Nuclear power plants. Instrumentation and control important to safety. Methods for assessing the performance of safety system instrument channels
Дата введения - 1 июня 2013 г.
Введен впервые
Предисловие
Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"
Сведения о стандарте
1 Подготовлен Открытым акционерным обществом "Всероссийский научно-исследовательский институт атомных электростанций" (ОАО "ВНИИАЭС") и Автономной некоммерческой организацией "Измерительно-информационные технологии" (АНО "Изинтех") на основе аутентичного перевода на русский язык международного стандарта, указанного в пункте 4, выполненного Российской комиссией экспертов МЭК/ТК 45
2 Внесен Техническим комитетом по стандартизации ТК 322 "Атомная техника"
3 Утвержден и введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 12 сентября 2012 г. N 291-ст
4 Настоящий стандарт идентичен международному стандарту МЭК 62385:2007 "Атомные станции. Контроль и управление, важные для безопасности. Методы оценки рабочих характеристик измерительных каналов систем безопасности" (IEC 62385:2007 "Nuclear power plants - Instrumentation and control important to safety - Methods for assessing the performance of safety system instrument channels").
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении ДА
5 Введен впервые
Введение
a) Технические положения, основные вопросы и организация стандарта
Настоящий стандарт содержит описание методов испытаний для гарантии соответствия измерительных каналов системы безопасности на атомных станциях спецификациям в отношении погрешности, времени реакции и прочих рабочих характеристик. Настоящий стандарт применяется к тем измерительным приборам, основные датчики которых измеряют температуру, давление, перепад давления, уровень жидкости, скорость потока жидкости и плотность потока нейтронов. Цель настоящего стандарта - в установлении методов испытаний, которые могут использоваться дистанционно при работе станции в оперативном режиме, без необходимости входить в защитную оболочку реактора или физически получать доступ к измерительным приборам.
b) Место настоящего стандарта в структуре серии стандартов МЭК ПК 45А
МЭК 62385 является документом МЭК ПК 45А третьего уровня, касающимся проблемы методов оценки рабочих характеристик каналов измерительной аппаратуры систем безопасности.
Более подробное описание структуры серии стандартов МЭК ПК 45А см. перечисление d) настоящего введения.
c) Рекомендации и ограничения по применению настоящего стандарта
Основной интерес настоящий стандарт представляет для атомных энергетических компаний, которые используют оперативные испытания рабочих характеристик, поставщиков, которые разрабатывают и устанавливают такие системы, и контрольно-надзорных органов, добивающихся документального консенсуса в промышленности на основе успешной практики. Эти пользователи получат преимущества от осведомленности о методах и практическом опыте, которые эксперты МЭК считают адекватными, и снижения издержек, сопутствующих стандартизации методов и практического опыта.
d) Описание структуры серии стандартов МЭК ПК 45А и взаимосвязь с другими документами МЭК и документами других организаций (МАГАТЭ, ИСО)
Документом высшего уровня серии стандартов МЭК ПК 45А является МЭК 61513. Этот стандарт касается требований к системам контроля и управления, важных для безопасности атомных станций (АС), и лежит в основе серии стандартов ПК 45А.
В МЭК 61513 имеются непосредственные ссылки на другие стандарты ПК 45А по общим вопросам, связанным с категоризацией функций и классификацией систем, оценкой соответствия, разделением систем, защитой от отказов по общей причине, аспектами программного и технического обеспечений компьютерных систем и проектированием пультов управления. Стандарты, на которые имеются непосредственные ссылки, следует использовать на втором уровне совместное МЭК 61513 в качестве согласованной подборки документов.
К третьему уровню серии стандартов МЭК ПК 45А, на которые в МЭК 61513 нет непосредственных ссылок, относятся стандарты, связанные с конкретным оборудованием, техническими методами или конкретной деятельностью. Обычно документы, в которых по общим вопросам имеются ссылки на документы второго уровня, могут использоваться самостоятельно.
Четвертому уровню, продолжающему серию стандартов МЭК ПК 45А, соответствуют технические отчеты, не являющиеся нормативными документами.
Для МЭК 61513 принята форма представления, аналогичная форме представления базовой публикации по безопасности МЭК 61508, с его структурой общего жизненного цикла безопасности и структурой жизненного цикла системы; в нем приведена интерпретация общих требований МЭК 61508-1, МЭК 61508-2 и МЭК 61508-4 для применения в ядерной области. Согласованность с этим стандартом будет способствовать соответствию требованиям МЭК 61508, интерпретированным для ядерной области. В этой структуре МЭК 60880 и МЭК 62138 соответствуют МЭК 61508-3 применительно к ядерной области.
В МЭК 61513 приведены ссылки на стандарты ИСО, а также на документ МАГАТЭ 50-C-QA по вопросам, связанным с обеспечением качества.
В серии стандартов МЭК ПК 45А последовательно реализуются и детализируются принципы и базовые аспекты безопасности, предусмотренные правилами МАГАТЭ по безопасности атомных электростанций, а также серией документов МАГАТЭ по безопасности, в частности требованиями NS-R-1 "Безопасность атомных электростанций: Проектирование" и руководством по безопасности NS-G-1.3 "Системы контроля и управления, важные для безопасности атомных электростанций". Термины и определения, применяемые в стандартах серии МЭК ПК 45А, согласованы с терминами и определениями, применяемыми в МАГАТЭ.
1 Область применения
Цель настоящего стандарта состоит в определении требований к подтверждению приемлемости рабочих характеристик измерительных каналов систем безопасности с помощью испытаний времени реакции, верификации калибровки и других процедур. Те же требования могут применяться для подтверждения приемлемости рабочих характеристик систем, не связанных с безопасностью, и других измерительных каналов. Настоящий стандарт содержит основные темы и включает в себя приложения, в которых приведена дополнительная информация. Приложения приведены исключительно для информации и содержат выборочную совокупность доступных методов.
Методы, описанные в настоящем стандарте, используются для проверки калибровки измерительного прибора в отношении времени реакции и погрешности.
