Communication networks and systems in substations. Part 1. Introduction and overview
Дата введения - 1 сентября 2012 г.
Введен впервые
Предисловие
Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"
Сведения о стандарте
1 Подготовлен Открытым акционерным обществом "Научно-технический центр электроэнергетики" на основе собственного аутентичного перевода на русский язык международного документа, указанного в пункте 4
2 Внесен Техническим комитетом по стандартизации ТК 396 "Автоматика и телемеханика"
3 Утвержден и введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 13 декабря 2011 г. N 1231-ст
4 Настоящий стандарт идентичен международному документу IEC/TR 61850-1:2003 "Системы и сети связи на подстанциях. Часть 1. Введение и обзор" (IEC/TR 61850-1:2003 "Communication networks and systems in substations - Part 1: Introduction and overview").
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении ДА
5 Некоторые элементы настоящего стандарта могут быть предметом патентных прав
6 Введен впервые
Введение
Стандарты серии МЭК 61850 состоят из следующих частей под групповым заголовком, общим для всех стандартов серии, "Сети и системы связи на подстанциях":
- часть 1. Введение и обзор;
- часть 2. Словарь терминов;
- часть 3. Общие требования;
- часть 4. Управление системой и проектом;
- часть 5. Требования к связи для функций и моделей устройств;
- часть 6. Язык описания конфигурации для связи между интеллектуальными электронными устройствами на электрических подстанциях;
- часть 7-1. Базовая структура связи для подстанций и линейного оборудования. Принципы и модели;
- часть 7-2. Базовая структура связи для подстанций и линейного оборудования. Абстрактный интерфейс услуг связи (ACSI);
- часть 7-3. Базовая структура связи для подстанций и линейного оборудования. Классы общих данных;
- часть 7-4. Базовая структура связи для подстанций и линейного оборудования. Совместимые классы логических узлов и классы данных;
- часть 8-1. Специфическое отображение сервиса связи (SCSM). Схемы отображения на MMS (ИСО 9506-1 и ИСО 9506-2) и на ИСО/МЭК 8802-3;
- часть 9-1. Специфическое отображение сервиса связи (SCSM). Выборочные значения в пределах последовательного однонаправленного многоточечного канала связи типа "точка-точка";
- часть 9-2. Специфическое отображение сервиса связи (SCSM). Выборочные значения в соответствии с ИСО/МЭК 8802-3;
- частью. Проверка соответствия.
Настоящий стандарт представляет собой обзорную и вводную часть к стандартам серии МЭК 61850. Она включает в себя описание основополагающих принципов, подхода к разработке стандартов, содержания других частей, а также документов других организаций, имеющих отношение к данной теме.
1 Область применения
Настоящий стандарт предназначен для применения к системам автоматизации подстанции (SA-системам). В нем приведено определение связи между интеллектуальными электронными устройствами (IED-устройствами) подстанции и сформулированы соответствующие системные требования.
Настоящий стандарт, входящий в состав комплекса стандартов, подготовленных на основе применения стандартов серии МЭК 61850, представляет собой обзорный и вводный стандарт данной серии. Настоящий стандарт содержит ссылки на другие части стандартов серии МЭК 61850, а также текст и рисунки из других частей указанной серии.
2 Нормативные ссылки
Приведенные ниже нормативные документы обязательны при применении настоящего стандарта. Для датированных ссылок применяют только ту редакцию, на которую имеется ссылка. Для недатированных ссылок применяют последнее издание указанного нормативного документа (включая все поправки).
МЭК 60870-5-103:1997 Устройства и системы телемеханики. Часть 5-103. Протоколы передачи данных. Обобщающий стандарт по информационному взаимодействию оборудования защиты (IEC 60870-5-103:1997, Telecontrol equipment and systems - Part 5-103: Transmission protocols - Companion standard for the informative interface of protection equipment)
МЭК 61850-3 Сети и системы связи на подстанциях. Часть 3. Общие требования (IEC 61850-3, Communication networks and systems in substations - Part 3: General requirements)
МЭК 61850-5 Сети и системы связи на подстанциях. Часть 5. Требования к связи для функций и моделей устройств (IEC 61850-5, Communication networks and systems in substations - Part 5: Communication requirements for functions and device models)
МЭК 61850-7-1 Сети и системы связи на подстанциях. Часть 7-1. Базовая структура связи для подстанций и линейного оборудования. Принципы и модели (IEC 61850-7-1, Communication networks and systems in substations - Part 7-1: Basic communication structure for substation and feeder equipment - Principles and models)
МЭК 61850-7-2 Сети и системы связи на подстанциях. Часть 7-2. Базовая структура связи для подстанций и линейного оборудования. Абстрактный интерфейс услуг связи (ACSI) [IEC 61850-7-2, Communication networks and systems in substations - Part: 7-2: Basic communication structure for substation and feeder equipment - Abstract communication service interface (ACSI)]
МЭК 61850-7-3 Сети и системы связи на подстанциях. Часть 7-3. Базовая структура связи для подстанций и линейного оборудования. Классы общих данных (IEC 61850-7-3, Communication networks and systems in substations - Part 7-3: Basic communication structure for substation and feeder equipment - Common data classes)
МЭК 61850-7-4 Сети и системы связи на подстанциях. Часть 7-4. Базовая структура связи для подстанций и линейного оборудования. Совместимые классы логических узлов и классы данных (IEC 61850-7-4, Communication networks and systems in substations - Part 7-4: Basic communication structure for substation and feeder equipment - Compatible logical node classes and data classes)
МЭК 9001:2001 Системы менеджмента качества. Требования (ISO 9001:2001, Quality management systems - Requirements)
3 Термины, определения и сокращения
3.1 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1.1 абстрактный интерфейс услуг связи; ACSI (abstract communication service interface; ACSI): Виртуальный интерфейс с IED-устройством, обеспечивающий логическим устройствам, логическим узлам, данным, атрибутам данных и услугам связи абстрактные методы информационного моделирования, например соединение, доступ к переменным, незатребованную передачу данных, услуги по управлению устройством и по передаче файлов независимо от фактически применяемого стека связи и профилей.
