Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Раздел 1. Общая информация о рассматриваемой отрасли промышленности
1.1 Общие сведения
Алюминий - химический элемент III группы периодической системы элементов Д.И. Менделеева, легкий и пластичный металл матово-серебристого цвета. Вследствие высокой химической активности алюминий в природе находится только в связанном виде.
Плотность (при нормальных условиях) - 2,69 , электропроводность - См/м.
Уникальные свойства алюминия:
- на воздухе моментально образует оксидную защитную пленку, которая способствует высокой коррозионной стойкости металла;
- низкая плотность при высокой прочности;
- неизменность свойств при низких температурах.
Алюминий обладает амфотерными свойствами, т.е. реагируя с кислотами, образует соответствующие соли, а при взаимодействии с щелочами - алюминаты. Эта особенность существенно расширяет возможности извлечения алюминия из руд различного состава. Алюминий растворяется в серной и соляной кислотах, а также в щелочах, но концентрированная азотная и органическая кислоты на алюминий не действуют.
Механические свойства алюминия в значительной степени зависят от количества примесей в алюминии, его предварительной механической обработки и температуры. С увеличением содержания примесей прочностные свойства алюминия растут, а пластичные снижаются, причем эти свойства проявляются даже при изменении чистоты алюминия от 99,5% до 99,0%.
Благодаря таким свойствам, как малая плотность, высокая теплопроводность, низкое электрическое сопротивление, высокая пластичность, коррозионная стойкость, алюминий получил исключительно широкое распространение в различных отраслях современной техники и играет важнейшую роль среди всех цветных металлов.
Чистый технический алюминий используется в электротехнике в качестве проводникового материала и для производства фольги. Основная часть алюминия применяется в виде литейных и деформируемых сплавов и сравнительно небольшое количество алюминия - в виде порошков.
К основным областям применения алюминия и его сплавов относятся аэрокосмическая промышленность, строительство, высокоскоростной железнодорожный и водный транспорт, автомобилестроение (корпуса двигателей, кузовные детали и трансмиссия), электротехника, машины и турбинная техника, упаковка пищевых продуктов и напитков, криотехника, пиротехника и ракетное топливо, пищевая промышленность.
Практически единственным методом получения металлического алюминия является электролиз криолитоглиноземного расплава. Основное сырье для этого процесса - глинозем () - получают различными гидрохимическими методами путем переработки минералов, содержащих соединения алюминия.
Современное получение алюминия осуществляется путем электролитического разложения глинозема (), растворенного в электролите (расплавленный криолит ()). Технологический процесс осуществляется при 950°C - 965°C в электролизных ваннах (электролизерах). В целом процесс разложения глинозема в электролизерах можно представить в виде формул:
+ 1,5C 2Al + ,
+ 3C 2Al + 3CO.
Суммарную реакцию можно записать в виде
+ xC = 2Al + (3 - x) + (2x - 3)CO
или представить ее как сумму трех реакций:
2Al + ,
C + ,
C + CO.
Основным исходным сырьем криолит-глиноземного расплава являются глинозем (), фтористый алюминий () и криолит (). Кроме того, в электролите всегда присутствует фтористый кальций (), снижающий температуру кристаллизации электролита, что позволяет проводить процесс электролиза при более низкой температуре.
Технологический процесс в алюминиевом электролизере - сложный комплекс взаимосвязанных химических, физико-химических и физических процессов.
При электролизе на катоде выделяется алюминий, а на аноде - кислород. Алюминий, обладающий большей плотностью, чем исходный расплав, собирается на дне электролизера, откуда его периодически извлекают.
Рентабельность производства алюминия определяется доступностью и ценой электроэнергии, наличием сырьевых компонентов и их качеством.
В таблице 1.1 представлены действующие в Российской Федерации предприятия алюминиевой промышленности, год ввода в эксплуатацию, производительность и применяемые технологии электролиза. Их географическое расположение представлено на рисунке 1.1.
