Национальный стандарт РФ ГОСТ Р ИСО 16634-1-2011
"Продукты пищевые. Определение общего содержания азота путем сжигания по методу Дюма и расчет содержания сырого протеина. Часть 1. Масличные культуры и корма для животных"
(утв. приказом Федерального агентства по техническому регулированию и метрологии от 30 августа 2011 г. N 249-ст)
Food products. Determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content. Part 1. Oilseeds and animal feeding stuffs
Дата введения - 1 июля 2013 г.
Введен впервые
Предисловие
Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"
Сведения о стандарте
1 Подготовлен ОАО "Всероссийский научно-исследовательский институт сертификации" (ОАО "ВНИИС") на основе аутентичного перевода на русский язык международного стандарта, указанного в пункте 4
2 Внесен Техническим комитетом по стандартизации ТК 335 "Методы испытаний агропромышленной продукции на безопасность"
3 Утвержден и введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 30 августа 2011 г. N 249-ст
4 Настоящий стандарт является идентичным по отношению к международному стандарту ИСО 16634-1:2008 "Продукты пищевые. Определение общего содержания азота путем сжигания по методу Дюма и расчет содержания сырого протеина. Часть 1. Масличные культуры и корма для животных" (ISO 16634-1:2008 "Food products - Determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content - Part 1: Oilseeds and animal feeding stuffs").
Сведения о соответствии ссылочных международных стандартов ссылочным национальным стандартам Российской Федерации приведены в дополнительном приложении ДА
5 Введен впервые
Введение
Долгое время метод Кьельдаля был самым широко используемым методом определения содержания белка в пищевых продуктах. Однако в последние годы метод Кьельдаля все чаще заменяют методом Дюма, который является более быстрым методом и не использует опасные химические вещества. Хотя принципы этих двух методов различны, оба они предназначены для измерения содержания азота в пищевых продуктах. Содержание азота можно пересчитать в содержание белка, используя подходящий коэффициент. Значение этого коэффициента изменяется в зависимости от относительного содержания различных белков и их аминокислотного состава в данном продукте.
Метод Дюма и метод Кьельдаля не делают различий между протеиновым и непротеиновым азотом. В большинстве случаев результаты, полученные методом Дюма, немного точнее результатов, полученных методом Кьельдаля (см. приложение F). Это происходит потому, что метод Дюма измеряет почти весь непротеиновый азот, тогда как метод Кьельдаля измеряет только его часть.
Принимая во внимание тот факт, что содержание белка в продукте, рассчитанное обоими методами, только приближено к истинному значению, выбор метода дается на усмотрение заинтересованных сторон. Наиболее подходящим решением должно быть использование второго коэффициента для устранения систематической погрешности, вызываемой содержанием непротеинового азота в различных продуктах. Однако этот второй коэффициент необходимо определять для каждого продукта, как существующие коэффициенты, которые показывают отношение содержания сырого протеина к содержанию азота.
1 Область применения
Настоящая часть стандарта устанавливает метод определения общего содержания азота и расчет содержания сырого протеина в масличных культурах и кормах для животных.
Настоящий метод, как и метод Кьельдаля, не делает различий между протеиновым азотом и не протеиновым азотом. Для расчета содержания сырого протеина используются различные коэффициенты пересчета (см. приложение D).
Настоящий метод не применим к молоку и молочной продукции, для которых метод установлен в ИСО 14891 [10].
2 Нормативные ссылки
Следующие ссылочные документы обязательны для применения данного документа. Для датированных ссылок применяется только указанное издание. Для недатированных ссылок применяется самое последнее издание указанного документа (включая все изменения).
ИСО 664 Семена масличных культур. Разделение лабораторных образцов на пробы для испытаний
ИСО 665 Семена масличных культур. Определение содержания влаги и летучих веществ
ИСО 771 Жмыхи. Определение содержания влаги и летучих веществ
ИСО 6496 Корма для животных. Определение содержания влаги и летучих веществ
ИСО 6498 Корма для животных. Подготовка проб для испытания
3 Термины и определения
Применительно к данному документу используются следующие термины и определения:
3.1 содержание азота (nitrogen content): Массовая доля общего азота, определенного по методике, установленной в данной части стандарта.