Настоящий стандарт описывает прямые методы, используемые для калибровки в пределах заданных допусков, и косвенные методы для указания необходимости прямой калибровки. Использование косвенных методов предусматривает более длительные интервалы времени между регулярными прямыми калибровками.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие международные стандарты. Для датированных стандартов следует использовать только соответствующую этой дате редакцию. При отсутствии даты используют последнюю редакцию указанного документа, включая любые изменения.
МЭК 61224:1993 Ядерные реакторы. Время реакции резистивных детекторов температуры (РДТ). Натурные измерения (IEC 61224:1993, Nuclear reactors - Response time in resistance temperature detectors (RTD) - In situ measurements)
МЭК 62397 Атомные станции. Контроль и управление, важные для безопасности. Резистивные детекторы температуры (IEC 62397, Nuclear power plants - Instrumentation and control important to safety - Resistance temperature detectors)
3 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1 точность измерения (accuracy of measurement): Степень соответствия между результатом измерения и условно истинным значением измеряемой величины.
[IEV 394-40-35]
3.2 закупоривание (blockage): Сужение трубы (например, трубопровод измерения давления), обусловленное скоплением загрязняющих веществ в реакторной воде, отвердением бора, оставленными частично открытыми клапанами и т.д. Закупоривание может вызвать задержку в измерении динамической информации о давлении.
3.3 калибровка (calibration): Совокупность действий, которые устанавливают при заданных условиях зависимости между значениями величин, показанных измерительным прибором или измерительной системой, или значениями, представленными вещественной мерой или эталоном, и соответствующими значениями, установленными в стандартах.
[IEV 394-40-43]
3.4 канал (channel): Совокупность взаимосвязанных элементов в системе, которая выдает один выходной сигнал. Канал теряет свою идентичность, когда сигналы одного выхода объединяются с сигналами, поступающими от других каналов (например, от контрольно-измерительного канала или канала обслуживания устройств безопасности).
[Глоссарий безопасности МАГАТЭ, Версия 2.0, 2006]
3.5 проверка каналов (channel check): Процесс, посредством которого оператор станции сравнивает показания резервированных измерительных каналов на регулярной основе в целях проверки нахождения их в необходимом согласии с предопределенными критериями.
3.6 взаимная калибровка (перекрестная проверка, взаимная валидация) (cross-calibration) (cross-validation): Процедура взаимного сравнения показаний резервированных измерительных приборов (например, температурных датчиков) для идентификации показаний датчиков выбросов как средства подтверждения калибровки или идентификации изменений калибровки. Данному определению более соответствует термин "взаимная валидация", но чаще используется термин "взаимная калибровка".
3.7 дрейф показаний (drift): Изменение выходного сигнала измерительного канала или датчика, которое может возникать между калибровками и которое нельзя связать с изменениями технологических параметров или условий окружающей среды.
3.8 импульсная линия (измерительный трубопровод) (impulse line) (sensing line): Трубопровод или система труб, соединяющая технологический процесс с датчиком; импульсные линии (измерительные трубопроводы) обычно используются для соединения датчиков давления, уровня и расхода с технологическим процессом. Длина измерительного трубопровода варьируется от нескольких метров до нескольких сотен метров. Измерительный трубопровод может также включать в себя отсечные и корневые задвижки и прочие технические средства трубопровода по всей длине.
3.9 натурное испытание, испытание на месте работ (in-situ test): Испытание датчика или преобразователя сигнала, проводимое без удаления датчика или преобразователя сигнала из положения его нормальной установки в системе.
3.10 метод анализа шумов (noise analysis technique): Метод натурного испытания времени срабатывания датчиков, детекторов и преобразователей и оперативного обнаружения закупориваний, пустот и протечек в трубопроводах измерения давления.
3.11 оперативный контроль, оперативный мониторинг (on-line monitoring): Непрерывное или периодическое измерение и регистрация выходных сигналов установленных измерительных приборов.
3.12 выброс (outlier): Показание датчика (например, такого как резистивный детектор температуры, далее - РДТ), которое превысило заданное отклонение.
3.13 контроль рабочих характеристик (проверка рабочих параметров) (performance monitoring)(performance verification): Процесс демонстрации того, что установленный измерительный канал продолжает выполнять намеченную функцию контроля технологического параметра с ожидаемыми точностью, временем реакции и устойчивостью.
3.14 датчики давления (pressure transmitters): Датчики давления, уровня и расхода, действие которых основано на принципе измерения или перепада давления, и упоминаемые в настоящем стандарте как "преобразователи сигнала давления", "датчики давления" или просто "датчики".
3.15 резервирование (redundancy): Использование альтернативных (одинаковых или неодинаковых) конструкций, систем и элементов таким образом, чтобы все они могли выполнять требующуюся функцию независимо от эксплуатационного состояния или отказа (выхода из строя) любого из них.
[Глоссарий безопасности МАГАТЭ, Версия 2.0, 2006]
3.16 резистивный детектор температуры; РДТ (resistance temperature detector; RTD): Детектор, обычно имеющий цилиндрический корпус из нержавеющей стали, защищающий платиновый резистор, сопротивление которого меняется в зависимости от температуры. Этот детектор помещают в трубопровод, содержащий жидкость, температуру которой таким образом измеряют. Детектор может быть погружен непосредственно в жидкость или защищен промежуточным кожухом, называемым "термокарманом" ("защитной гильзой").
3.17 время реакции (response time): Время, необходимое для достижения элементом определенного состояния на выходе после получения сигнала, обусловливающего переход к этому состоянию на выходе.
[Глоссарий безопасности МАГАТЭ, Версия 2.0, 2006]
3.18 периодичность испытаний (test interval): Время, прошедшее между запусками одинаковых испытаний на одних и тех же датчике и устройстве обработки сигнала, логическом модуле или конечном управляющем устройстве.
3.19 термокарман (thermowell): Защитный кожух для РДТ, термопар и других температурных датчиков. Термокарман также используется для упрощения замены термодатчика.
3.20 постоянная времени (time constant): Для системы первого порядка - время, необходимое для достижения выходным сигналом системы 63,2% его конечной вариации после ступенчатого изменения ее входного сигнала.
