Вы можете открыть актуальную версию документа прямо сейчас.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение ДА
(справочное)
Оригинальный текст невключенных структурных элементов
ДА.1 3 Терминология
3.1 Определения. Терминологический стандарт D3878 определяет термины, имеющие отношение к высокомодульным волокнам и композиционным материалам на их основе. В терминологическом стандарте С274 приведены термины, которые относятся к конструкционным многослойным структурам. Термины стандарта D883 указывают на понятия, относящиеся к пластмассам. Термины в "Практических указаниях..." Е6 указывают на понятия, относящиеся к механическим испытаниям. Термины, указанные в Е456 и "Практических указаниях..." Е177, указывают на понятия, относящиеся к статистике. В случае разночтения в понимании терминов над всеми прочими стандартами, определяющими терминологию, преимущество имеют термины стандарта D3878.
3.2 Определения терминов, используемых в данном стандарте:
3.2.1 при условии обозначения термином физического количества/объема его аналитические размеры приводят непосредственно после термина (или буквенного символа) в основной форме размера при помощи следующих условных обозначений стандартов ASTM под основные размеры, указанные в квадратных скобках: [М] для массы, [L] для длины, [Т] для времени, [] для термодинамической температуры и [nd] для безразмерных величин. Использование таких обозначений ограничено аналитическими размерами, когда они используются и указаны в квадратных скобках, поскольку обозначения могут иметь несколько иных значений, когда они приводятся без скобок;
3.2.2 глубина вмятины, d [L] - оставшаяся после вдавливания глубина, которую образовывает индентор после снятия нагрузки, прикладываемой в течение испытания вдавливанием квазистатической нагрузкой, либо - оставленная ударяющим телом после проведения ударного воздействия в ходе испытания на удар падающим грузом. Глубину вдавливания определяют как наибольшее расстояние в направлении под прямым углом к лицевой поверхности образца от самой низкой точки вмятины до плоскости поверхности вдавливания или удара, которую не затронула вмятина;
3.2.3 номинальное значение - значение, созданное искусственно и приписываемое количественно измеримой величине в целях удобства обозначения. В отношении номинального значения можно устанавливать допуски для определения допустимого диапазона соответствующей величины;
3.2.4 зафиксированное контактное усилие, F [MLT- 2] - усилие, которое оказывает индентор на образец в течение испытания вдавливанием квазистатической нагрузкой, либо - усилие, оказанное на образец ударяющим телом в ходе испытания на удар падающим грузом согласно показаниям на динамометре;
3.2.5 наконечник - деталь или компонент индентора или ударяющего тела, которая (ый) соприкасается сначала с образцом в ходе испытания вдавливанием квазистатической нагрузкой или при испытании на удар падающим грузом.
3.3 Условные обозначения:
3.3.1 Е - потенциальная энергия ударяющего тела до падения;
3.3.2 t - толщина облицовочного покрытия слоистой конструкции после удара.
ДА.2 5 Значение и применение
5.1 В данной практике указаны дополнительные инструкции, которые позволяют при помощи Методики испытаний D6264/D6264M (на квазистатическое вдавливание) и D7136/D7136M (на испытание на удар падающим грузом) установить свойства стойкости к повреждениям у многослойных структур. Восприимчивость к повреждению по причине воздействия сосредоточенных поперечных усилий является одной из главных характеристик в технических решениях множества конструкций, изготовленных из многослойных композитов. Наличие сведений о свойствах стойкости к повреждениям у многослойных панелей представляет практическую ценность для разработки изделия и отбора материалов.
5.2 Испытание стойкости к повреждениям у многослойной структуры позволит решить несколько задач:
5.2.1 количественное определение воздействия геометрических параметров граней, схемы укладки граней, сопряжения заполнителя с гранями, геометрических параметров заполнителя (размер ячейки, толщина стенки ячейки, толщина заполнителя и пр.), плотность заполнителя, прочность заполнителя, переменные при обработке и изменчивость условий среды, все эти воздействия сказываются на свойствах стойкости к повреждениям у конкретной многослойной панели при приложении концентрированной нагрузки вдавливания, ударной силы или в условиях работы удара;
5.2.2 количественное сравнение относительных значений параметров стойкости к повреждениям у многослойных структур, которые имеют разные грани, заполнитель или клеящие вещества. Параметры реакции на нанесение повреждения могут учитывать следующее: глубину вмятины, размеры повреждения, а также местоположение(я) повреждения(ий), величины усилия вдавливания или удара, работу удара и, кроме того, график зависимости силы от периода времени;
5.2.3 повреждение образца для проведения последующих испытаний оценки стойкости к повреждениям;
5.2.4 для определения конкретного порядка нанесенных повреждений (только окончательное поврежденное состояние прослеживается после приложения нагрузки испытанием на удар падающим грузом) также можно производить испытания с квазистатическим вдавливанием.
5.3 Свойства, информацию о которых получают благодаря использованию указанных практик, могут быть руководством в отношении предполагаемой стойкости к повреждениям у многослойных структур с аналогичными материалами, геометрическими параметрами, схемой укладки и пр. Но требуется понимать тот факт, что стойкость к повреждениям у многослойных структур в значительной степени зависит от нескольких факторов, в том числе от геометрических параметров, толщины, жесткости, массы, состояния опор и т.д.