Примечание - Массовая доля выражается в процентах.
3.2 содержание сырого протеина (crude protein content): Содержание азота (3.1), умноженное на коэффициент, составляющий обычно 6,25.
Примечание 1 - Перечень других коэффициентов для возможного использования в случае различных продуктов приведен в приложении D.
Примечание 2 - Коэффициенты для расчета сырого протеина по общему содержанию азота выводятся из метода Кьельдаля, который является стандартным (арбитражным) методом для определения общего содержания азота. Поскольку метод, установленный в данной части стандарта, использует такие же коэффициенты, что и метод Кьельдаля, достоверность этих коэффициентов необходимо проверить ввиду небольшого различия в результатах, полученных методом Кьельдаля и методом Дюма.
4 Сущность метода
Пробы превращают в газы нагреванием в трубке для сжигания. Мешающие компоненты удаляют из полученной газовой смеси. Соединения азота в газовой смеси или репрезентативную их часть преобразуют в молекулярный азот, который определяют количественно с помощью детектора теплопроводности. Содержание азота затем рассчитывают с помощью микропроцессора.
5 Реактивы
Используют только реактивы признанной аналитической чистоты или равноценные, установленные изготовителями прибора. За исключением стандартных образцов (см. 5.12), все реактивы должны быть свободны от азота.
5.1 Газ(ы)-носитель(и): используют 5.1.1 или 5.1.2.
5.1.1 Диоксид углерода, максимально чистый, минимальная чистота () должна составлять 99,99% по объему.
5.1.2 Гелий, максимально чистый, минимальная чистота (Не) должна составлять 99,99% по объему.
5.2 Кислород, максимально чистый, минимальная чистота () должна составлять 99,99% по объему.
5.3 Абсорбент диоксида серы и галогенов для удаления серы из пробы [например, хромат свинца () или стальная вата].
5.4 Катализатор оксид меди/платина (наполнитель для трубки дожигания).
Платиновый катализатор [5% Pt на оксиде алюминия ()] смешивают с СuО в соотношении 1:7 или 1:8 в соответствии с рекомендациями изготовителя.
Чтобы предотвратить разделение как результат различной насыпной плотности двух материалов, рекомендуется не готовить смесь перед наполнением трубки, а засыпать платиновый катализатор и оксид меди одновременно в трубку дожигания через подходящую воронку.
5.5 Вата серебряная или медная. Перед помещением в трубку дожигания или восстановительную трубку вату необходимо распушить.
5.6 Диоксид кремния (кварц), стекловата или хлопковая вата в соответствии с рекомендациями изготовителя прибора.
5.7 Медь (проволока, стружка, опилки или порошок) или вольфрам, для восстановительной трубки.
Применение медной проволоки может повысить прецизионность аналитических результатов для проб с низким содержанием азота (порядка 1% по массе).
5.8 Пентаоксид фосфора () или гранулированный перхлорат магния , или другое подходящее осушающее вещество для наполнения сушильных трубок.
5.9 Шары корундовые полые или гранулы оксида алюминия для трубки сжигания.
5.10 Оксид меди (СuО) как наполнитель для трубки сжигания.
5.11 Гидроксид натрия (NaOH) на подложке.
5.12 Кислота аспарагиновая () или кислота этилендиаминтетрауксусная (), или кислота глутаминовая (), или кислота гиппуровая () как стандартный образец, или другие подходящие стандартные образцы с известным постоянным аттестованным содержанием азота. Полнота обнаружения азота должна быть > 99% по массе.
5.13 Эфир петролейный с температурой кипения от 30°С до 60°С, ацетон или этиловый спирт.
6 Оборудование
Обычное лабораторное оборудование и, в частности, нижеприведенное.
6.1 Весы аналитические, обеспечивающие взвешивание с точностью до 0,0001 г.
6.2 Измельчитель в соответствии с характером пробы.
6.3 Сито с номинальным размером отверстий 800 мкм или 1 мм, изготовленное из материалов, кроме черных металлов.