Если система не является системой первого порядка, термин "постоянная времени" не применяют. Для системы более высокого порядка следует использовать термин "время реакции".
[МЭК 62397]
4 Требования к проверке рабочих характеристик технологической контрольно-измерительной аппаратуры
4.1 Краткая информация
Системы управления и безопасности атомных станций зависят от технологической контрольно-измерительной аппаратуры, которая должна обеспечивать достоверную информацию, с тем чтобы гарантировать безопасность и эффективность станции. Поэтому качество функционирования этой контрольно-измерительной аппаратуры должно проверяться через определенные интервалы времени в течение срока службы станции. С этой целью на атомных станциях разрабатывают, утверждают и применяют методы испытаний. Данные методы включают в себя технические средства для выполнения натурных испытаний и испытаний во время работы станции (оперативные испытания).
Настоящий подраздел содержит требования к натурным и оперативным испытаниям в целях проверки того, что технологическая контрольно-измерительная аппаратура выдает точные и своевременные данные, и для идентификации дефектных измерительных приборов. Требования настоящего стандарта распространяются на технологические датчики, измеряющие температуру, давление, уровень жидкости, расход и плотность нейтронного потока.
4.2 Общие требования
Для проверки того, что измерительные каналы систем безопасности на атомных станциях функционируют в пределах ограничений своих технических спецификаций, должен проводиться контроль рабочих характеристик. Испытания для проверки рабочих характеристик должны проводиться в соответствии с письменными процедурами, а результаты испытаний - фиксироваться документально. Измерительный канал тестируется полностью и при однократном испытании. В случае если весь канал не тестируется, необходимо комбинировать отдельные испытания по группам элементов или отдельным элементам, охватывающим весь измерительный канал для проверки эксплуатационных характеристик всего канала. Контроль рабочих характеристик охватывает часть полной системы безопасности, включающую в себя измерительный канал. Испытаниям должны подвергаться датчики и преобразователи, измерительные трубопроводы (импульсные линии), термокарманы, кабели и другие активные и пассивные элементы, влияющие на общие характеристики измерительного канала.
Если какой-либо показатель функционирования, например время реакции, нельзя идентифицировать точно, то выполняют консервативную оценку показателя путем измерения и анализа и сравнивают с соответствующими эксплуатационными требованиями, с тем чтобы гарантировать приемлемое качество функционирования измерительного канала.
4.3 Условия проведения испытаний
В общем случае, при квалификационных испытаниях конструкции на соответствие техническим условиям, рассматривают аномальные внешние условия, такие как сейсмические явления, поля излучений, избыточные давления, температуру и условия влажности. Испытание оборудования для таких условий окружающей среды не входит в область применения настоящего стандарта. Однако требования к испытанию рабочих характеристик, установленные в настоящем стандарте, должны выполняться в допустимых границах внешних условий испытаний измерительного прибора (например, температуры, давления, влажности, скорости потока жидкости и т.д.). Если условия испытаний меняются в широких пределах, то необходимо вносить соответствующие поправки для сравнения или анализа тренда данных, с тем чтобы компенсировать характеристики, обусловленные изменением внешних условий, или влияние внешних условий на качество функционирования измерительного прибора.
В некоторых случаях, таких, например, как испытание времени реакции температурных датчиков, технологические условия эксплуатации могут оказывать сильное влияние на результат. В этих случаях испытания должны проводиться в нормальных или близких к ним условиях эксплуатации, чтобы обеспечить фактические "штатные" эксплуатационные характеристики датчиков. Не следует выполнять экстраполяцию лабораторных условий на условия станции в тех случаях, когда у результатов экстраполяции могут быть большие и неисчислимые неопределенности.
4.4 Периодичность испытаний
Должны быть установлены интервалы времени между испытаниями для обнаружения недопустимых эксплуатационных характеристик контрольно-измерительной аппаратуры. Для определения периодичности испытаний контрольно-измерительной аппаратуры рекомендуется рассмотреть следующие факторы:
a) требования технической спецификации;
b) нормативные требования;
c) рекомендации изготовителя и промышленные стандарты;
d) разницу между измеренными эксплуатационными характеристиками и допустимыми пределами характеристик;
e) скорость изменения рабочих характеристик в зависимости от времени эксплуатации и
f) частоту отказов элементов и целевые показатели надежности.
4.5 Место проведения испытаний
Испытания должны проводиться на площадке исходя из целесообразности. Извлечение из оборудования измерительного прибора приемлемо для испытаний, только если оно не повлияет на результаты испытаний. В большинстве случаев, описанных в настоящем стандарте, натурные испытания проводят удаленно от шкафов измерительных приборов в зоне пункта управления. Должны быть осуществлены процедуры для подтверждения того, что состояние оборудования восстановлено после испытаний.
4.6 Калибровка измерительного и испытательного оборудования
Калибровка измерительного и испытательного оборудования, используемого в подтверждении рабочих характеристик оборудования, должна проводиться в соответствии с требованиями национальных стандартов и/или принятыми величинами естественных физических явлений. Для проведения калибровки должны использоваться процедуры, представленные в письменном виде, а результаты калибровки - фиксироваться документально.
4.7 Результаты испытаний
Результаты испытаний сравнивают с допустимыми пределами характеристик. Допуски на неопределенности, связанные с контрольным испытанием рабочих характеристик, должны быть включены в результаты испытаний или в установление пределов характеристик. Если обнаружится, что результаты испытаний превышают пределы характеристик или скорость изменения рабочих характеристик такова, что допустимые пределы характеристик могут быть превышены до начала следующего испытания, то для устранения превышения следует выполнить заранее установленное предписание.
Погрешность результатов испытаний определяют в процентах от значения, установленного при испытании, или в виде допустимых пределов () отклонения сообщаемого значения. Погрешность результатов испытаний определяют исходя не только из неопределенностей оборудования, но также из неопределенностей испытания и используемых методов анализа. Если неопределенности невозможно идентифицировать объективно, то должно быть показано, что результаты консервативны.