Таблица 1.1 - Перечень предприятий алюминиевой промышленности Российской Федерации
Завод |
Место расположения |
Год ввода в эксплуатацию |
КАЗ Филиал ОАО "СУАЛ" "КАЗ-СУАЛ" |
Мурманская область, г. Кандалакша |
1951 |
НкАЗ ОАО "РУСАЛ Новокузнецк" |
Кемеровская область, г. Новокузнецк |
1943 |
КрАЗ ОАО "РУСАЛ Красноярск" |
Красноярский край, г. Красноярск |
1964 |
БрАЗ ОАО "РУСАЛ Братск" |
Иркутская область, г. Братск |
1966 |
САЗ АО "РУСАЛ Саяногорск" |
Республика Хакасия, г. Саяногорск |
1985, 2006 |
ИркАЗ Филиал ОАО "РУСАЛ Братск" в г. Шелехове |
Иркутская область, г. Шелехов |
1960 |
НАЗ Филиал ОАО "СУАЛ" "НАЗ-СУАЛ" |
Республика Карелия, п. Надвоицы |
1954 |
ВгАЗ*(1) Филиал ОАО "СУАЛ" "ВгАЗ-СУАЛ" |
г. Волгоград |
1959 |
БоАЗ ЗАО "Богучанский алюминиевый завод" |
Красноярский край, Богучанский район |
2015 |
АГК ОАО "РУСАЛ Ачинск" |
Красноярский край, г. Ачинск |
1970 |
Пикалевский глиноземный завод ("Базэл Цемент Пикалево") |
Ленинградская область, г. Пикалево |
1959 |
БАЗ*(2) Филиал ОАО "СУАЛ" "БАЗ-СУАЛ" |
Свердловская область, г. Краснотурьинск |
1943 |
УАЗ*(3) Филиал ОАО "СУАЛ" "УАЗ-СУАЛ" |
Свердловская область, г. Каменск-Уральский |
1939 |
Рисунок 1.1 - Карта-схема расположения алюминиевых и глиноземных заводов Российской Федерации
1.2 Сырье и материалы, использующиеся при производстве алюминия
Основным сырьем при производстве алюминия являются:
- глинозем ();
- угольная анодная масса (предварительно обожженные угольные блоки);
- фтористые соли, в том числе криолит искусственный технический ("свежий криолит"); фторид алюминия; криолит вторичный (флотационный, получаемый при флотации извлеченной из электролизера угольной пены, и регенерационный, получаемый при химической переработке растворов после их использования для орошения газоочистных аппаратов, либо пыли и шлама газоочистки и других твердых отходов).
Глинозем () представляет собой порошкообразный материал белого цвета с крупностью отдельных частиц в основном от 10 до 120 мкм. Фракционный состав глинозема зависит от свойств гидрата, условий его прокалки и других факторов и на практике колеблется в достаточно широких пределах. Температура плавления - 2050°C. Глинозем образует несколько полиморфных разновидностей фаз, имеющих одинаковый химический состав, но различное строение кристаллической решетки и, следовательно, различные физические свойства. Глинозем, используемый для производства алюминия, имеет следующие модификации: -фракция (корунд) - наиболее устойчивая форма оксида алюминия, получаемая при прокаливании гидрооксида алюминия при высокой температуре (1050°C - 1200°C), обладает высокой твердостью, практически не гигроскопична, имеет малую удельную поверхность; переходные модификации которые образуются при прокаливании гидроксида алюминия при температуре 500°C - 1000°C. В отличие от -модификации, они имеют весьма развитую удельную поверхность, хорошо поглощают фторид водорода и воду. При дальнейшем их прокаливании при температуре 1050°C - 1200°C они переходят в -модификацию.
Насыпная плотность глинозема - 0,9 - 1,1 . Угол естественного откоса - 37,5°.
Для получения алюминия необходимой чистоты в глиноземе ограничивается содержание примесей оксидов железа и кремния. Жестко лимитируется содержание примесей оксидов титана, ванадия, хрома и марганца, влияющих на электропроводность получаемого металла, пятиокиси фосфора, которая отрицательно влияет на протекание технологического процесса.