6.4 Тигли (например, из нержавеющей стали, кварца, керамики или платины) или капсулы оловянные, или не содержащая азот бумага фильтровальная для прессования таблеток, подходящая для используемого аппарата Дюма.
Примечание 1 - В продаже имеются приборы, оснащенные автоматическим пробоотборником.
Примечание 2 - Некоторые твердые пробы (например, порошки) можно прессовать в таблетки.
6.5 Аппарат Дюма*, оснащенный печкой, в которой можно поддерживать температуру, равную или выше 850°С, с детектором теплопроводности и подходящим устройством для интегрирования сигнала.
Подходящий аппарат Дюма работает в соответствии с общей диаграммой, представленной в приложении А, хотя могут быть использованы разные компоненты.
Примечание - Схематические диаграммы трех имеющихся в продаже приборов приведены в качестве примеров в приложении В на рисунках В.1, В.2 и В.3.
Во избежание утечек необходимо слегка смазать уплотнительные кольца высоковакуумной смазкой перед установкой.
Опыт показывает, что большое значение имеет тщательная очистка всех частей кварцевой и стеклянной посуды и удаление всех следов пальцев с трубок с помощью подходящего растворителя (например, ацетона), прежде чем поместить их в печь.
7 Отбор проб
Рекомендуется направлять в лабораторию представительную пробу. Она не должна быть повреждена или изменена во время транспортирования и хранения.
Отбор проб не является частью данного метода, установленного в настоящей части стандарта. Рекомендованные методы отбора проб приведены в ИСО 542 [1] для масличных культур, в ИСО 5500 [3] - для жмыха и в ИСО 6498 - для кормов для животных.
8 Подготовка проб для анализа
Лабораторную пробу следует приготовить таким образом, чтобы была получена однородная проба для анализа, представительная для масличных культур (см. ИСО 664) и кормов для животных (см. ИСО 6498).
Используя подходящий измельчитель (6.2), измельчают лабораторную пробу. Обычно пропускают измельченный материал через сито (6.3) с номинальным размером отверстий 800 мкм для проб небольшого объема (до 300 мг) или сито с номинальным размером отверстий 1 мм - для проб большего объема (300 мг и выше) [15]. Мельницы, которые дают продукт заданного размера, удовлетворяющий условиям, приведенным в таблице 1, дают приемлемые результаты.
Таблица 1 - Требуемый размер частиц
Номинальный размер отверстий сита, мкм |
Проход через сито, % по массе |
710 500 200 |
100 От 95 до 100 Не более 85 |
Измельчение может сопровождаться потерей влаги, поэтому содержание влаги в измельченной пробе подлежит также определению перед расчетом содержания азота или сырого протеина на основе определения сухого вещества или постоянного содержания влаги. Определение влагосодержания должно осуществляться в соответствии с ИСО 665, ИСО 771 или ИСО 6496.
Эффективность измельчителя можно проверить повторным приготовлением измельченных проб смеси 2 + 1 зерен кукурузы и сои. Ожидаемый коэффициент вариации должен быть не более 2% по массе.
9 Проведение испытания
9.1 Общие положения
Строго следуют инструкциям изготовителя при установке параметров прибора, оптимизации, градуировке и эксплуатации. Включают прибор и дают стабилизироваться в соответствии с принятыми в лаборатории процедурами.
Проверку рабочих характеристик прибора рекомендуется выполнять ежедневно, используя стандартный образец (5.12). Полнота обнаружения азота должна быть > 99,0% по массе.
9.2 Проба для анализа
Взвешивают с точностью до 0,0001 г не менее 0,1 г анализируемой пробы в тигле, оловянной капсуле или не содержащей азота фильтровальной бумаге для прессования таблеток (6.4). Для проб с низким содержанием протеина (< 1% по массе) размер пробы для анализа можно увеличить до 3,5 г в зависимости от типа прибора Дюма и характеристик пробы.
В зависимости от типа используемого оборудования, если проба содержит более 17% по массе влаги, может потребоваться сушка пробы перед анализом.
Могут потребоваться меньшие массы для проб с очень высоким содержанием сырого протеина или в случае наличия очень малого количества материала для испытания. Если масса пробы менее 0,1 г, то проводят второе определение (валидацию).