3.1.2 присоединение (bay): Тесно связанные между собой участки, из которых состоит подстанция и которые имеют ряд общих функциональных возможностей. Примерами могут служить коммутационное оборудование между входящей или отходящей линией и сборной шиной, шинный соединитель со своим выключателем, разъединителями и заземляющими переключателями, трансформатор с собственным коммутационным оборудованием между двумя сборными шинами, представляющими собой два уровня напряжения. Принцип присоединения может быть применен к подстанции с полуторной схемой коммутации и подстанции с кольцевой схемой соединения шин, если выключатели со всем дополнительным оборудованием объединены в виртуальное присоединение. Подобные присоединения охватывают часть электрической сети, подлежащую защите, например трансформатор или конец линии и органы управления его коммутационным оборудованием, которые имеют ряд общих связей, таких как взаимные блокировки или четко определенные последовательности операций. Определение таких участков подстанции важно для целей технического обслуживания и текущего ремонта (какие участки могут быть одновременно отключены с минимальными последствиями для остального оборудования подстанции) или для планов расширения (что необходимо добавить, если планируется подключение новой линии). Эти участки называют "присоединениями", управление ими может осуществляться устройствами под общим наименованием "контроллеры присоединений". Системы защиты называют "защитой присоединения". Уровень присоединения представляет собой дополнительный уровень управления, находящийся ниже общего подстанционного уровня.
3.1.3 объект данных (data object): Часть объекта логического узла, представляющая специфическую информацию, например состояние или измерение. Применительно к объектно-ориентированному подходу объект данных представляет собой экземпляр класса данных. Объекты данных, как правило, используются в качестве объектов транзакций, т.е. как структуры данных.
3.1.4 устройство (device): Механизм или единица оборудования, имеющая специальное назначение или выполняющая определенную функцию, - например выключатель, реле или вычислительное устройство подстанции.
[IEEE 100, 1996]
3.1.5 функции (functions): Задачи, выполняемые системой автоматизации подстанции, т.е. прикладными функциями. Как правило, эти функции обмениваются данными с другими функциями. Конкретный процесс зависит от задействованных функций. Функции выполняются IED-устройствами (физическими устройствами). Функции могут быть разделены на части, которые резидентно находятся в IED-устройствах, но сообщаются друг с другом (распределенная функция) и с частями других функций. Эти сообщающиеся части функции называют логическими узлами. В соответствии с настоящим стандартом декомпозиция функций или степень их детализации определяется только характером связи. Поэтому считают, что все функции состоят из логических узлов, обменивающихся данными.
3.1.6 интеллектуальное электронное устройство; IED-устройство (Intelligent Electronic Device; IED): Любое устройство, содержащее один или несколько процессоров и способное получать или направлять данные/управляющие воздействия от внешнего источника или на внешний источник (например, электронные многофункциональные измерительные приборы, цифровые реле, контроллеры).
3.1.7 взаимозаменяемость (interchangeability): Возможность замены устройства от одного изготовителя на устройство от другого изготовителя без изменения других элементов системы.
3.1.8 взаимодействие (interoperability): Способность двух или нескольких IED-устройств от одного или различных поставщиков обмениваться информацией и использовать эту информацию для правильного выполнения заданных функций.
3.1.9 логический узел; LN (Logical Node; LN): Наименьшая часть функции, обменивающаяся данными. Как объект LN определяется своими данными и методами.
3.1.10 открытый протокол (open protocol): Протокол, имеющий стандартизованный или открытый для всеобщего доступа стек.
3.1.11 физическое устройство; PD (Physical Device PD): В соответствии с настоящим стандартом - это устройство, равнозначное интеллектуальному электронному устройству (IED).
3.1.12 PICOM: Описание передачи информации на заданном логическом соединении с заданными атрибутами связи между двумя логическими узлами (единица передаваемой информации), содержащее также передаваемую информацию и необходимые атрибуты, например характеристики. PICOM не описывает фактическую структуру или формат данных, передаваемых по сети связи. Понятие PICOM введено Рабочей группой CIGRE 34.03 (см. приложение В).
3.1.13 протокол (protocol): Набор правил, определяющих характер поведения функциональных блоков при обмене информацией.
3.1.14 самоописание (self-description): Наличие в устройстве информации о собственной конфигурации. Представление этой информации должно быть стандартизовано и доступно через средства связи.
3.1.15 система (system): В соответствии с настоящим стандартом - это система автоматизации подстанции, если не указано иное.