5.3.1 Значительная разница в отношениях между усилием/энергией к итоговому состоянию повреждения может иметь место по причине разности в указанных параметрах. Например, те свойства, данные о которых получают при использовании образцов с опорами по краям, скорее всего будут отражать характеристики стойкости многослойной панели в отвлечении от креплений подструктуры, когда, наоборот, при использовании образцов, опора которых обеспечена в неподвижности, - скорее всего динамику поведения панели смежной с подструктурой, характеризующейся сопротивляемостью поперечной деформации.
Аналогичным образом свойства образцов для испытаний на удар, которые имеют опоры по краям, предполагаются аналогичные тем, которые имеются у многослойной панели с той же длиной и шириной, по сравнению с теми, которые имеют гораздо большие размеры, чем размеры образца для испытания, которое имеет тенденцию к отведению большей доли работы удара в область упругих деформаций.
5.3.2 Процедура А (квазистатическое вдавливание в случае использования образца, закрепленного опорами в неподвижности) считается наиболее соответствующей процедурой для проведения сравнения характеристик стойкости к повреждениям у многослойных панелей с различным материалом, геометрическими параметрами, схемой укладки и т.д. Это происходит потому, что пластина образца с неподвижно жесткой опорой сопротивляется поперечной деформации, такой, при которой жесткость на изгиб у многослойных структур и геометрические параметры опоры оказывают меньшее влияние на начало проявления повреждения и поведение нарастания повреждения, чем в испытаниях, проводимых с образцом, имеющим опоры по краям. И тем не менее необходимо отметить, что динамика поведения по стойкости к повреждениям, наблюдаемая при использовании образцов в неподвижности, не должна точно переноситься на случаи использования образцов с опорами по краям.
Например, те многослойные конструкции, в которых используются заполнители с высокой жесткостью на сжатие или прочностью на сжатие, или же с комбинацией указанных свойств (например, пробковое дерево), могут свидетельствовать о превосходных эксплуатационных характеристиках при проведении испытаний, если образец крепят в полной неподвижности, но такие эксплуатационные характеристики не разрешается строго переносить на случаи применения образцов с опорами по краям, в которых жесткость заполнителя на сдвиг, прочность заполнителя на сдвиг и жесткость многослойной панели на изгиб имеют большее воздействие на результаты испытаний. Вследствие этого крайне необходимо учитывать целевую оценку и случай применения конструкции при выборе процедуры для проведения сравнительной оценки, и, как таковые, процедуры В и С могут оказаться более применимыми к проведению сравнительных оценок в некоторых случаях.
5.3.3 По отношению к областям применения некоторых конструкций может быть целесообразным использование в течение испытания на удар падающим грузом именно образца с неподвижными опорами.
Конкретные процедуры для подобного рода испытаний не рассматриваются в настоящей практике, однако может оказаться полезным общий метод, который объясняется в процедуре С, в качестве руководства при проведении указанных выше оценок. Такие испытания надлежит выполнять с учетом предпосылок использования условий применения образцов с неподвижными опорами (к примеру, их влияние на контактные усилия и деформацию многослойного материала при ударе, а также имеющийся потенциал для повреждения аппарата для испытаний).
5.4 Типовое исполнение индентора и геометрические параметры ударяющего тела имеют незаостренные полусферические наконечники. Исторически сложилось так, что указанные геометрические параметры наконечников генерируют больший объем внутреннего повреждения по сравнению с конкретным объемом внешнего, если сравнить с тем, что наблюдалось в аналогичных случаях вдавливания и ударных нагрузок с применением остроконечных наконечников. Соответствующей альтернативой геометрическим параметрам индентора и ударяющего тела может быть такая, которая зависит от исследуемых характеристик стойкости к повреждениям.
Например, использование таких геометрических параметров, которые характеризуются наличием острого наконечника, может быть применимо в целях оценки определенных параметров стойкости к вдавливанию у облицовочных слоев.
5.5 В некоторых испытательных организациях может оказаться желательным следование данным практикам совместно с методикой испытания на проведение впоследствии испытания на стойкость к повреждениям для оценки остаточной прочности образцов, которые уже имеют повреждения конкретного типа, к примеру, определенную глубину вдавливания, геометрические параметры и форму повреждения, его местоположение и пр. В таком случае испытательной организации следует подвергнуть испытаниям несколько образцов или крупногабаритную панель - выполнить несколько надавливаний или ударов или же и первое, и второе при различных уровнях работы энергии с применением настоящих практических указаний. На следующем этапе возможно вывести отношение между энергией или силой и желаемым параметром повреждения. Последующие испытания остаточной прочности на сжатие могут быть выполнены при использовании образцов, которые имеют повреждения, с применением интерполированной энергии или уровня силы, предполагаемого для формирования искомого состояния повреждения.