Важное значение имеет ограничение содержания щелочных компонентов (едких щелочей, алюминатов и алюмосиликатов щелочных металлов), условно пересчитываемых при характеристике глинозема на содержание .
Глинозем, выпускаемый отечественной промышленностью, должен содержать, %: не более 0,02 - 0,05 ; 0,02 - 0,08 ; 0,01 - 0,03 ; 0,01 - 0,03 ZnO; <0,002.
Массовая доля щелочных компонентов - не более 0,4% - 0,5%, а потери при прокаливании - не выше 0,8%. При большом содержании мелких фракций (~40 мкм до 60%) глинозем называют "мучнистым".
Разные марки глинозема, а также его крупность и фазовый состав в значительной мере определяются используемым сырьем и способом производства.
Глинозем "песчаного" типа характеризуется меньшим содержанием -фракции (25%), более крупным и однородным гранулометрическим составом. Такой глинозем обладает повышенной скоростью растворения в электролите, меньше пылит и отличается большей сорбционной способностью к фториду водорода. По содержанию вредных примесей он характеризуется столь же жесткими критериями, как и отечественный глинозем.
Отечественные алюминиевые заводы могут использовать в собственном производстве глинозем как "мучнистого", так и "песчаного" типа.
Трифторид алюминия технический () представляет собой порошкообразный материал белого, розового или серого цвета крупностью до 150 - 200 мкм. В ряде случаев содержание фракций ~100 мкм составляет 100%, иногда весь продукт представлен фракцией ~40 мкм.
При нагревании фторид алюминия возгоняется без плавления. Температура кипения - 1270°C. Продукт гигроскопичен, при температурах выше 350°C начинает активно взаимодействовать с влагой, образуя фторид водорода. В равновесных условиях, при температурах, близких к температуре процесса электролиза ~960°C, трифторид алюминия полностью разлагается водой.
Трифторид алюминия технический содержит не менее 88% (основное вещество). Содержание воды для разных сортов составляет от 1,0% до 3,5%. Содержание , соответственно, не превышает 0,5% - 1,0%.
Трифторид алюминия в отечественной практике получают (в большинстве случаев) гидрохимическим способом путем варки гидроксида алюминия в плавиковой кислоте с последующей фильтрацией, сушкой и прокалкой (иногда в две стадии). Такой продукт отличается низкой насыпной массой (0,6 - 0,8 ), но содержит больше основного вещества (до 95%).
В зарубежной практике используют трифторид алюминия, получаемый "сухим" способом при взаимодействии в печах кипящего слоя газообразного фторида водорода с активным (-фракция) оксидом алюминия при температуре -800°C. Такой продукт характеризуется большей насыпной массой 1,4 - 1,6 , но более низким содержанием основного вещества.
Фторированный глинозем представляет собой отработанный после "сухой" газоочистки электролизных газов глинозем, возвращаемый в электролиз в качестве сырьевого компонента для замены свежего глинозема и снижения потребления фторсолей. Это порошкообразный материал серого цвета, крупность и содержание фракций в нем зависят от исходного свежего глинозема, применяемого для "сухой" ГОУ, которая оказывает незначительное влияние на его состав и свойства.
Отработанный фторированный глинозем, удаляемый из рукавных фильтров установок "сухой" газоочистки, кроме адсорбированного фтористого водорода содержит уловленную из электролизных газов пыль, содержащую твердые фториды, углерод и смолистые вещества (при очистке газов от электролизеров Содерберга).
Для фторированного глинозема характерны небольшие изменения угла естественного откоса, дисперсного состава, величины удельной поверхности и ряда других параметров. Увеличивается содержание примесей (, , , , , , СаО, MgO, MnO, , ZnO), однако эти изменения происходят в допустимых пределах, что подтверждается практикой эксплуатации установок сухой очистки газов. В наибольшей степени примесями обогащены мелкие фракции отработанного глинозема (<10 мкм).