3.1.16 специфическое отображение сервиса связи; SCSM (Specific Communication Service Mapping; SCSM): Стандартизованная процедура, обеспечивающая конкретное отображение сервисов и объектов ACSI-интерфейса в конкретном стеке протоколов/профиле связи. Для обеспечения взаимодействия предполагается наличие минимального числа профилей и соответствующего специфического отображения сервиса связи (SCSM). Отдельные прикладные субдомены, такие как "станционная шина" и "технологическая шина", могут иметь более одного отображения. Однако для выбранного отдельного стека протоколов должны быть указаны только одно SCSM и только один профиль. SCSM должно содержать подробные указания на конкретизацию абстрактных сервисов в конкретном единичном сервисе или в последовательности сервисов, которые выполняют функции сервиса, как указано в ACSI. Дополнительно SCSM должно содержать подробные указания на отображение ASCI-объектов в объекты, поддерживаемые данным протоколом прикладного уровня. Отображения SCSM подробно описаны в частях 8 и 9 данной серии стандартов.
3.2 Сокращения
В настоящем стандарте применены следующие сокращения:
ACSI (Abstract Communication Service Interface) - абстрактный интерфейс услуг связи;
AIS (Air Insulated Switchgear) - распределительное устройство с воздушной изоляцией;
СВ (Circuit Breaker) - выключатель;
CDC (Common Data Class) - класс общих данных;
DO (Data Object) - объект данных;
EMC (Electro Magnetic Compatibility) - электромагнитная совместимость;
GIS (Gas Insulated Switchgear) - распределительное устройство с газовой изоляцией;
GOMSFE (Generic Object Models for Substation and Feeder Equipment) - общие объектные модели для подстанций и линейного оборудования;
HMI (Human-Machine Interface) - интерфейс человек-машина;
IED (Intelligent Electronic Device) - интеллектуальное электронное устройство;
LN (Logical Node) - логический узел;
PD (Physical Device) - физическое устройство;
PICOM (Piece of Information for COMmunication) - единица передаваемой информации;
SA (Substation Automation) - автоматизация подстанции;
SAS (Substation Automation System) - система автоматизации подстанции (SA-система);
SCSM (Specific Communication Service Mapping) - специфическое отображение сервиса связи;
SCL (Substation Configuration Language) - язык конфигурирования подстанции;
XML (Extensible Mark-up Language) - расширяемый язык разметки.
4 Цели стандартизации SA-систем
Возможность создания SA-системы основана на доступности новейших мощных быстродействующих микропроцессоров, что способствовало эволюции вспомогательного оборудования подстанции - от электромеханических устройств к цифровым. Это, в свою очередь, обеспечило внедрение SAS с использованием нескольких интеллектуальных электронных устройств (IED-устройств) для выполнения требуемых функций (защиты, локального и удаленного мониторинга и управления и т.д.). Как следствие, возникла необходимость в обеспечении надлежащего качества связи между IED-устройствами, в особенности для стандартных протоколов. Использование оригинальных протоколов связи, разработанных различными изготовителями, требовало установки сложных и дорогостоящих конверторов протоколов при работе с IED-устройствами от различных изготовителей.
Опыт работы в промышленности показал необходимость и возможность разработки стандартных протоколов связи, которые поддерживали бы взаимодействие IED-устройств от различных изготовителей. Взаимодействие в данном случае - это способность применять одну сеть или канал связи при совместном использовании информации и выполнении команды. Также существует потребность во взаимозаменяемости IED-устройств, т.е. возможности замены устройства от одного изготовителя на устройство от другого изготовителя без изменения других элементов системы. Взаимозаменяемость не рассматривается в настоящем стандарте. Взаимодействие является общей целью работы электроэнергетического предприятия, поставщиков оборудования и организаций по стандартизации. Фактически за последние годы несколькими национальными и международными организациями была начата деятельность по достижению этой цели (см. приложение В).
Цель стандартизации систем автоматизации подстанции заключается в разработке стандарта связи, который в максимально возможной степени удовлетворял бы функциональным требованиям, требованиям к рабочим характеристикам и поддерживал бы при этом последующие технологические разработки. Для достижения поставленной цели изготовители IED-устройств и пользователи должны принять соглашение относительно способа свободного обмена информацией между этими устройствами.
Стандарт связи должен поддерживать эксплуатационные функции подстанции. Следовательно, в этом стандарте должны быть обязательно учтены эксплуатационные требования, но его целями не должны быть ни стандартизация (какое-либо ограничение) функций, задействованных в эксплуатации подстанций, ни их распределение в SA-системах. Для установления требуемого объема информационного обмена (например, количества обмениваемых данных, временных ограничений обмена и др.) должны быть определены и описаны прикладные функции. Стандарт по протоколам связи должен в максимально возможной степени использовать существующие стандарты и общепринятые принципы связи.
Помимо прочего настоящий стандарт должен обеспечивать выполнение следующих требований:
- готовый профиль связи должен быть основан на действующих стандартах связи IEC/IEEE/ISO/OSI, при их наличии;
- используемые протоколы должны быть открытыми, а также должны поддерживать устройства с функцией самоописания. Должна быть обеспечена возможность добавления новых функций;
- стандарт связи должен быть основан на объектах данных, имеющих отношение к потребностям электроэнергетики;
- синтаксис и семантика связи должны быть основаны на использовании общих объектов данных, относящихся к энергосистеме;
- стандарт должен рассматривать подстанцию как один из узлов в электрической сети, и, соответственно, как элемент общей системы управления в электроэнергетике.