4.8 Валидация методов испытаний
Все методы испытаний для контроля рабочих характеристик должны пройти валидацию, которая должна фиксироваться документально с учетом:
a) сравнения метода испытаний с соответствующими лабораторными испытаниями, натурными испытаниями или обоими типами испытаний, с тем чтобы установить правомерность метода и определить величину погрешности его результатов. Погрешность метода испытаний и результатов должна быть установлена теоретически или экспериментальными средствами, или их сочетанием. При определении погрешности необходимо рассматривать все источники погрешности метода испытания;
b) теоретического обоснования метода испытания;
c) подтверждения того, что удовлетворены допущения и условия, гарантирующие обоснованность метода испытания. Кроме того, если допущения при испытании не полностью удовлетворены, следует продемонстрировать, что полученные результаты, тем не менее, с осторожностью могут быть приняты во внимание;
d) того, что любое программное обеспечение, используемое для сбора, квалификации или анализа данных, следует проектировать и разрабатывать с использованием системного подхода согласно принятым отраслевым стандартам на разработку программного обеспечения для атомных станций. Все программные пакеты следует всесторонне испытать для верификации и валидации (ВиВ). Основы для испытаний ВиВ и результаты работы по ВиВ должны быть зарегистрированы документально. Испытания ВиВ следует проектировать так, чтобы выявлять любые проблемы, которые могут привести к недействительным или недостаточно убедительным результатам.
4.9 Квалификация специалистов по проведению испытаний
Испытания для верификации рабочих характеристик измерительных приборов атомной станции должны проводиться специалистами по проведению испытаний, должным образом обученными опытными экспертами с документально подтвержденной квалификацией для проведения обучения. Обучение специалистов по проведению испытаний должно документально регистрироваться и периодически совершенствоваться. Ниже приведены примеры учебных тем для квалификации специалистов по проведению испытаний:
a) принципы испытаний для верификации рабочих характеристик;
b) рассмотрение процедур испытаний для определения рабочих качеств;
c) подготовка оборудования для сбора данных;
d) обучение программному обеспечению сбора данных и анализа данных;
e) интерпретация и документирование результатов.
5 Технические средства верификации рабочих характеристик измерительной аппаратуры
5.1 Введение
Настоящий подраздел содержит требования к калибровке, проверкам канала, функциональным испытаниям и испытаниям времени реакции технологической контрольно-измерительной аппаратуры. Далее приведено описание методов проведения калибровки и испытания времени реакции измерительного прибора.
Качество функционирования измерительных приборов на атомных станциях можно установить в лаборатории или при проведении стендовых испытаний. Технические средства для лабораторной или стендовой калибровки измерительных приборов общеизвестны и в настоящем стандарте не рассматриваются. Далее приведено описание технических средств натурной/оперативной верификации калибровки датчиков и преобразователей. Для характеристик времени реакции датчиков и преобразователей в настоящем стандарте описаны также и методы лабораторных/стендовых и натурных/оперативных испытаний.
5.2 Калибровка
При калибровке измерительного прибора используют входные сигналы с известной точностью, с тем чтобы удостовериться, что измерительный прибор выдает требуемые выходные сигналы в требуемом рабочем диапазоне в заданных пределах. Если для верификации рабочих характеристик измерительного прибора используется калибровка, то калибровка должна быть проведена или удостоверена посредством (принимая во внимание предыдущий опыт) отдельного приложения или комбинации следующих мероприятий:
a) возмущение контролируемой переменной;
b) моделирование контролируемой переменной (иногда его называют "традиционной калибровкой");
c) оперативный контроль (по сравнению резервированных и/или разнообразных параметров) и
d) взаимная калибровка (также называемая "взаимной валидацией") резервированных датчиков.
В настоящем стандарте приведено описание методов оперативного контроля и взаимной калибровки/взаимной валидации.
5.3 Проверки каналов
Проверки каналов, включающие в себя сравнение показаний двух или более измерительных каналов, предназначены для верификации непрерывной работоспособности измерительных каналов между калибровками. Следовательно, эти проверки должны проводиться чаще, чем сама калибровка. Такие проверки каналов обычно не требуют аппаратного взаимодействия, выходящего за пределы наблюдения или регистрации показания(й) данного канала.
5.4 Функциональное тестирование
Функциональное тестирование проводят для проверки выполнения измерительным каналом своей намеченной функции.
5.5 Испытание времени реакции
Испытание времени реакции проводят через определенные интервалы времени. Испытание допускается проводить, используя контрольно-измерительную аппаратуру, как в рабочем, так и в нерабочем состоянии. Приемлемые методы испытания времени реакции определены ниже в настоящем стандарте, а дополнительная информация об этих методах приведена в приложениях. Эти методы включают в себя натурные испытания, которые допускается проводить при работе станции в оперативном режиме.
В качестве примеров методов натурных испытаний времени реакции можно привести испытание времени реакции на ступенчатое изменение контурного тока для РДТ и метод анализа шумов датчиков давления и нейтронных детекторов. Для испытания времени реакции термопар проводят испытание времени реакции на ступенчатое изменение контурного тока либо применяют метод анализа шумов. Метод анализа шумов допускается также применять для контроля ухудшения времени реакции РДТ. Если определяется ухудшение времени реакции, то проводят испытание времени реакции на ступенчатое изменение контурного тока, с тем чтобы установить, приемлемо ли время реакции РДТ. Подробные требования к РДТ можно найти в МЭК 61224 и МЭК 62397.
Испытание времени реакции остальной части измерительного канала также следует проводить по мере необходимости. Примерами лабораторных или стендовых методов испытаний является испытание с погружением для температурных датчиков и испытание линейного изменения - для датчиков давления.
6 Методы верификации калибровки измерительной аппаратуры
6.1 Общие положения
В настоящем подразделе описывается натурная/оперативная верификация калибровки датчиков и преобразователей.
Калибровку резервированных измерительных приборов, таких как РДТ теплоносителя первого контура на станции с реактором, охлаждаемым водой под давлением (ВВЭР), допускается удостоверять методом взаимной калибровки или взаимной (перекрестной) валидации. Для нерезервированных измерительных приборов или если резервирование ограничено всего лишь несколькими измерительными приборами, используется принцип оперативного контроля калибровки. Требования к методу взаимной калибровки и принципу оперативного контроля калибровки приведены ниже.
