуры кожи, вызываемое датчиком при низкой перфузии. С другой стороны, низкая перфузия также понижает температуру кожи, которая наблюдается и без датчика (т.е. люди с плохой циркуляцией крови имеют холодные руки). Поэтому повышение температуры, вызываемое датчиком, будет, вероятно, меньше поражающей конечной температуры. Рассматривая эти противоположные воздействия слабой перфузии, мы приходим к заключению, что для большей вероятности повреждения требуется внешний источник тепла (например, нагревательный прибор, использующийся в инкубаторе для новорожденных), который повышает температуру кожи пациента со слабой перфузией. В этих условиях внешний нагревательный прибор дает высокую базовую температуру и повышение температуры, индуцируемой датчиком выше этого уровня, достигает максимума.
Предполагаемая в ходе этой дискуссии точка зрения касается того факта, что температура кожи является основным параметром, который определяет вероятность повреждения кожи. Ожог - это химический процесс. Скорость химических процессов определяется температурой.
Также подразумевается идея, знакомая тем, кто проводил расчеты теплового потока, и все еще удивляющая других. Если данный поток тепла доставляется в заданную область субстрата постоянной теплопроводности, это приводит к поднятию рассчитываемой температуры выше той, субстрат которой имел бы без дополнительного источника тепла (т.е. полученная температура поверхности на х градусов теплее, чем была температура субстрата без дополнительного источника тепла). Повышение температуры зависит от области распространения (параметр, контролируемый проектировщиком датчика) и эффективной проводимости субстрата. Для максимального повышения температуры эффективная проводимость низкая (т.е. нет сильного кровотока для переноса тепла). Для достижения максимальной местной температуры начальная температура кожи (перед возбуждением датчика) должна быть высокой. Чтобы это имело место при низкой перфузии, должен быть внешний источник тепла.
АА.43.101 Пульсовой оксиметр, применяемый вместе с оксидантами
Сообщения о пожаре, вызванном медицинскими электрическими изделиями, крайне редки. Однако когда такой пожар происходит в больничной среде, он имеет трагические последствия. Риск пожара, в основном, определяется по трем показателям, которые должны присутствовать, чтобы начался пожар:
- воспламеняемый материал (топливо);
- температура, которая равна или превышает минимальную температуру возгорания материала или искра, распространяющая энергию, равную или превышающую минимальную энергию возгорания материалов и
- оксидант.
Поэтому, следуя основным принципам безопасности общего стандарта, цель, стоящая перед проектировщиками оборудования, заключается в том, чтобы в нормальном состоянии и условиях единичного нарушения, которые могут воздействовать на материал, гарантировать, чтобы температура материала не повышалась до его минимальной температуры возгорания или чтобы энергия искры не превышала уровень энергии возгорания материала. С другой стороны, может произойти скрытое возгорание при условии, что оно самоограничивающее (например, плавкий предохранитель или резистор), не представляющее опасность.
Минимальные температуры возгорания большого числа специальных материалов приводятся в опубликованной литературе, хотя обычно - только в условиях окружающей воздушной среды или 100%-ной кислородной среды. Минимальная температура возгорания может зависеть от концентрации присутствующего оксиданта. Если необходимо узнать температуры возгорания других материалов или при других концентрациях кислорода, их можно устанавливать с помощью методов и аппаратуры, приведенных в IEC 60079-4.
При рассмотрении воспламеняемых материалов особое внимание следует уделять тем, которые могут аккумулировать в процессе длительного применения, например пылинкам бумаги или хлопчатобумажной нити.
Действие искр в средах, содержащих оксиданты, совершенно отличается от того, что происходит во взрывных газовых смесях. Энергия искры - наиболее сильная форма энергии в воспламеняемых взрывных газовых смесях, а в средах, содержащих оксиданты, тепловая энергия является наиболее существенной. Возможно, что при более высоком уровне мощности достаточное количество энергии искр может распространяться по границе между проводником искр и их окружением, так что происходит устойчивое горение, но в настоящее время нет документальных подтверждений относительно уровня мощности, при котором это может произойти с различными материалами и средами. Поэтому там, где потенциально распространение мощности искр отклоняется от установленной безопасной практики, следует проводить искровую пробу, имитируя наиболее неблагоприятную среду, которую можно обоснованно предвидеть.