Дисперсный состав фторированного глинозема по сравнению со свежим немного изменяется в сторону увеличения мелких фракций за счет смешения глинозема с электролизной пылью, а также измельчения более крупной фракции при транспортировке и обработке в реакторе (истирания). Увеличение доли мелких фракций может привести к некоторому увеличению расхода глинозема за счет его пыления. Также для снижения пыления в корпусе электролиза подачу отработанного глинозема в электролизеры целесообразно осуществлять через АПГ. В корпусах электролиза, где АПГ отсутствует, во избежание вторичного пылеуноса, а также вторичного образования HF в результате гидролиза фтористых соединений в случае перегрева фторированного глинозема в нижних слоях глиноземной засыпки на корке электролита рекомендуется засыпаемый на корку фторированный глинозем присыпать свежим глиноземом.
В процессе "сухой" газоочистки возможно улавливание глиноземом диоксида серы (). Для уменьшения степени улавливания глиноземом целесообразно применять рециркуляцию глинозема в соответствии с технологическим регламентом на проектирование установки.
При адсорбции фтористого водорода глиноземом в установках "сухой" ГОУ происходит изменение структуры последнего, атомы фтора входят в кристаллическую решетку , происходит практически полное замещение атомов кислорода атомами фтора в решетке . Таким образом, использование в технологии электролиза фторированного глинозема позволяет существенно сократить расход фторсолей. Экономия свежего фтористого алюминия при использовании фторированного глинозема может составлять от 6 до 11 кг/т AI.
Исследование потерь фтора при термообработке фторированных глиноземов показало, что фторированный глинозем можно возвращать на корку электролита без опасения вторичного загрязнения фтористым водородом воздуха рабочей зоны.
Отработанный фторированный глинозем с "сухих" ГОУ корпусов электролиза Содерберга, загрязненный смолистыми веществами, при загрузке в электролизеры также не оказывает отрицательного влияния на технологию электролиза и атмосферу в корпусе. Смолистые вещества, содержащиеся в отработанном глиноземе, при загрузке его в электролизеры не выделяются в атмосферу, а разрушаются в результате сгорания.
Криолит искусственный технический. В производственной терминологии "свежий криолит" - фторалюминат натрия переменного состава . Содержит не менее 54 вес. % фтора; модуль n в пределах 1,5 - 3,0; - 0,5% - 1,0%; вода - 0,2% - 0,8%.
В зависимости от криолитового модуля n состоит:
- при n 1,7 - 3,0 - из смеси криолита () и хиолита ();
- при n < 1,7 - из смеси криолита (), хиолита () и необезвоженного кристаллогидрата трифторида алюминия ().
Криолит () представляет собой порошок белого цвета крупностью до 150 мкм. Температура плавления криолита - 1010°С.
С увеличением модуля криолита увеличивается температура его плавления, снижается летучесть и склонность к гидролизу.
Вторичный криолит выпускается алюминиевыми заводами при переработке газообразных и твердых отходов. В зависимости от вида исходного сырья и способа его переработки различают регенерационный и флотационный криолит.
Криолит регенерационный получают из фтористого водорода, содержащегося в анодных газах, либо из твердых отходов (пыль, отработанная футеровка) путем химической обработки. Он представляет собой порошок белого или серого цвета, по химическому составу - криолит с модулем ~2,8. Основной вредной примесью является сера в виде двойной соли с содержанием до 4%. Содержание фтора - не менее 43%, влаги - до 1%. Натрийсодержащие примеси требуют повышенного расхода трифторида алюминия, что сопровождается его гидролизом и загрязнением атмосферы фторидом водорода.
Криолит флотационный получают при флотации угольной пены, извлеченной из электролита действующих электролизеров. Он представляет собой порошок серого цвета. По химическому и фазовому составу не отличается от электролита, однако несколько обогащен углеродом и оксидом алюминия.
Вовлечение в производство продуктов регенерации фторидов позволяет уменьшить потребление свежих солей.
Анодная масса и обожженные аноды. Сырьем для производства анодной массы и обожженных анодов служат электродные каменноугольные пеки и электродные коксы (нефтяные или пековые). Выбор этих видов сырья является неслучайным.
Во-первых, они обладают низкой зольностью (менее 0,5%), что особенно важно при электролитическом производстве алюминия. Известно, что вредные металлические примеси (железо, кремний, медь, цинк и другие) полностью переходят в электролитический алюминий, снижая его качество.