6.2 Метод взаимной калибровки (взаимной валидации)
Метод взаимной калибровки обычно используется для РДТ. После того как группа РДТ должным образом откалибрована и установлена на станции, периодически проводят испытания взаимной калибровки (например, однократно каждый цикл технического обслуживания), с тем чтобы гарантировать, что результаты калибровки РДТ не вышли за допустимые пределы.
Испытание включает в себя систематическое сравнение группы резервированных РДТ, измеряющих одну и ту же температуру. Для проведения испытания последовательно измеряют сопротивление датчиков РДТ и преобразовывают в эквивалентные температуры с помощью самых новых таблиц калибровки РДТ. Температурные показания РДТ также получают с помощью станционного компьютера или соответствующей системы сбора данных. Затем значения температуры должны быть усреднены и вычислены отклонения каждого РДТ от среднего значения. Показание любого РДТ, которое превысило предварительно заданное отклонение, следует назвать "выбросом", отметить и/или удалить из расчета средних показателей, и указанный процесс необходимо повторять по мере необходимости для определения всех выбросов.
Испытание следует проводить при нескольких значениях температур при изотермических условиях во время периодов разогрева или расхолаживания блока. Имея данные, полученные при трех или большем числе разных температур, можно составить новую калибровочную таблицу для определения выброса. Данный принцип по существу составляет натурную калибровку выброса. Дополнительную информацию см. в приложении А.
При выполнении испытаний взаимной калибровки/взаимной валидации учитывают следующее факторы:
a) Данные испытаний должны быть проверены на устойчивость температуры станции, чтобы гарантировать отсутствие чрезмерных температурных колебаний. Если обнаружены чрезмерные колебания температуры станции, то к данным испытаний необходимо применять аналитические поправки, чтобы минимизировать влияние флуктуации на результаты испытаний.
b) Данные испытаний должны быть исследованы на однородность температуры станции, чтобы гарантировать, что различные контуры находятся при одинаковых температурах, а резервированные датчики подвергаются действию практически равных температур. В противном случае должны использоваться аналитические поправки для учета любых температурных различий, которые могут повлиять на результаты испытаний.
c) Неопределенность результатов испытаний должна быть определена путем комбинации неопределенностей измерения и испытательного оборудования, а также неопределенностей, обусловленных флуктуациями температуры станции, неоднородностью температуры блока и любой возможной случайной ошибкой.
Описанный выше метод взаимной калибровки может также использоваться для проверки калибровки термопар. Для применения данного метода необходимо показания каждой термопары сравнивать со средним значением РДТ. Термопары не следует взаимно калибровать. Их калибруют взаимно по среднему показанию резервированных РДТ, которые измеряют одинаковую температуру.
Критерии приемлемости для РДТ, означающие, что испытание взаимной калибровки проведено, зависят от станции. Станционная процедура должна определять критерии приемлемости на основе станционных требований, предъявляемых к точности для температурных датчиков. Как правило, РДТ считают приемлемым, если отклонение его значений составляет менее 0,3°С от средней температуры. Для термопар типичные критерии приемлемости должны быть 1,0°С.
6.3 Оперативный контроль калибровки
6.3.1 Введение
Описанный выше метод взаимной калибровки может использоваться, если имеются резервированные (например, шесть или более) измерительные приборы. Если резервированных измерительных приборов недостаточно, то для проверки калибровки измерительных приборов следует использовать оперативный контроль калибровки.
Принцип оперативного контроля калибровки описан ниже, а более подробная информация приведена в приложении В. Оперативный контроль калибровки применим к большинству измерительных приборов и может использоваться для проверки калибровки датчиков и преобразователей или всего измерительного канала в целом. В частности, оперативный контроль калибровки удобен для датчиков давления, уровня и расхода. В этой связи требования к оперативному контролю калибровки в настоящем стандарте приведены на основе датчиков давления, уровня и расхода. Вместе датчики давления, уровня и расхода называются "датчиками давления" или просто "датчиками".
6.3.2 Принцип оперативного контроля калибровки
Калибровка датчиков давления атомной станции обычно включает в себя два этапа:
a) Определяют, необходима ли калибровка. Этот шаг выполняют, подавая на измерительный прибор ряд известных входных сигналов, охватывающих рабочий диапазон измерительного прибора. Для каждого входного сигнала регистрируют выходной сигнал и сравнивают его с критериями приемлемости.
b) Проводят калибровку (если это необходимо). Если измерительный прибор не соответствует своим критериям приемлемости, то его калибруют, выполняя необходимые настройки.
Первый этап допускается автоматизировать и выполнять во время работы станции. Данный принцип можно использовать для проверки калибровки измерительного прибора или продления межкалибровочного интервала измерительных приборов. Данный принцип называют "оперативным контролем калибровки", "оперативным испытанием калибровки" или "оперативным контролем дрейфа показаний".
6.3.3 Требования к сбору данных
Для проведения оперативного контроля калибровки следует непрерывно регистрировать выходной сигнал измерительных приборов или периодически определять дрейф показаний, систематические ошибки, шумы и другие аномалии. Данные оперативного контроля калибровки можно получить от станционного компьютера, специализированной системы сбора информации или иных устройств. Следует собирать данные во время периодов пуска и/или останова станции, чтобы позволить проведение верификации калибровки измерительных приборов по всему их рабочему диапазону. Калибровка оборудования сбора данных должна быть утверждена и документально зафиксирована. Эта калибровка должна проводиться в соответствии с применимыми требованиями обеспечения качества.
6.3.4 Требования к квалификации и анализу данных
Скрининг (квалификацию) данных оперативного контроля следует проводить, чтобы гарантировать, что для верификации калибровки измерительных приборов не используется посторонняя информация. Примерами методов скрининговой оценки данных являются фильтрация и испытания амплитудной плотности вероятности (АПВ). После квалификации данных должен быть проведен анализ, включающий в себя (по мере необходимости) методы усреднения и/или моделирования для оценки значения контролируемого процесса. Предполагаемое значение технологического параметра сравнивают с показаниями отдельных измерительных приборов на протяжении некоторого периода времени для определения дрейфа показаний прибора или отклонения от оценки технологического параметра. Результаты оценивают в пределах допустимого дрейфа показаний или пределов отклонения, которые согласуются с данными анализа уставок атомной станции.