5 Предыстория
С 1994 г. Специальная рабочая группа "Интерфейсы управления и защиты подстанции" Технического комитета 57 МЭК работала над предложениями по стандартизации связи в системах автоматизации подстанций. Национальные комитеты рассмотрели и приняли следующие предложения:
- разработка стандарта по функциональной архитектуре, структуре связи и общим требованиям;
- разработка стандарта по связи между уровнем присоединения и уровнем подстанции, а также внутри каждого уровня;
- разработка стандарта по связи между уровнем процесса и уровнем присоединения;
- разработка обобщающего стандарта по информационному взаимодействию оборудования защиты.
Обобщающий стандарт по информационному взаимодействию оборудования защиты был разработан Специальной рабочей группой и опубликован как МЭК 60870-5-103.
Интерфейсы связи в рамках системы автоматизации подстанции могут быть представлены общей структурной схемой (см. рисунок 1).
Рисунок 1 - Логические интерфейсы SA-системы
Интерфейсы между функциональными блоками не являются представлением физических интерфейсов физических устройств. Они представляют собой "логические интерфейсы", т.е. не зависят от реальных систем связи.
На рисунке 1 указаны технические комитеты МЭК, за которыми закреплены стандарты на приведенные устройства. Тесное сотрудничество с указанными техническими комитетами было принято как обязательное условие в ходе работы. Для обеспечения такого тесного сотрудничества все упомянутые комитеты делегировали своих специалистов в рабочие группы, ответственные за разработку стандартов серии МЭК 61850.
6 Подход к разработке стандарта
6.1 Общие сведения
В качестве рабочего подхода было принято сочетание достоинств следующих трех методов: функциональной декомпозиции, потока данных и информационного моделирования.
Функциональная декомпозиция используется для понимания логического соответствия между элементами распределенной функции и представляется в виде логических узлов, которые описывают функции, подфункции и функциональные взаимодействия.
Поток данных используется для понимания интерфейсов связи, которые должны поддерживать обмен информацией между распределенными функциональными элементами, а также соответствовать требованиям к эксплуатационным характеристикам.
Информационное моделирование используется для определения абстрактных синтаксиса и семантики обмениваемой информации и представляется в виде классов и типов объектов данных, атрибутов, методов (сервисов) обработки абстрактных объектов и их отношений.
6.2 Функции и логические узлы
Цель настоящего стандарта заключается в определении требований и установлении концептуальной основы для обеспечения взаимодействия между IED-устройствами от различных изготовителей.
Распределение функций по устройствам (IED-устройствам) и уровням управления в настоящем стандарте не установлено, так как это распределение зависит от требований к доступности, рабочим характеристикам, ограничениям по стоимости, уровню развития технологии, а также от принципов работы на предприятии и т.д. Следовательно, настоящий стандарт должен поддерживать любое распределение функций.
Для свободного распределения функций по IED-устройствам необходимо обеспечить взаимодействие между функциями, выполняемыми на подстанции, но при этом резидентно находящимися в оборудовании (физических устройствах) от разных поставщиков. Эти функции могут быть разбиты на части, выполняемые в различных IED-устройствах, но поддерживающие между собой связь (распределенная функция). Следовательно, характер связи таких частей (они называются логическими узлами - LN) должен поддерживать требуемое взаимодействие IED-устройств.
Одни функции (прикладные) SA-систем - это управление и контроль, а также защита и мониторинг основного оборудования и сети. Другие функции (системные) связаны с собственно системой, например надзор за связью.
Функции могут быть отнесены к трем уровням: станционному уровню, уровню присоединения и уровню процесса (технологическому).
Самые ранние реализации показали, что логических интерфейсов (они представлены на рисунке 1) недостаточно; отсутствуют логические интерфейсы между функциями на станционном уровне, а также между функциями, размещенными в различных присоединениях. Поэтому была разработана новая структура, включающая в себя дополнительные логические интерфейсы. Схема, изображенная на рисунке 2, представляет собой основу для стандартов серии МЭК61850.
Рисунок 2 - Модель интерфейса системы автоматизации подстанции
Интерфейсы IF имеют следующие значения:
- IF1: обмен информацией, относящейся к защите, между уровнем присоединения и уровнем станции;
- IF2: обмен информацией, относящейся к защите, с устройством защиты противоположного конца линии (выходит за рамки настоящего стандарта);
- IF3: обмен информацией в пределах уровня присоединения;
- IF4: мгновенный обмен информацией (в особенности результатами измерений) от трансформаторов тока и напряжения между технологическим уровнем и уровнем присоединения;
- IF5: обмен информацией управления между уровнем процесса и уровнем присоединения;
- IF6: обмен информацией управления между уровнем присоединения и уровнем станции;
- IF7: обмен информацией между станционным уровнем и удаленным рабочим местом инженера;
- IF8: прямой обмен данными между присоединениями, в особенности для высокоскоростных функций, таких как блокировка;
- IF9: обмен информацией в пределах уровня станции;
- IF10: обмен информацией системы управления между станционным уровнем и удаленным центром управления (выходит за рамки настоящего стандарта).
Устройства системы автоматизации подстанции могут быть физически установлены на различных уровнях (станционного, присоединения и технологического уровня). Это относится к физическому исполнению схемы, представленной на рисунке 2.
Примечание - Распределение функций в оборудовании связи может быть осуществлено с использованием технологий глобальной сети, локальной сети и технологической шины. Реализация этих функций не относится к какой-либо определенной технологии связи.
Устройства технологического уровня, как правило, представляют собой дистанционные устройства ввода-вывода, интеллектуальные датчики и исполнительные механизмы (см. примеры на рисунке 2).