Во-вторых, анод, образованный из этих материалов, обладает высокой электропроводностью, без чего невозможен подвод тока к зоне электрохимической реакции.
В-третьих, комбинация твердого кокса (наполнителя) и жидкого пека (связующего) позволяет формировать композиционную структуру, физико-механические свойства которой после спекания существенно превосходят как свойства кокса, так и пека по отдельности.
В-четвертых, эти материалы после термообработки обладают исключительно высокими термостойкими свойствами, достаточными для работы в химически агрессивной среде и при температуре 950°C - 1000°C.
Анодная масса используется для технологии производства алюминия на электролизерах с самообжигающимися анодами (электролизеры Содерберга). В этом случае угольный анод формируется непосредственно на электролизере и процесс электролиза сопровождается процессом коксования пекококсовой композиции (анодной массы). В анодный кожух электролизера загружают массу, где она расплавляется и по мере сгорания анода, перемещаясь в более горячие зоны, подвергается коксованию. Полученный спеченный массив и представляет собой анод.
Обожженные анодные блоки формируются в специальных цехах и готовыми монтируются на электролизерах, работающих по технологии производства алюминия с предварительно обожженными анодами.
Пеки различаются по маркам в зависимости от температуры размягчения. С повышением температуры размягчения снижается содержание легких фракций, возрастает выход коксового остатка, в результате чего при коксовании анода уменьшается выделение газообразных и жидких продуктов, являющихся источниками образования канцерогенов.
В качестве твердого наполнителя в анодной массе используются нефтяные и пековые коксы, причем первые - в преобладающем количестве. Нефтяные коксы лучше взаимодействуют со связующим (пеком). К составу и качеству электродных коксов предъявляется ряд требований. Для производства анодов и анодной массы требуется прокалка кокса для удаления влаги и части летучих веществ. Содержание в коксах золы и серы должно быть минимальным, так как химические элементы, из которых состоит зола, при электролизе криолитоглиноземных расплавов переходят в металл и ухудшают его качество. Содержание оксида натрия в коксах не должно превышать 0,01% - 0,06%, так как повышенное его содержание вызывает резкое увеличение окисляемости и осыпаемости анодной массы.
Одним из ключевых показателей качества кокса могут служить их объемно-структурные характеристики. Они могут выражаться через объемную (кажущуюся) плотность зерен, а также через насыпную плотность прокаленного кокса той или иной фракции. Объемно-структурный анализ позволяет сразу же выделить коксы с плотной структурой, пригодной для анодного производства, и не допустить легкие, пористые коксы с низкими физическими свойствами.
1.3 Анализ приоритетных проблем отрасли
Промышленное производство алюминия в России началось в начале 30-х годов XX века. Для организации промышленного производства алюминия требовались сырье и дешевая электроэнергия. В то время в России было известно лишь Тихвинское месторождение бокситов. В 1928 - 1930 гг. в Санкт-Петербурге были проведены исследования по отработке технологии переработки этих бокситов на глинозем и выбору оптимальной конструкции электролизера для первых алюминиевых заводов. Результаты этих работ были заложены в основу для проектирования Волховского алюминиевого завода.
Важнейшее значение для организации отечественного производства алюминия имело принятие и реализация плана ГОЭЛРО (Государственная электрификация России), что позволило обеспечить строящиеся заводы дешевой электроэнергией. В 1931 году образован Всесоюзный алюминиево-магниевый институт (ВАМИ), а в последующие годы - Всероссийский институт легких сплавов (ВИЛС).
Первая промышленная партия алюминия была получена на Волховском алюминиевом заводе 14 мая 1932 г. Этот день считается днем рождения алюминиевой промышленности России.
С открытием крупнейшего в мире месторождения апатито-нефелиновых руд на Кольском полуострове встал вопрос об использовании нефелинов в качестве сырья для получения глинозема. В начале 50-х годов XX века в глиноземном цехе Волховского алюминиевого завода была успешно решена проблема получения из нефелинового концентрата глинозема, соды, поташа и портландцемента.