6.3.5 Учет дрейфа общего характера
Оперативный контроль для продления межкалибровочных интервалов датчиков должен включать в себя оговоренное заранее условие о том, что не менее одного датчика из каждой группы резервированных датчиков должно калиброваться не реже одного раза в каждом цикле технического обслуживания. Кроме того, такая калибровка должна проводиться на ротационной основе, чтобы каждый датчик в резервированной группе калибровался периодически (например, один раз каждые восемь лет), даже если датчик не зафиксировал проблем с калибровкой в процессе оперативного контроля.
Вместо калибровки одного из резервированных датчиков в каждом цикле технического обслуживания допускается использовать методы моделирования, чтобы учесть любую возможность дрейфа общего характера. Для этой цели приемлемы физические или эмпирические методы моделирования либо их сочетание при условии, что погрешность оценки процесса методом моделирования лучше, чем дрейф показаний, который должен быть определен. Любой используемый метод моделирования должен быть надлежащим образом настроен, утвержден и документально зафиксирован для системы, которую он моделирует. Настраивание модели включает в себя подачу в модель ряда известных входных и выходных сигналов, соответствующих широкому диапазону рабочих условий технологического процесса, и настройку коэффициентов модели или весовых коэффициентов, пока модель не сможет правильно выдавать значение технологического параметра на основе измерения других технологических параметров.
Все неопределенности в результатах методов моделирования должны быть количественно определены, для того чтобы гарантировать, что точность метода моделирования превышает идентифицируемый дрейф показаний.
6.3.6 Частота сбора данных
Частота сбора данных зависит от используемого метода анализа. Для анализа методами моделирования требуется частая дискретизация (одна или более выборок в секунду). Кроме того, данные сигналов, которые будут смоделированы вместе, должны отбираться одновременно. Для анализа с помощью методов усреднения частая дискретизация не требуется, хотя частая дискретизация может способствовать повышению надежности результатов.
7 Методы испытания времени реакции
7.1 Испытание времени реакции датчиков давления
Для испытания времени реакции датчиков давления применяют два метода. Они называются "метод лабораторных или стендовых испытаний" и "метод станционных (или натурных) испытаний". Метод лабораторных испытаний называют еще "испытанием по линейному изменению", а натурный или станционный метод испытания называют "методом анализа шумов". Требования к применению данных методов для атомных станций изложены ниже.
7.1.1 Испытание по линейному изменению
При испытании по линейному изменению используют генератор гидравлического давления для получения тестового сигнала в форме линейного изменения. Линейно изменяющийся сигнал используют при испытании времени реакции датчиков давления атомной станции, потому что проектные события на атомных станциях обычно предполагают, что переходные процессы давления имеют форму линейно нарастающей функции.
Линейно изменяющийся сигнал подают на испытуемый датчик и одновременно на быстродействующий эталонный датчик. Время реакции эталонного датчика должно быть менее 10 мс. Для определения времени реакции испытуемого датчика необходимо зарегистрировать и проанализировать выходной сигнал испытуемого и эталонного датчиков. Анализ должен включать в себя измерение асимптотической задержки между линейно изменяющимися выходными сигналами испытуемого и эталонного датчиков. В испытательных линиях, связывающих гидравлический генератор пилообразного напряжения с испытуемым датчиком, не должно быть воздушных пробок. Воздушные пробки в испытательных линиях могут вызвать колебания экспериментальных данных и стать причиной ошибки в результатах испытания по линейному изменению напряжения.
7.1.2 Метод анализа шумов
Метод анализа шумов основан на контроле естественных флуктуации, которые существуют на выходе датчиков давления при действующем технологическом процессе. Эти флуктуации (шумы) обусловлены турбулентностью, вызванной потоком воды в системе, случайной теплопередачей в активной зоне и другими естественными явлениями.
Для проведения испытания регистрируют шумы на выходе каждого датчика давления в цифровой форме в течение приблизительно 1 ч и затем анализируют. Помехи извлекают из выходного сигнала датчика с помощью фильтра верхних частот или механизма смещения постоянным током и используют соответствующую фильтрацию нижних частот, чтобы устранить посторонние шумы и предусмотреть подавление помех. Частота дискретизации должна быть высокой (например, 100 или более выборок в секунду).
До проведения анализа необходим скрининг шумовых данных, чтобы гарантировать вывод результатов испытания времени реакции из соответствующих записей данных. Анализ данных шумов должен включать в себя алгоритм частотной области и/или временной области, разработанный для расчетов времени реакции датчика. Обоснованность анализа должна быть установлена с помощью смоделированных данных, а также фактических данных со станции или из лаборатории от датчиков с известными значениями времени реакции. Результаты валидации также следует использовать для того, чтобы установить погрешность результатов времени реакции, полученных методом анализа шумов. Опыт показывает, что средняя погрешность результатов анализа шумов для испытания времени реакции датчика обычно составляет около 10% значения времени реакции, которое получено анализом шумов, или 0,10 с (в зависимости от того, какое значение больше). Такие значения получают при условии, что данные о шумах собирают, выполняют необходимый скрининг и анализируют с помощью утвержденных алгоритмов анализа частотной области и/или временной области.
Если обнаружится, что время реакции датчика давления ухудшилось или время его реакции превышает допустимый предел, то следует в отдельном исследовании определить, исходит ли это превышение от датчика давления или измерительных трубопроводов, или и от того и другого. Если диапазон частот шумов технологического процесса не является белым, то результаты испытания времени реакции могут быть консервативными. В частности, если диапазон частот шумов технологического процесса будет меньше, чем частотная характеристика датчика, то результаты анализа шумов будут превышать время реакции испытуемого датчика.