Устройства уровня присоединения состоят из элементов оборудования управления, защиты или мониторинга, установленных на присоединении.
Устройства станционного уровня состоят из станционного компьютера с базой данных, рабочего места оператора, интерфейсов, обеспечивающих дистанционную связь, и т.д.
Для достижения вышеуказанных целей стандартизации все известные функции системы автоматизации подстанции были идентифицированы и разбиты по подфункциям (логическим узлам). Логические узлы могут находиться в различных устройствах и на различных уровнях. На рисунке 3 показаны примеры, объясняющие отношения между функциями, логическими узлами и физическими узлами (устройствами).
Рисунок 3 - Отношения между функциями, логическими узлами и физическими узлами (примеры)
Функцию называют распределенной, если она выполнена двумя или более логическими узлами, расположенными в различных физических устройствах. Поскольку все функции некоторым образом взаимосвязаны, определение локальной или распределенной функции не однозначно - оно зависит от определения функциональных шагов, которые обеспечивают выполнение данной функции.
При реализации распределенной функции должны быть обеспечены надлежащие ответные действия на потерю LN или включенного канала связи, например, функция может быть полностью заблокирована либо, если это применимо, качество ее выполнения постепенно ухудшается.
Примечание - Реализация распределенной функции не является объектом стандартизации в рамках стандартов серии МЭК 61850.
Примеры физических устройств, представленных на рисунке 3:
1 - станционный компьютер;
2 - синхронизированное устройство переключения;
3 - устройство дистанционной защиты со встроенной функцией максимальной токовой защиты;
4 - устройство управления присоединением;
5 и 6 - измерительные трансформаторы напряжения и тока;
7 - измерительные трансформаторы напряжения на сборной шине.
Все известные функции описаны в МЭК 61850-5 по следующим параметрам:
- задача выполнения функции;
- критерии запуска функции;
- результат или эффект от выполнения функции;
- процесс выполнения функции;
- функциональная декомпозиция;
- взаимодействие с другими функциями.
Примечание - Функции не являются объектом стандартизации в рамках стандартов серии МЭК 61850.
Все соответствующие логические узлы описаны в МЭК 61850-5 следующим образом:
- группирование в соответствии с наиболее распространенной областью их применения;
- короткое текстовое описание функциональных возможностей;
- функциональный номер устройства согласно IEEE, если это применимо (только для логических узлов защиты и некоторых других, связанных с защитой, см. IEEE С.37.2,1996);
- отношение между функциями и логическими узлами в табличной форме и в виде функционального описания;
- описанные в табличной форме обмениваемые PICOM данные.
"Динамические" требования по передаче определенных PICOM данных, включая их атрибуты (такие как необходимая целостность данных), были разработаны Рабочей группой 03 Исследовательского комитета 34 CIGRE. Результаты были опубликованы в отчете и использованы в стандартах серии МЭК 61850.
Однако для упрощения подхода PICOM данные были отнесены к разным типам сообщений в соответствии с требованиями SA-систем (см. таблицу 1).
Таблица 1 - Типы сообщений
Тип |
Наименование |
Примеры |
1а |
Высокоскоростные сообщения - отключение |
Отключения |
1b |
Высокоскоростные сообщения - прочие |
Команды, простые сообщения |
2 |
Среднескоростные сообщения |
Измеряемые значения |
3 |
Низкоскоростные сообщения |
Параметры |
4 |
Сообщения с необработанными данными |
Выходные данные с первичных преобразователей и измерительных трансформаторов |
5 |
Функции передачи файлов |
Большие файлы |
6а |
Сообщения временной синхронизации, тип а |
Временная синхронизация; станционная шина |
6b |
Сообщения временной синхронизации, тип b |
Временная синхронизация; технологическая шина |
7 |
Командные сообщения с контролем доступа |
Команды со станционного HMI-интерфейса |
6.3 Топологии подстанции
Исходя из вышесказанного функциональные требования не должны зависеть от размеров подстанций. Таким образом, для всего объема требований к рабочим характеристикам необходимо определить итоговый поток данных (нагрузку шины) для различных типов и размеров подстанций. С этой целью был проведен анализ характерных типов подстанций со всего мира. Полученные итоговые потоки данных были документально зафиксированы, что нашло отражение в МЭК 61850-5. На рисунке 4 показаны типовые подстанции среднего напряжения (СН) и высокого напряжения (ВН). Все типы рассмотренных подстанций описаны в приложении В.
Рисунок 4 - Типы подстанций СН и ВН
Обозначение подстанций указанных типов (например, D 1-2) расшифровывается следующим образом. Буква D обозначает распределительную подстанцию, буква Т - передающую подстанцию. Первая цифра обозначает размер подстанции (малая, средняя, большая - чем больше номер, тем больше размер подстанции), вторая цифра обозначает типы.
6.4 Динамические сценарии
Были проведены расчеты потока данных на логических интерфейсах при нормальных и наихудших условиях работы для типовых подстанций. В таблице 2 приведен пример для подстанции типа Т 1-1. Приведенные значения относятся только к информационным битам и не учитывают протокольных заголовков.