Накапливающие материалы, о которых говорилось выше, частично подвержены возгоранию от искровой энергии из-за их низких температур возгорания и очень низкой теплоемкости при условии плохой проводимости.
В некоторых действующих в настоящее время стандартах требования минимизировать риск пожара основываются на ограничении температуры, электрической энергии и концентрации оксиданта до абсолютных значений.
Значение температуры выводится на основе минимальной температуры возгорания горячей пластинки для огнезащитной хлопчатобумажной ткани в 100%-ной кислородной среде, которая, как указано в ссылке [6], равна 310°С. Поэтому было сделано предположение, что 300°С - это допустимый температурный предел для медицинских электрических изделий в обогащенных кислородом атмосферах.
Происхождение применявшихся значений электрической энергии менее ясно и кажется, что при отсутствии специальных испытаний в контролируемых условиях были взяты цифры на основе принятой рабочей практики или испытаний, проведенных в других средах. Простые испытания и подробный анализ известных факторов, которые стали причиной кислородного пламени, показывают, что эти цифры могут быть или очень ограничены или потенциально опасны в зависимости, в частности, от способа рассеяния мощности и схожести и типа присутствующего "топлива".
Поэтому в настоящее время установлено, что нет единых или универсально применимых диапазонов температуры, энергии и концентрации оксиданта, которые могут обеспечивать безопасность при всех условиях, в то же время не являясь чрезмерно ограничивающими.
Ясно, что только электрическая энергия является значимой в отношении ее способности повышать температуру воспламеняемых материалов, и она, в свою очередь, зависит от конкретной конфигурации и схожести всех воспламеняемых материалов.
В условиях единичного нарушения в типичной электрической цепи возможное число состояний отказа очень высоко. В этом случае возможна полная гарантия безопасности только с использованием соответствующих методов анализа безопасности на основе трех основных элементов - материала, температуры и оксиданта.
Определенная конструкция может ограничивать электрическую энергию в цепи, обеспечивая состояние температуры ниже минимальной температуры воспламенения на воздухе в нормальном состоянии и герметически закрытых отделениях, или может позволить устанавливать дополнительную искусственную вентиляцию, при которой содержание кислорода не превышает его содержания в окружающем воздухе в условиях единичного нарушения.
С другой стороны, целесообразно ограничивать электрическую энергию, чтобы обеспечивать температуры ниже минимальной температуры возгорания в чистой кислородной среде даже в условиях единичного нарушения.
Частная комбинация, а не одно значение каждой из этих переменных - материала, оксиданта и температуры - определяет, произойдет ли возгорание.
АА.44.6 Проникание жидкостей
Пульсовой оксиметр, установленный в операционной на наркозном аппарате, может подвергаться воздействию жидкостей тела и IV. Когда пульсовой оксиметр применяют за пределами операционной, он может подвергаться дополнительной опасности попадания влаги из кофе, газированной воды и т.д. Пульсовые оксиметры, применяемые в домашних условиях или в автомобилях скорой помощи, имеют высокую вероятность "попадания под дождь". Комитет решил отнести все пульсовые оксиметры к разряду IРХ2, но посчитал это слишком жестким условием. В результате был найден компромисс, допускающий или:
- разряд IPX2 (сильный дождь или большое отверстие в чемодане IV) или
- разряд IPX1 (дождь или просачивание) и традиционное испытание на разливание 200 мл жидкости (пролитая чашка кофе или большое отверстие в чемодане IV).
АА.50.101 Точность измерения пульсового оксиметра
Важно отметить, что точность измерения не только характеристика монитора пульсового оксиметра, но характеристика пульсового оксиметра в сборе, представляющего комбинацию монитора, датчика, кабеля и ткани человека. См. также FF.6, в котором приведен пример датчика, снижающего точность измерения в результате большой изменчивости между разными субъектами испытаний в процессе калибровки.