Строительство алюминиевых и глиноземных заводов в России определялось близостью к дешевой электроэнергии, сырьевой базе и источникам водопотребления.
В 1931 году на Урале были открыты месторождения бокситов, в совокупности образующих Северо-Уральский бокситовый район, который в дальнейшем стал сырьевой базой алюминиевой промышленности Урала. В 1939 году состоялся пуск Уральского алюминиевого завода мощностью 70 тыс. т глинозема и 25 тыс. т алюминия.
В годы Великой Отечественной войны для обеспечения возросших потребностей оборонной промышленности было принято решение об увеличении мощностей по производству алюминия на Уральском заводе, а также о строительстве Богословского и Новокузнецкого алюминиевых заводов.
В послевоенный период алюминиевая промышленность России продолжала интенсивно развиваться за счет ввода новых и расширения действующих мощностей.
В 1950-е годы введены в эксплуатацию Кандалакшский, Надвоицкий и Волгоградский алюминиевые заводы, а также Пикалевский глиноземный завод - комплексное предприятие по переработке кольских нефелиновых концентратов.
В 1960 - 1970-е годы были построены Иркутский, Красноярский и Братский алюминиевые заводы, а также Ачинский глиноземный комбинат.
В 1985 году был введен в эксплуатацию Саяногорский алюминиевый завод, а в 2006-м - его вторая очередь - Хакасский алюминиевый завод (ХАЗ). В 2015 году ХАЗ реорганизован и присоединен к Саяногорскому алюминиевому заводу.
Таким образом, большая часть предприятий алюминиевой промышленности Российской Федерации эксплуатируются более 30 лет.
Многие из алюминиевых и глиноземных заводов стали бюджетообразующими предприятиями: Волховский, Кандалакшский, Богословский, Надвоицкий, Саяногорский и Иркутский алюминиевые заводы, Пикалевский и Ачинский глиноземные заводы.
В мире основным сырьем для производства алюминия служат бокситы, содержащие от 32% до 60% глинозема (). К важным алюминиевым рудам относят также алуниты и нефелины.
По мировым меркам Россия обладает незначительными запасами промышленных бокситов - около 400 млн т, что составляет менее 0,7% мировых запасов. При этом большинство отечественных месторождений в значительной степени выработаны. Кроме того, российские месторождения содержат в основном не бокситы, а нефелины, а они - более худшее сырье для производства глинозема, чем бокситы.
Крупнейший производитель алюминий-содержащего сырья в России - Северо Уральские бокситовые рудники. Они до последнего времени обеспечивали Россию лучшим сырьем при достаточно высоком уровне добычи. Основные запасы рудников находятся в районе г. Североуральска (Свердловская область) на глубине более полукилометра. В настоящее время старые шахты практически выработаны. Бокситы добываются с глубины 700 - 800 м и имеют очень высокую себестоимость. В 2015 году был осуществлен ввод в эксплуатацию новой шахты "Черемуховская Глубокая" глубиной более полутора километров.
Ввиду слабости собственной сырьевой базы российские производители алюминия в значительной мере ориентируются на привозной глинозем. Традиционные поставщики глинозема в Россию - Украина и Казахстан - намерены расширять собственные производства алюминия, и, следовательно, у них будет меньше свободного сырья для экспорта в Россию. Аналогичная ситуация и в дальнем зарубежье: Австралия, крупнейший в мире экспортер бокситов, тоже постепенно увеличивает собственное производство алюминия, сокращая тем самым возможности поставки сырья на мировой рынок.
Одним из решений задачи обеспечения ресурсами российских производителей алюминия является разработка новых отечественных месторождений. Наиболее перспективным на сегодняшний день является Средне-Тиманское месторождение низкокачественных бокситов в Республике Коми. Общие запасы на Тимане, по различным оценкам, составляют от 260 до 360 млн т. Одним из достоинств месторождения является то, что его разработку можно вести открытым способом, а это снижает себестоимость добычи на 15% - 20% по сравнению с шахтными разработками. Главным препятствием для освоения месторождения является полное отсутствие инфраструктуры. Однако разработка одного Средне-Тиманского месторождения не решит проблему обеспечения отечественным глиноземом всех российских производителей. В ближайшее время импорт бокситов и глинозема неизбежен, что делает алюминиевую промышленность Российской Федерации зависимой от зарубежных поставщиков.