Таблица 2 - Расчетный поток данных на логических интерфейсах (пример)
Номер интерфейса |
Режим работы |
Максимальная нагрузка шины, кбайт/с |
Примечание |
Единичная сеть |
Нормальный |
244 |
|
Единичная сеть |
|
442 |
|
1, 3, 6 |
|
123 |
Станционная шина |
8 |
Наихудший |
24 |
Станционная шина |
4, 5 |
295 |
Технологическая шина, все линии |
|
4, 5 |
65 |
Технологическая шина, только одна линия |
Примечание - Наиболее неблагоприятные условия включают в себя нормальную, аварийную, нештатную и послеаварийную работу и предполагают самые строгие требования ко времени передачи сигнала для сигналов всех типов (см. МЭК 61850-5, пункт 12).
6.5 Требования к физической системе связи
Логические интерфейсы могут быть отображены в физических интерфейсах несколькими различными способами. Станционная шина, как правило, реализует логические интерфейсы 1, 3, 6 и 9, а технологическая шина охватывает логические интерфейсы 4 и 5. Логический интерфейс 8 (связь между присоединениями) может быть отображен в одной из этих шин либо в каждой из них. Это отображение в значительной степени будет определять итоговое требуемое быстродействие выбранной системы связи (см. рисунки 5 и 6).
Рисунок 5 - Отображение логических интерфейсов в физических интерфейсах; отображение логического интерфейса 8 в станционной шине
Рисунок 6 - Отображение логических интерфейсов в физических интерфейсах; отображение логического интерфейса 8 в станционной шине
Возможно отображение всех логических интерфейсов в одной одиночной шине, если это удовлетворяет требованиям к рабочим характеристикам.
7 Построение системы в условиях быстрого обновления коммуникационных технологий
7.1 Независимость связи от приложения
Настоящий стандарт определяет набор абстрактных услуг и объектов, которые могут обеспечить запись приложений, не зависящую от конкретного протокола. Такая абстракция позволяет как изготовителям, так и энергокомпаниям сохранять функциональные возможности приложений, а в определенных случаях оптимизировать их. Прикладная модель, описанная в настоящем стандарте, состоит из созданного изготовителем/пользователем приложения, которое написано для вызова или ответа на соответствующую совокупность услуг абстрактного интерфейса услуг связи (ACSI).
В настоящем стандарте установлена совокупность абстрактных сервисов, которые должны быть использованы между приложениями и "объектами приложений", - при условии обеспечения совместимого обмена информацией между элементами системы автоматизации подстанции. Однако эти абстрактные сервисы/объекты должны быть обработаны с использованием конкретных прикладных протоколов и профилей связи.
Решение о конкретной реализации внутреннего интерфейса устройства с услугами ACSI принимают на месте. Принятие указанного решения не является объектом стандартизации настоящего стандарта.
Затем локальный ACSI-интерфейс отображается в соответствующей совокупности услуг конкретного прикладного протокола/профиля связи, как это определено в заданном специфическом отображении сервиса связи (SCSM). Состояние или изменения объектов данных передаются как конкретные данные.
Стандарты серии МЭК 61850 предоставляют набор отображений, которые могут быть использованы для обеспечения связи в пределах подстанции. Выбор подходящего отображения зависит от функциональных требований и требований к рабочим характеристикам.
Примечание - Взаимодействие возможно только для тех прикладных компонентов, на которых внедрено одинаковое отображение SCSM.
Это отображение показано на рисунке 7 как "SCSM". В зависимости от оборудования соответствующего прикладного уровня объем работ по отображению может различаться.
Рисунок 7 - Базовая эталонная модель
7.2 Моделирование данных и сервисы
Логические узлы могут взаимодействовать друг с другом, только если они способны интерпретировать и обрабатывать полученные данные (синтаксис и семантику), а также использованные сервисы связи. Поэтому необходимо стандартизовать объекты данных, отнесенные к логическим узлам, и их идентификацию в пределах логических узлов.
Данные и сервисы какого-либо приложения могут быть смоделированы по трем уровням (см. рисунок 8). Первый уровень описывает абстрактные модели и сервисы связи, используемые для обмена информацией между логическими узлами. Уровни 2 и 3 определяют конкретную объектную модель доменов приложения. Это означает определение классов данных с атрибутами и их отношение к логическим узлам.
Рисунок 8 - Подход к моделированию в стандартах серии МЭК 61850
Уровень 1: Абстрактный интерфейс услуг связи (ACSI)
ACSI-интерфейс определяет модели и услуги, используемые для доступа к элементам конкретной объектной модели данного домена (автоматизация подстанции). Услуги связи обеспечивают механизмы не только для чтения и записи значений объекта, но и для других операций, например для управления основным оборудованием.
Уровень 2: Классы общих данных
Второй уровень определяет "классы общих данных" (CDC). Класс общих данных определяет структурированную информацию, состоящую из одного или более атрибута. Тип данных атрибута может быть фундаментным типом (например, ЦЕЛОЕ ЧИСЛО), как определено в МЭК 61850-7-1. Большинство типов данных определяют как общие типы данных атрибута на уровне 2. Классы данных, определяемые на уровне 3, представляют собой специализации CDC-классов в соответствии с их конкретным использованием в контексте приложения.
Уровень 3: Совместимые классы логических узлов и классы данных
Этот уровень определяет совместимую модель объекта, устанавливающую классы логических узлов и классы данных. Поскольку идентификация и значение (семантика) логического узла и классов данных определены, то никакой дополнительной спецификации не требуется. Примером класса данных может служить "положение переключателя с качественной и временной отметкой".