АА.50.101.1 Технические требования
Подробно обсуждались технические требования к минимально допустимой точности измерения пульсовых оксиметров В идеале пульсовой оксиметр должен проводить высокоточные измерения уровня насыщения (< 1%), используя любой датчик и области его размещения. Однако из-за хорошо известных ограничений современной технологии пульсовой оксиметрии в повседневной практике невозможно достичь необходимого уровня точности измерения .
Поэтому комитет обсудил: "Какой должна быть минимально допустимая точность измерения для обеспечения безопасности и эффективной работы пульсового оксиметра?".
В результате различного применения пульсового оксиметра минимальные требования к рабочим характеристикам не являются универсальными. Две основные категории, в которых используется оборудование, можно описывать как мониторинг и диагностика.
Мониторинг можно определять как контроль тенденций и/или сигналов опасности, позволяющий облегчать раннее обнаружение изменений уровня сатурации или частоты пульса.
Диагностику или диагностическое применение можно определять как измерение для достижения точной оценки с целью облегчения диагностики или проведения лечения.
Применение пульсового оксиметра в диагностических целях обычно требует более высокой точности измерения . Несмотря на заданную точность измерения , которую показывает монитор, свойственные ему собственные ограничения точности измерения могут потребовать проведения анализа пробы артериальной крови.
На основе клинического опыта и истории применения пульсового оксиметра для многих видов мониторинга приемлема точность измерения не менее 4%. Врачи, участвующие в работе комитета, выразили озабоченность тем, что используемый в клинической практике пульсовой оксиметр, имеющий точность измерения , превышающую 4% при одном стандартном отклонении (8,0% при двух стандартных отклонениях), может привести к неправильному лечению. Даже если точность измерения выше, что обычно более желательно и часто достижимо, эта цифра представляет клинически допустимый выбор между более низкой точностью измерения и большей гибкостью при определении рабочих характеристик датчика и его расположения (установки).
Комитет согласился с тем, что важно обеспечивать единую основу для сравнения различных пульсовых оксиметров, и по этой причине принял решение, чтобы точность измерения устанавливалась в каждом отдельном диапазоне от 70% до 100% в каждом отдельном случае. Настоящий частный стандарт четко определяет требования к точности измерения в дополнительных диапазонах (например, 1% в диапазоне от 90% до 100% ).
Точность измерения пульсовых оксиметров частично зависит от пациента [52]. Сконструированные в настоящее время пульсовые оксиметры обычно более точные при уровнях выше 90%, чем при уровнях ниже 80%. Ограничивая диапазон, в котором установлена точность измерения , передача информации в этом диапазоне будет более эффективной. Для пульсовых оксиметров с заданной точностью измерения ниже 65% диапазон ограничен 20%. Это препятствует усреднению при лучшей работе в более высоких диапазонах, позволяя таким образом избежать искажения точности измерения при низком насыщении.
АА.50.101.2.1 Сбор данных
Во время испытания на десатурацию часто бывает трудно достигать запланированного уровня особенно на нижнем пределе диапазона . Следует, по крайней мере, попытаться достичь при измерении точности измерения в пределах 3% в установленном диапазоне точности измерения .
Точность измерения пульсовых оксиметров в большой степени зависит от оптического взаимодействия между излучателем и приемником света, и снабжаемыми кровью тканями пациента. Взаимозависимость между измеренными пульсациями при пропускании света через снабжаемые кровью ткани и определением насыщения артериальной крови кислородом определяется, среди прочего, спектральным составом излучаемого датчиком света и от взаимодействия оптической системы датчика с поверхностью кожи. Так как эти сложные взаимосвязи, зависящие от длины волны, не оцениваются и не воспроизводятся функциональными тестерами пульсовых оксиметров и имитаторов, такие устройства не способны охарактеризовать или проверить подлинную точность работы системы датчик/монитор. Функциональные тестеры могут применяться для проверки функционирования мониторов пульсовых оксиметров и электрической целостности датчиков. (См. также приложение FF).
АА.50.101.2.2 Анализ данных
СО-оксиметры имеют присущую им неточность, которая влияет на оценку [11] и [26] точности измерения . СО-оксиметры и пульсовые оксиметры применяются для измерения степени насыщения артериальной крови кислородом и имеют присущую им недостоверность. Чтобы улучшить точностные характеристики пульсовых оксиметров, необходимо контролировать точность измерения этими СО-оксиметрами.