Метод анализа шумов можно таким же образом использовать для испытания времени реакции термопар и нейтронных детекторов, как для датчиков давления. Как правило, для испытания времени реакции нейтронных детекторов данные шумов необходимо собрать очень быстро (при частоте дискретизации в килогерцовом диапазоне, кГц), но для термопар достаточны более низкие частоты (например, 100 Гц).
Метод анализа шумов нельзя использовать для испытания времени реакции датчиков давления гермооболочки, датчиков уровня жидкости в баке и датчиков с небольшими технологическими шумами или не имеющих их вовсе. Для этих датчиков входные шумовые данные часто могут быть сгенерированы искусственно с помощью генератора механических шумов, включающего в себя преобразователь тока в давление (I в Р или I/P). I/P-преобразователь связан с генератором сигналов, который выдает широкополосный случайный шум. I/P-преобразователь преобразует случайный шум в шумовой сигнал давления, и его используют для испытания времени реакции датчика. Сбор и анализ полученных данных проводят также, как и для метода анализа шумов, описанного выше.
7.1.3 Проверка на размыкание электроснабжения (РЭ)
В дополнение к методу анализа шумов существует метод, называемый "испытанием на РЭ", который удобен только для натурного испытания времени реакции компенсационных датчиков давления. Для проведения проверки РЭ электроснабжение датчика необходимо выключить на несколько секунд и затем включить. Когда электроснабжение включено, датчик выдает выходной сигнал, который необходимо зарегистрировать в цифровой форме и затем проанализировать, чтобы получить время реакции датчика. Анализ должен включать в себя соответствующий алгоритм, который разработан и утвержден для расчета времени реакции компенсационных датчиков давления методом РЭ.
Проверка РЭ учитывает динамическую характеристику механических и электронных элементов датчика и, таким образом, дает общее время реакции полной электромеханической системы датчика.
7.2 Испытание времени реакции температурных датчиков
Время реакции температурного датчика измеряют в лабораторной среде методом, называемым "испытание с погружением". После того как датчик установлен в оборудовании технологического процесса, время его реакции измеряют с помощью испытания на ступенчатое изменение контурного тока. Требования к проведению этих испытаний на атомной станции представлены ниже. Существуют также дополнительные испытания, такие как метод саморазогрева и метод анализа шумов, которые также описаны ниже.
7.2.1 Испытание с погружением
Испытание с погружением проводят в лабораторной обстановке в воде при низкой температуре (например, от 20°С до 70°С). Вода должна течь со скоростью 1 м/с. Датчик погружают из воздуха в воду. Во время погружения выходной сигнал датчика регистрируют, пока он не достигнет установившегося состояния. Время реакции датчика должно быть определено путем измерения времени, соответствующего 63,2% разности между начальным и конечным стационарными значениями выходного сигнала датчика. Должно быть установлено средство идентификации момента времени, когда датчик входит в воду. Это время должно считаться временем начала испытания с погружением.
Важно отметить, что время реакции температурных датчиков зависит от скорости потока и температуры жидкости, в которой они проходят испытание с погружением. Кроме того, для датчиков, монтируемых в защитной гильзе, время реакции также зависит от качества соединения между рабочим наконечником датчика и его защитной гильзой. В этой связи результаты испытаний с погружением малозначимы относительно времени реакции температурного датчика после его установки на станции. Для того чтобы получить время реакции температурного датчика при рабочих условиях, его необходимо проверить при натурных испытаниях методом ступенчатого изменения контурного тока, описанным ниже.
7.2.2 Испытание методом ступенчатого изменения контурного тока
Испытание реакции на ступенчатое изменение контурного тока (РСКТ) должно использоваться для измерения штатного времени реакции РДТ или термопар в том состоянии, в каком они установлены в рабочем технологическом процессе. Испытание проводят удаленно от шкафов измерительных приборов в зоне пункта управления на таком расстоянии, на котором провода от датчика достигают аппаратуры преобразования сигналов. Испытание РСКТ основано на нагревании датчика электрическим током, который должен быть приложен к концам удлинителей проводов датчика. Для РДТ следует использовать малый постоянный ток (например, от 40 до 80 мА). Для термопар следует использовать переменный ток от 0,2 до 0,6 А. Обычно для испытаний РСКТ и РДТ и термопар нельзя использовать одно и то же оборудование из-за различных требований к испытанию.
Ток вызывает температурный переходный процесс в датчике, который должен быть зарегистрирован в цифровой форме и проанализирован для того, чтобы получить время реакции датчика. Для РДТ данные должны регистрироваться, пока ток идет через РДТ и также по мере того как РДТ нагревается. Для термопар данные должны регистрироваться после того, как ток отключен и термопара остывает до температуры окружающей среды.
Испытание РСКТ учитывает все воздействия установки на время реакции датчика. Учитываются влияние защитной гильзы (в случае ее использования), зазор между датчиком и защитной гильзой и все воздействия режимов технологического процесса, такие, например, как скорость потока жидкости, температура и т.д. Для получения фактического штатного времени реакции датчика испытание РСКТ проводят при нормальном режиме работы или при близких условиях. Это очень важно, поскольку в отличие от датчиков давления время реакции температурных датчиков зависит от температуры, давления и скорости потока жидкости, в которой установлен датчик. Однако когда на станции устанавливают новые датчики, испытания РСКТ допускается проводить при холодном останове, чтобы удостовериться, что датчики установлены надлежащим образом и обеспечат оптимальное качество функционирования по времени реакции, когда станция возобновит работу на мощности. Испытания РСКТ при холодном останове дают результаты, которые сравнивают между датчиками, чтобы идентифицировать выбросы с точки зрения времени реакции. Будет ли идентифицирован выброс или нет, испытание РСКТ должно повторяться на всех недавно установленных датчиках при нормальном режиме или в близких к нормальным условиях работы, чтобы получить фактическое время реакции датчиков. Выброс - это показание датчика, результаты РСКТ которого значительно отличаются от других резервированных датчиков при тех же условиях установки и технологического режима. С выбросами можно столкнуться по причине неадекватного введения датчика в его защитную гильзу, наличия грязи в защитной гильзе, рассогласования датчика/защитной гильзы и т.д.