Классы данных этого уровня подобны "объектам", определенным в МЭК 60870-5-103. Логические узлы этого уровня подобны "блокам", определенным в Коммуникационной архитектуре предприятий электроэнергетики (UCA), версия 2.0 (см. приложение В, пункт 12).
8 Общие системные вопросы
8.1 Изложение мотивов
Если предприятие планирует построить SA-систему и намеревается объединить IED-устройства от различных изготовителей, оно рассчитывает не только на взаимодействие функций и устройств, но и на единообразное управление системой и гармонизированные общие системные свойства.
Таким образом, стандарты серии МЭК 61850 охватывают не только связь, но и качественные характеристики инструментальных средств проектирования, мероприятия по управлению качеством, а также управление конфигурацией.
8.2 Инструментальные средства проектирования и параметры
Компоненты SA-системы содержат как параметры конфигурации, так и эксплуатационные параметры. Параметры конфигурации, как правило, задаваемые в автономном режиме, требуют перезапуска приложения после каждого проведенного изменения. Эксплуатационные параметры могут быть заданы и изменены в оперативном режиме. Эта процедура не оказывает никакого влияния на работу системы.
Параметры системы определяют взаимодействие IED-устройств, включая внутренние структуры и процедуры SA-системы в отношении ее технологических предельных значений и доступных компонентов. Системные параметры должны быть совместимыми, в противном случае действие распределенных функций будет нарушено.
Технологические параметры описывают информацию, участвующую в обмене между технологическим оборудованием и SA-системой.
Функциональные параметры описывают количественные и качественные характеристики функциональных возможностей, необходимых клиенту. Как правило, эти функциональные параметры следует изменять в оперативном режиме.
Инструменты должны обладать возможностью обмена, по крайней мере, параметров системы и конфигурации, а также выявлять (и предотвращать) нарушения совместимости. Один из способов достижения этой цели представлен на рисунке 9. Синтаксис и семантика обмена системных параметров определены в МЭК 61850-6.
Инструментальные средства проектирования - это инструменты для определения и документирования функциональных возможностей конкретного приложения и интеграции устройств в SA-систему. Они могут быть классифицированы следующим образом:
- проектно-конструкторские инструменты;
Рисунок 9 - Обмен системы параметрами
- инструменты параметризации и конфигурирования;
- инструменты документирования.
Стандарты серии МЭК 61850 определяют требования к инструментальным средствам, особенно для конфигурирования и параметризации системы.
8.3 Язык конфигурирования системы автоматизации подстанции
Проектирование системы, как правило, начинают, когда система физически еще не существует. Кроме того, современные IED-устройства легко адаптируются к большому количеству разнообразных задач. Однако это не означает, что все потенциальные задачи могут быть выполнены параллельно в одно и то же время. Это приводит к ситуации, когда для одного и того же устройства должны быть определены несколько подмножеств возможностей, каждое из которых будет позволять обработку/использование всех имеющихся возможностей.
Следовательно, несмотря на то, что эти устройства могут иметь функцию самоописания, их возможности, а также их конфигурация под конкретный проект (в общем и с учетом системных параметров) должны быть доступны стандартным образом до того, как станет доступным и будет спроектировано собственно IED-устройство.
Для обеспечения совместимого обмена описаниями устройств и системными параметрами между инструментальными средствами от различных изготовителей МЭК 61850-6 определяет язык конфигурирования подстанции (SCL). Этот язык позволяет:
- описать возможности IED-устройств с использованием понятий моделей МЭК 61850-5 и МЭК 61850-7 для импорта в инструментальные средства системного проектирования;
- описать все данные, необходимые для определения системных параметров для одного IED-устройства. Главным образом, это предусматривает связывание IED-устройства и его функций с собственно подстанцией на основании его однолинейной схемы и его места в системе связи.
Язык конфигурирования подстанции основывается на языке XML. Он включает в себя следующие подразделы, позволяющие ему осуществить вышеуказанную цель:
- подраздел подстанции. Описывает однолинейную схему подстанции и ее связи с логическими узлами, а также размещение логических узлов в IED-устройствах. Таким образом, приведено также определение связей IED-устройств с участками и устройствами подстанции;
- подраздел коммуникации. Описывает коммуникационные соединения между IED-устройствами с использованием понятий соединительных каналов связи;
- подраздел IED-устройств. Описывает возможности (конфигурацию) одного или более IED-устройства, а также связь с логическими узлами других IED-устройств;
- подраздел типа LN. Определяет, какие объекты данных фактически содержатся в экземплярах логического узла, необходимых для IED-устройств.
8.4 Управление качеством и жизненным циклом
Стандарты серии МЭК 61850 охватывают обеспечение качества жизненных циклов системы с определением сфер ответственности эксплуатирующей компании и изготовителя.
В сферу ответственности изготовителя входят этапы от разработки в соответствии с ИСО 9001 системных испытаний, типовых испытаний и сертификации (включая сертификацию на соответствие стандартам) до обслуживания и поставок после прекращения производства.
Поскольку SA-системы и их компоненты находятся в стадии постоянной доработки, эта система, компоненты и проектные инструментальные средства должны иметь однозначную идентификацию версии.
Пример обязательств изготовителя по поставкам после прекращения производства показан на рисунке 10.
Рисунок 10 - Сроки выполнения обязательств по поставке (пример)
8.5 Общие требования
Общие требования к сети связи установлены в МЭК 61850-3 с акцентом на требованиях к ее качеству. Кроме того, в нем приведены рекомендации по условиям окружающей среды и дополнительному обслуживанию, а также рекомендации относительно значимости конкретных требований, установленных в других стандартах и спецификациях.