Комитет не уверен, что существует практический или контролепригодный метод проверки точности измерения СО-оксиметром изготовителем или пользователем. Для минимизации неточности СО-оксиметра при измерении особое внимание следует обращать на то, чтобы обеспечивать работу СО-оксиметра в рамках его возможностей. Необходимо проверять правильную работу, используя рекомендованный изготовителем СО-оксиметра порядок технического обслуживания, но этого недостаточно, чтобы обеспечивать точность измерения. Требуются новые методы обеспечения качества проверки точности СО-оксиметра.
ПРИМЕР 1 NCCLS [5].
ПРИМЕР 2. Корпорация американских патологоанатомов [18].
АА.51.101 Период обновления данных
В пульсовом оксиметре необходимо предусматривать индикацию, показывающую, что выводимое на дисплей значение не соответствует действительному на данный момент значению, если период обновления данных о превышает 30 с. Пункт 6.8.2 включает в себя требование об указании периода обновления данных в эксплуатационной документации. Однако нет требования об ограничении продолжительности периода обновления данных. Комитет добавил дополнительное требование об "индикации несоответствующего действительному значению " на основе потенциально значимой задержки, которая может произойти между событием по активации сигнала опасности и фактическим генерированием сигналов опасности. Выводимое на дисплей значение не отражает изменений в измеренном значении до завершения каждого периода обновления. Если событие, которое приводит в действие сигнал опасности, такое как десатурация пациента, случается сразу после обновления дисплея, то может произойти значительная задержка между событием и генерацией сигналов опасности. Если период обновления долгий, это может создавать опасную для пациента ситуацию.
Чтобы уменьшить эту потенциально опасную ситуацию, комитет решил, что важно обеспечивать изделие индикацией, показывающей оператору, что выведенное на дисплей значение не было обновлено в течение 30 с и по существу не является реальным на данный момент значением. Это позволяет оператору получать своевременную информацию для оценки состояния пациента и принимать, в случае необходимости, соответствующие меры.
АА.101 Несоответствие сигнала
Врачи предполагают, что точность пульсовой оксиметрии падает в различных физиологических и окружающих условиях, и они хотят видеть индикатор, показывающий ухудшение характеристик работы прибора. Кроме того, предполагается, что плетизмограмма на дисплее покажет это ухудшение, если оно вызвано движением и слабым уровнем пульсирующего сигнала. В связи с этим врачи выразили желание, чтобы им была показана ненормированная плетизмограмма. (Также предполагается, что плетизмограммы, нормированные по амплитуде, скроют значительные изменения уровня сигнала).
В действительности множество факторов влияют на ухудшение сигнала с потенциальной потерей точности. Форма плетизмограммы может быть чувствительна к шуму и величине (амплитуде) сигнала, но изменение плетизмограммы не связано напрямую с факторами, которые ухудшают точность, т.е. эти факторы могут изменять плетизмограмму, не ухудшая точность измерения. Эти факторы включают: амплитуду сигнала, источник шума, морфологию плетизмограммы, интенсивность внешнего освещения, положение и настройку сенсора (но не ограничиваются ими).
В идеале наилучшим было бы получить возможность оценки достаточности качества сигнала, который бы отражал общее состояние работы прибора, включая уверенность в точности измерения. Это может быть достигнуто в реальном времени всесторонней оценкой сигнала, а также визуальным отражением этого статуса. Это также может быть достигнуто в клинически приемлемой форме, например с плетизмографическим дисплеем, который соответствующим образом отрегулирован.
Неотрегулируемый плетизмографический дисплей может не иметь достаточного разрешения, чтобы показать клинически значимые изменения при малой величине (амплитуде) сигнала. Поэтому нормирование плетизмограммы для увеличения разрешения при низкой амплитуде сигнала улучшает возможность использования плетизмограммы для оценки изменения уровня сигнала.