9.3 Контроль подачи кислорода
Контроль подачи кислорода, в частности скорость потока, должен осуществляться в соответствии с инструкциями поставщика материала.
С целью моделирования испытаний пробы на каждую серию определений содержания азота или сырого протеина проводят максимальное количество контрольных опытов, чтобы стабилизировать оборудование, используя для каждой серии эквивалентную массу сахарозы вместо пробы. Контрольный опыт с сахарозой дает количество азота, вводимого в форме атмосферного воздуха, захватываемого органическим порошкообразным материалом. Среднее значение контрольных определений используют в качестве поправки при расчете содержания азота или сырого протеина в каждой анализируемой пробе.
9.4 Градуировка
Для длительной градуировки прибора используют чистые соединения с известным постоянным содержанием азота, например аспарагиновую кислоту (см. 5.12), в качестве стандартного образца. Анализируют три чистых соединения в двух параллельных определениях, каждое соединение берут в трех вариантах по концентрации, выбранных в соответствии с диапазоном измерения для реальных проб.
Для построения градуировочной кривой для определения выбирают соединение и его количество, используемое для обеспечения абсолютного количества азота применительно к анализируемым матрицам. Для целей градуировки используют не менее пяти стандартных проб в соответствии с диапазоном анализируемых матриц.
Если анализируемая проба содержит более 200 мг азота, градуировочная кривая скорее всего будет нелинейной. На нелинейном участке можно использовать для градуировки некоторые короткие сегменты. Чтобы обеспечить надежность градуировочной кривой на этих сегментах, количество стандартного образца необходимо увеличить поэтапно от 1 до 5 мг азота.
Градуировку можно также выполнить с помощью стандартных водных растворов.
Проверяют градуировку не менее трех раз в начале серии анализов и после каждых 15 - 25 проб, анализируя либо один из стандартных образцов, либо пробу с известным значением. Значение, полученное для массовой доли азота, должно отличаться менее чем на 0,05% от ожидаемого значения. В противном случае повторяют проверку градуировки после проверки рабочих характеристик прибора.
Градуировка оборудования - см. приложение С.
9.5 Определение
После приведения прибора в рабочее состояние вводят пробу для анализа в соответствии с инструкциями изготовителя.
В ходе анализа в приборе происходят следующие процессы (см. приложение В рисунок В.1, В.2 или В.3).
Анализируемую пробу количественно сжигают в стандартных условиях при температуре не менее 850°С в зависимости от прибора и анализируемого материала.
Летучие продукты разложения (главным образом, молекулярный азот, оксиды азота, диоксид углерода и водяной пар) транспортируются газом-носителем (см. 5.1) внутри прибора.
Оксиды азота восстанавливаются до молекулярного азота, а избыток кислорода связывается медью или вольфрамом (5.7) в восстановительной колонне.
Вода удаляется осушительными трубками, наполненными перхлоратом магния, пентаоксидом фосфора или другим осушающим веществом (5.8). Если в качестве газа-носителя используется диоксид углерода (5.1.1), он удаляется посредством пропускания над соответствующим абсорбентом, например, гидроксидом натрия (5.11) на подложке.
Мешающие соединения (например, летучие соединения галогенов и серы) удаляются абсорбентами (5.3) или контактными материалами [например, серебряной ватой (5.5) или гидроксидом натрия (5.11) на подходящей подложке].
Азот в оставшейся газовой смеси, состоящей из азота и газа-носителя, проходит через детектор теплопроводности.
9.6 Обнаружение и интегрирование
Для количественного определения азота в приборе используется чувствительный элемент для определения теплопроводности, оптимизированный для используемого газа-носителя, который может оснащаться автоматической настройкой нуля между измерениями серии проб. После усиления и аналого-цифрового преобразования сигнала детектора полученные данные обрабатываются периферийной микропроцессорной аппаратурой.
10 Расчет и обработка результатов
10.1 Расчет
10.1.1 Содержание азота
Результаты по общему содержанию азота , выраженные в процентах по массе, прибор обычно выводит на печатающее устройство.