Подробно изложены требования к качеству - такие как надежность, готовность, ремонтопригодность, безопасность, целостность данных и др., - применяемые к системам связи, используемым для мониторинга и управления технологическими процессами на подстанции.
К другим общим требованиям относятся географические требования. Сети связи на территории подстанции должны охватывать расстояния до 2 км. Для некоторых компонентов SA-систем (например, устройств управления присоединением) не существует ответственного "комитета по изделию" в рамках МЭК. Поэтому условия окружающей среды должны быть установлены в соответствии с другими подходящими стандартами МЭК.
Ссылки на другие нормативные документы приводят в части климатических, механических и электрических воздействий на те средства связи и интерфейсы, которые используют для мониторинга и управления процессами в пределах подстанции.
Оборудование связи может быть подвергнуто воздействию электромагнитных помех различных видов, наводимых линиями электропитания, сигнальными линиями или непосредственно излучаемых окружающей средой. Типы и уровни помех зависят от конкретных условий, в которых должно быть использовано оборудование связи.
Требования по электромагнитной совместимости приведены в других стандартах МЭК. При этом были выработаны дополнительные требования.
9 Проверка соответствия
Заявления о соответствии и подтверждение их достоверности являются важными составляющими приемки систем и оборудования. В МЭК 61850-10 описаны методики проверки соответствия, применяемые для проверки соответствия устройств систем автоматизации подстанции. Кроме того, в нем приведены рекомендации по настройке испытательного оборудования и испытания системы в целях поддержания взаимодействия устройств и систем.
Требования по безопасности и электромагнитной совместимости установлены в МЭК 61850-3.
10 Структура и содержание стандартов серии МЭК 61850
Опубликованные и планируемые к публикации стандарты серии МЭК 61850 имеют следующие заголовки и содержание:
МЭК 61850-1 Введение и обзор:
- введение и краткий обзор стандартов серии МЭК 61850.
МЭК 61850-2 Словарь терминов:
- термины с соответствующими определениями, используемые в стандартах серии МЭК 61850.
МЭК 61850-3 Общие требования:
- требования к качеству (надежность, ремонтопригодность, готовность системы, мобильность, безопасность);
- условия окружающей среды;
- дополнительное обслуживание;
- другие стандарты и спецификации.
МЭК 61850-4 Управление системой и проектом:
- проектные требования (классификация параметров, проектные инструментальные средства, документация);
- жизненный цикл системы (версии продукции, прекращение производства, поддержка после прекращения производства);
- обеспечение качества [сферы ответственности, испытательное оборудование, проверка оборудования, заводские приемочные испытания (FAT) и приемочные испытания на площадке заказчика (SAT)].
МЭК 61850-5 Требования к связи для функций и моделей устройств:
- основные требования;
- метод логических узлов;
- логические каналы связи;
- концепция PICOM (единицы передаваемой информации);
- логические узлы и соответствующие единицы передаваемой информации (PICOM);
- рабочие характеристики;
- функции;
- "динамические сценарии" (требования к информационному потоку для различных условий эксплуатации).
МЭК 61850-6 Язык описания конфигурации для связи между интеллектуальными электронными устройствами на электрических подстанциях:
- обзор заданного процесса системного проектирования;
- определение формата файла обмена системными параметрами и параметрами конфигурации на базе XML-языка, включая:
- описание семантики (однолинейной) первичной схемы,
- описание коммуникационных соединений,
- возможности IED-устройств;
- привязка логического узла IED-устройства к первичной схеме.
МЭК 61850-7-1 Базовая структура связи для подстанций и линейного оборудования. Принципы и модели:
- введение в МЭК 61850-7-1 - МЭК 61850-7-4;
- принципы и модели связи.
МЭК 61850-7-2 Базовая структура связи для подстанций и линейного оборудования. Абстрактный интерфейс услуг связи (ACSI):
- описание ACSI;
- спецификация абстрактных услуг связи;
- модель структуры базы данных устройства.
МЭК 61850-7-3 Базовая структура связи для подстанций и линейного оборудования. Классы общих данных:
- классы общих данных и связанные атрибуты.
МЭК 61850-7-4 Базовая структура связи для подстанций и линейного оборудования. Совместимые классы логических узлов и классы данных:
- определения классов логических узлов и классов данных; классы логических узлов состоят из классов данных.
МЭК 61850-8 Специфическое отображение сервиса связи:
- отображение сервисов, используемых для связи в пределах всей подстанции.
МЭК 61850-9 Специфическое отображение сервиса связи:
- отображение сервисов, используемых для передачи выборочных аналоговых значений.
МЭК 61850-10 Проверка соответствия:
- процедуры проверки соответствия;
- обеспечение и проверка качества;
- необходимая документация;
- проверка соответствия для конкретных устройств;
- сертификация испытательных центров, требования и аттестация испытательного оборудования.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Национальный стандарт РФ ГОСТ Р 54835-2011/IEC/TR 61850-1:2003 "Сети и системы связи на подстанциях. Часть 1. Введение и обзор" (утв. приказом Федерального агентства по техническому регулированию и метрологии от 13 декабря 2011 г. N 1231-ст)
Текст ГОСТа приводится по официальному изданию Стандартинформ, Москва, 2012 г.
Дата введения - 1 сентября 2012 г.