АА.102 Датчики пульсовых оксиметров и удлинительные кабели к нему
Датчики пульсовых оксиметров и удлинительные кабели к датчикам также важны для обеспечения безопасности и точности всего оборудования в сборе, как и сам монитор. Раздел 102 определяет ответственность изготовителя датчика и удлинительного кабеля (включая изготовителя повторно обработанного датчика и удлинителя) не только за отдельно проверяемые характеристики (такие, как биосовместимость) датчика или удлинительного кабеля, но и за комплекс характеристик (таких, как точность, электромагнитная совместимость, электрическая безопасность, защита от избыточных температур на границе взаимодействия датчика с тканью) пульсового оксиметра, в комплекте с которым будет использоваться датчик и удлинитель, и которые устанавливает изготовитель. Примером возможного влияния повторной обработки на биосовместимость является стерилизация глутаральдегидом силиконовых материалов, которая может привести к пропитке материала растворителем, и, если его не удалить последующей обработкой, это может стать причиной химического ожога, что следует указывать (и подтверждать) в эксплуатационной документации.
АА.201.1.2 Определение приоритетов
Язык предыдущей версии настоящего стандарта простой, за исключением начальной фразы "если предназначен для постоянного мониторинга". Этот язык вызвал большую дискуссию между членами комитета и его консультантами относительно обстоятельств, при которых требуются сигналы опасности о низком уровне . Такие термины, как "постоянный мониторинг" и "автоматический мониторинг" недостаточно определены, чтобы требовать развернутого пояснения, и могут быть поняты как режим ожидания, для которого совсем не требуются сигналы опасности. В конце концов, комитет согласился, что операторы и пользователи знают, когда монитор оксиметра должен подавать сигналы опасности. Поэтому значительным вкладом этого частного стандарта явилось бы обеспечение соответствующей маркировкой мониторов пульсовых оксиметров в случае, если сигналы физиологической опасности не предусмотрены (см. 6.1 и 6.8.2), а в случае, когда такие сигналы предусмотрены, должен быть предусмотрен сигнал опасности для такого наиболее важного параметра, как низкий уровень .
Некоторые мониторы пульсовых оксиметров могут подавать сигналы опасности в случае технически тревожных ситуаций в работе частей, относящихся к оборудованию, таких как разрядка батареи, но не в случае физиологических тревожных ситуаций. На таких мониторах индикация низкого уровня не требуется.
АА.201.5.4 Предварительная установка сигнала по умолчанию
85% - это обычно допустимый нижний предел сигнала опасности для большинства клинических ситуаций; однако в конкретных клинических условиях могут быть желательны более низкие значения пределов сигнала опасности. Оператору разрешается устанавливать нижний предел сигнала опасности при нормальной эксплуатации.
При выборе 85% в качестве минимального предела сигнала опасности по умолчанию, устанавливаемого изготовителем в случае опасной ситуации при низком уровне , был найден компромисс между двумя клиническими требованиями. Одно требование касалось работы пульсового оксиметра как раннего индикатора физического недомогания пациента с относительно нормальной оксигенацией. В этой ситуации согласно клинической практике желательно выбирать предел сигнала опасности по умолчанию выше "излома" кривой диссоциации оксигемоглобина, который обеспечивает требуемый минимум безопасности. Второе требование - избегать частых сигналов опасности, необязательно требующих клинического вмешательства, которые могут "снижать чувствительность" медперсонала к сигналам опасности. В этом случае можно поспорить о снижении предела сигнала опасности по умолчанию, чтобы гарантировать, что большинство тревожных ситуаций будут значимы в любой ситуации. Признано, что в обоих клинических случаях многие, если не все, операторы больше полагаются на предельное значение сигнала опасности при низком установленное по умолчанию.
Другой случай, который рассматривался членами комиссии, касался того, что многие образцы пульсовых оксиметров, предназначенные для постоянного мониторинга, дают возможность пользователю или оператору устанавливать пределы сигнала опасности по умолчанию и что для специальных параметров мониторинга можно выбирать пределы сигнала опасности по умолчанию, которые более соответствуют потребностям пациентов и операторов. Рассмотрев все соображения, пришли к выводу, что нижний предел 85% для предела сигнала по умолчанию, установленного изготовителем, представляется приемлемым компромиссом, наиболее полно удовлетворяющим этим двум клиническим требованиям.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.