Производство алюминия в криолит-глиноземном расплаве сопровождается выделением ряда ЗВ 1 - 4 классов опасности: фтористых соединений, диоксида серы, пыли, смолистых веществ. Количество образования ЗВ зависит от применяемых исходных сырьевых материалов, технологии и условий протекания процесса электролиза. Поиск путей снижения образования и обезвреживания ЗВ является одной из основных задач алюминиевой отрасли.
Одним из основных сырьевых компонентов в производстве алюминия является нефтяной кокс - продукт нефтеперерабатывающей промышленности, использующийся для производства анодов электролизеров. Спрос на нефтяной кокс, пригодный для изготовления анодов, постоянно растет. Повышение мировых показателей содержания серы и металлов в коксе затрудняет производство анодов с сохранением требуемых показателей качества. Значительное количество производимого в мире зеленого кокса, характеризующегося допустимым содержанием примесей, является очень мелким и отличается высокими показателями содержания летучих горючих веществ. Этот кокс не может подвергаться прокалке во вращающихся печах, использующихся при прокалке на алюминиевых заводах Российской Федерации, поскольку применение данной технологии приводит к снижению производительности, качества прокаленного кокса и потерь при прокаливании. Кроме ухудшающейся сырьевой базы сырого кокса, отечественная промышленность испытывает недостаток прокалочных мощностей, что также ставит предприятия отрасли в зависимость от зарубежных поставщиков прокаленного кокса и влияет на качество производимых анодов.
Повышение содержания серы в коксах влечет за собой его увеличение в анодах алюминиевого производства, что приводит к увеличению эмиссий диоксида серы на отечественных заводах. При использовании газоочистных аппаратов для улавливания диоксида серы (мокрых скрубберов, пенных аппаратов) неизбежно повышение расхода соды на его улавливание, и, как следствие, увеличение количества улавливаемого влечет за собой повышение количества сульфатов и растворов газоочистки, подлежащих выводу на шламовые поля.
Утилизация отходов производства - одно из важнейших направлений отрасли. Основными крупнотоннажными отходами производства глинозема и алюминия являются красный и нефилиновый шлам, отходы катодной футеровки электролизеров. В России многие годы практикуется в основном прямое использование отработанной угольной футеровки в черной металлургии: при производстве стали в мартеновских печах, конвертерах и электропечах.
К настоящему времени разработано более 300 способов переработки отработанной угольной футеровки. Большинство из них не получило промышленного развития главным образом по причине их низкой экономической эффективности.
Производственными отходами глиноземных заводов являются отвальные шламы (красные или нефелиновые), представляющие собой твердый остаток бокситов или нефелинов после извлечения из них глинозема. Нефелиновые шламы в алюминиевой промышленности Российской Федерации являются наиболее крупной составляющей в суммарной массе образуемых ее предприятиями промышленных отходов. Технологией комплексной переработки нефелинового сырья предусматривается его использование как основного компонента шихты для производства цементного клинкера, что существенно сокращает себестоимость не только глинозема, но и цемента.
Растущие цены на электроэнергию, недоступность собственного сырья, а также ужесточение экологических норм приводят к остановке или закрытию алюминиевых заводов не только в Западной Европе, но и в Российской Федерации. Поскольку алюминиевая промышленность является источником выделения в атмосферу ЗВ, особенно актуальными в настоящее время являются вопросы обеспечения экологической безопасности производства алюминия. В связи с этим в алюминиевой отрасли встает вопрос не только о применении наиболее экономически малозатратных технологий получения алюминия, но и технологий, которые отвечали бы современным требованиям по охране окружающей среды.
Таким образом, современная тенденция развития алюминиевой отрасли - поиск и внедрение высокоэффективных технологий производства алюминия с обеспечением экологической безопасности.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.