10.1.2 Содержание сырого протеина
Поправочный коэффициент вычисляют по формуле
,
(1)
где - массовая доля влаги, выраженная в процентах, до измельчения;
- массовая доля влаги, выраженная в процентах, после измельчения.
Содержание сырого протеина, , выраженное в процентах по массе, вычисляют по формуле
,
(2)
где - содержание азота, выраженное в процентах по массе, в пробе при фактическом содержании в ней влаги;
F - обычно согласованный коэффициент пересчета для анализируемого продукта, равный 6,25 для кормов для животных (см. приложение D).
Если требуется, можно рассчитать содержание сырого протеина, выраженное в процентах по массе от сухого вещества, , по формуле
,
(3)
где - содержание влаги, выраженное в процентах по массе, определенное в соответствии с 2 ИСО 665, ИСО 771 или ИСО 6496.
10.2 Выражение результатов
Результат выражают до трех значащих цифр (например, 9,53% или 20,5%, или 35,4%).
11 Прецизионность
11.1 Межлабораторные испытания
Подробная информация, касающаяся межлабораторных испытаний, выполненных для определения прецизионности метода, приводится в приложении Е.
Значения, полученные по результатам межлабораторных испытаний, могут оказаться непригодными для диапазонов концентраций и матриц, отличающихся от приведенных.
11.2 Повторяемость
Абсолютная разность между двумя отдельными независимыми результатами анализа, полученными одним и тем же методом на идентичном анализируемом материале в одной и той же лаборатории одним и тем же оператором, использующим одно и то же оборудование, в течение короткого интервала времени, должна не более чем в 5% случаев превышать:
a) 0,1% по массе в случае, если проба содержит не более 4% азота по массе; и
b) 2% азота по массе в случае, если проба содержит 4% азота по массе или более.
11.3 Воспроизводимость
Абсолютная разность между двумя отдельными результатами анализа, полученными одним и тем же методом на идентичном анализируемом материале в разных лабораториях разными операторами, на разном оборудовании, должна не более чем в 5% случаев превышать:
a) 0,17% по массе в случае, если проба содержит не более 4% азота по массе; и
b) 4% азота по массе в случае, если проба содержит 4% азота по массе или более.
12 Протокол испытания
Протокол испытания должен включать, по меньшей мере, следующую информацию:
a) все сведения, необходимые для полной идентификации пробы;
b) использованный метод отбора проб, если он известен;
c) использованный метод анализа со ссылкой на данную часть стандарта;
d) подробное описание операций, не установленных в данной части стандарта или считающихся необязательными, наряду с описанием всех случайностей, которые могли повлиять на результат(ы) анализа;
e) полученный результат(ы) анализа, использованный коэффициент пересчета и содержание влаги в пробе для анализа или контрольное содержание влаги;
f) окончательный полученный результат, если проверялась повторяемость.
_____________________________
* Компании Elementar Analysensysteme, Sumika Chemical Analysis Service и LECO Instruments выпускают коммерчески доступное подходящее оборудование. Эта информация дается для удобства пользователя настоящего стандарта и не указывает на поддержку, оказываемую ИСО этому оборудованию. Можно использовать аналогичную продукцию при условии получения аналогичных результатов.
_____________________________
* Коэффициенты для расчета содержания сырого протеина по общему содержанию азота выводятся из метода Кьельдаля, который является стандартным методом для определения общего содержания азота. Поскольку метод, установленный в данной части стандарта, использует такие же коэффициенты, что и метод Кьельдаля, достоверность этих коэффициентов необходимо проверить ввиду небольшого различия в результатах, полученных методом Кьельдаля и методом Дюма.
Библиография
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Национальный стандарт РФ ГОСТ Р ИСО 16634-1-2011 "Продукты пищевые. Определение общего содержания азота путем сжигания по методу Дюма и расчет содержания сырого протеина. Часть 1. Масличные культуры и корма для животных" (утв. приказом Федерального агентства по техническому регулированию и метрологии от 30 августа 2011 г. N 249-ст)
Текст ГОСТа приводится по официальному изданию Стандартинформ, Москва, 2013 г.
Дата введения - 1 июля 2013 г.