Данные РСКТ должны быть проанализированы при помощи математического алгоритма, разработанного на основе теплового анализа датчика и соответствующей модели теплопередачи. Анализ данных РСКТ должен давать в результате значение времени реакции и сообщать о погрешности результатов времени реакции. Погрешность результатов должна основываться не только на погрешности испытательного оборудования, но также на погрешности алгоритма, используемого для определения времени реакции. На основе опыта известно, что погрешность результатов времени реакции для метода РСКТ составляет 10%.
7.2.3 Испытание на саморазогрев
Испытание на саморазогрев дополняет метод РСКТ, но не обеспечивает значения времени реакции. Данное испытание является дополнительным и проводится только для РДТ. При этом испытании количественно измеряют внутренний нагрев РДТ в зависимости от входной электрической мощности (I2R). Результатом является показатель, который обычно выражается в омах на ватт (Ом/Вт) и называется "индексом саморазогрева" (ИСР) РДТ. Ощутимые изменения ИСР будут являться признаком изменений времени реакции РДТ.
Испытание на саморазогрев проводят с помощью того же оборудования, что и при испытаниях РСКТ.
7.2.4 Анализ шумов
Если цель испытаний времени реакции состоит в том, чтобы контролировать существенные изменения времени реакции относительно эталонного значения или обнаруживать ощутимое ухудшение времени реакции датчика, то можно использовать метод анализа шумов. Однако испытание РСКТ, как правило, обеспечивает более точные результаты и поэтому должно использоваться, если нет большой разницы между приемлемым значением времени реакции и ожидаемым значением времени реакции датчика.
8 Оперативное обнаружение закупоривания и пустот в трубопроводе измерения давления
Системы измерения давления на атомных станциях обычно включают в себя измерительные трубопроводы (также называемые "импульсными линиями") для переноса информации о давлении из технологического процесса на датчик. В зависимости от станции и сопутствующих служб измерительные трубопроводы могут быть длиной от нескольких метров до нескольких сотен метров.
Такие химикаты, как бор и загрязняющие вещества в воде реактора, а также другие факторы влияния могут вызвать на некоторое время закупоривание измерительных трубопроводов. Кроме того, проблемы с отсечными и уравнительными клапанами в измерительных трубопроводах могут привести к частичному закупориванию измерительных трубопроводов, протечкам и другим проблемам.
Закупоривание измерительного трубопровода может увеличить время реакции соответствующего датчика давления. Увеличение времени реакции зависит от податливости датчика. У датчиков, имеющих большую податливость, закупоривание измерительного трубопровода может значительно увеличить время реакции, а у имеющих малую податливость - оказать незначительное влияние на время реакции. Податливость - это величина смещения чувствительного элемента на единицу приложенного давления.
Кроме того, наличие воздуха или газа в трубопроводах измерения давления представляет собой проблему, влияющую на стационарный режим (калибровку) или характеристики времени реакции датчиков давления. В этой связи должны быть проведены испытания для идентификации закупориваний, воздушных пробок и протечек в системах измерения давления. Испытание должно проводиться с помощью метода анализа шумов. Для обнаружения закупоривания или воздушных пробок в трубопроводах измерения давления следует провести выборку данных шумов от затронутого датчика давления в компьютер, проанализировать и сравнить результаты с исходными данными, чтобы определить, образовались ли закупоривания или воздушные пробки в измерительном трубопроводе. Для обнаружения протечек следует вычислить значение дисперсии шумового сигнала и сравнить со значением исходной дисперсии для тех же или аналогичных датчиков, чтобы определить наличие протечек в измерительном трубопроводе.
В целом, испытание времени реакции датчиков давления, уровня и расхода с помощью метода анализа шумов автоматически будет учитывать влияние любого закупоривания на время реакции датчика, а также поможет идентифицировать воздушные пробки и протечки.
9 Верификация рабочих характеристик нейтронных детекторов
Эксплуатационные характеристики нейтронных детекторов на атомных станциях проверяют методом оперативного контроля и методом анализа шумов практически также, как характеристики датчиков давления. Как правило, нейтронные детекторы являются быстродействующими, и во время испытания времени реакции к ним обычно не предъявляют строгих требований, которые предъявляются к датчикам температуры и давления, устанавливаемым на атомной станции. В этой связи описанное в настоящем стандарте испытание времени реакции предназначено для верификации рабочих характеристик в целях гарантии того, что динамика детекторов относительно исходного значения времени реакции не изменилась. Фактически для нейтронных детекторов, в дополнение ко времени реакции, следует измерять и отслеживать другие дескрипторы шумовых данных, такие как дисперсия, асимметрия и эксцесс, как средство подтверждения того, что динамика детекторов не претерпела существенных изменений.
Кроме того, эксплуатационные характеристики нейтронных детекторов зависят от технического состояния их кабелей и разъемов. В этой связи для нейтронных детекторов в дополнение к оперативному контролю и натурным измерениям времени реакции должно проводиться испытание кабелей с помощью таких методов, как измерения полного сопротивления и испытание рефлектометрией во временной области (РВО). Эти методы описаны в литературе, указанной в библиографии.
Сочетание оперативного контроля, испытания времени реакции и измерений кабелей совместно обеспечивают эффективные средства определения факта изменений рабочих характеристик нейтронного детектора. Результаты пригодны для управления старением детекторов и установления графиков технического обслуживания и замены детекторов или кабелей.
Библиография*
_____________________________
* В публикациях, представленных в библиографии, изложены подробные сведения о требованиях и методах, идентифицированных в настоящем стандарте.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Национальный стандарт РФ ГОСТ Р МЭК 62385-2012 "Атомные станции. Контроль и управление, важные для безопасности. Методы оценки рабочих характеристик измерительных каналов систем безопасности" (утв. приказом Федерального агентства по техническому регулированию и метрологии от 12 сентября 2012 г. N 291-ст)
Текст ГОСТа приводится по официальному изданию Стандартинформ, Москва, 2013 г.
Дата введения - 1 июня 2013 г.