ДА.3 6 Мешающие воздействия
6.1 Линейная характеристика многослойного образца по отношению к усилию или воздействию удара в поперечной плоскости зависит от множества факторов, например, от материала, толщины, схемы укладки граней, толщины слоев граней, плоскостности поверхностей граней, клеящего вещества для крепления граней с заполнителем, толщины клеевого слоя, материала заполнителя, геометрических параметров заполнителя (размера, толщины стенки ячейки, толщины заполнителя и т.д.), плотности заполнителя, содержания пустот в гранях, в клеящем веществе, от условий среды, геометрических параметров панели, массы ударяющего тела, геометрической формы наконечника, соотношения "диаметр наконечника к размеру ячейки заполнителя", скорости и работы удара, а также от граничных условий. Вследствие этой причины сравнения нельзя производить между многослойными конструкциями, если не используются идентичные конфигурации, условия испытаний, а также конфигурации многослойных конструкций. Свойства стойкости к повреждениям могут варьироваться в зависимости от процесса обработки и схемы построения (к примеру, преждевременное схватывание/клеевое соединение по сравнению с одновременно склеенными гранями).
6.2 Подготовка материала и образца: практические методы изготовления материала ненадлежащего качества, недостаточность контроля за соосностью волокон, а также повреждение, которое наносится при недолжной механической обработке образца, - вот известные причины, которые приводят к большому разбросу данных по композитам в большинстве случаев. К конкретным факторам у материалов, которые воздействуют на композиционные материалы из многослойных структур, относятся вариативность по плотности заполнителя и степень отверждения смолы, как в матрице облицовочного материала, так и у клеящего вещества заполнителя. Важные аспекты подготовки образца из многослойной панели, которые привносят свой вклад в разброс по данным, - это неполное или неравномерное клеевое соединение заполнителя с гранями, несоосность заполнителя с элементами граней, а также наличие стыков, пустот и прочих несплошностей заполнителя и граней, поперечной кривизны, различных толщин граней и шероховатость поверхности.
6.3 Характеристики опорного фитинга: на результатах сказывается геометрическая форма опорного фитинга, его материал, а также стойкость к изгибающему усилию. На результаты испытаний оказывают свое влияние жесткость опорного фитинга и его составных элементов (например, опорной пластины, деталей ограничения смещения), которые соотносятся как с жесткостью на изгиб, так и с жесткостью к сдвигу по толщине у образца из многослойного материала. На результаты испытаний, полученные при использовании образца с опорами по краям, влияют размеры выреза опорного фитинга.
На результаты испытаний на удар падающим грузом влияет жесткость поверхности, на которой находится опорный фитинг, а также местоположение хомутов опорного фитинга, их геометрическая форма и усилия сжатия.
6.4 Неразрушающий контроль: результаты неразрушающего контроля (НК) подвержены влиянию определенного используемого метода, естественной изменчивости метода НК, а также зависят от стажа НК, имеющегося у дефектоскописта и т.д. Для оценивания разных режимов повреждений, которые имеют место при испытаниях многослойных материалов на стойкость к повреждениям, могут потребоваться различные методы НК. Местоположение разрушения также может влиять на выбор методик НК.
6.5 Окружающая среда: на результатах сказываются условия окружающей среды, в которых проводят испытания. Наиболее ответственные условия среды испытаний требуется оценивать для каждой отдельной комбинации материала заполнителя, материала граней, а также клеящего вещества в сопряжении заполнителя с гранями (если используется).
6.6 Вдавливание, ударное воздействие и релаксационные свойства: различные материалы заполнителя могут проявлять разные свойства при вдавливании, ударе и свидетельствовать о разных релаксационных свойствах в образовавшейся вмятине, механизмах разрушений и местах проявления таких разрушений. К примеру, заполнители, характеризующиеся хрупкостью (например, стекловолоконные ячеистые или вспененные) могут раскалываться после удара, тем самым позволяя граням распрямляться вновь до той формы, которая была до удара, с минимальной остаточной вдавленностью. И наоборот, другие заполнители (например, арамидные или алюминиевые ячеистые конструкции) могут разламываться и оставаться приклеенными к граням после удара, что в результате дает геометрические параметры вмятины, которые можно замерить. В то время как непосредственно после удара начинается процесс релаксации вмятины, как темп релаксации, так и время, требуемое для достижения равновесного состояния, могут отличаться в зависимости от определенного материала заполнителя и условий окружающей среды. К примеру, арамидные ячеистые заполнители отличаются тем, что они стремятся к большей релаксации, чем алюминиевые ячеистые заполнители, и тем самым проявляют ускоренную релаксацию в условиях более высоких температур и влажности. Аналогичным образом режим разрушения заполнителя и местоположение разрушения испытывают влияние относительных способствующих факторов - напряжений изгиба, сдвига и контактных напряжений, а также сопряженных с ними свойств заполнителя в течение процессов вдавливания или ударного воздействия.
6.7 Прочее: дополнительные источники потенциального разброса данных задокументированы в Методике испытаний D6264/D6264M в отношении испытаний квазистатическим вдавливанием и в Методике испытаний D7136/D7136M - в отношении испытаний на удар падающим грузом.
ДА.4 9 Калибровка
9.1 Точность всех средств измерений должна подтверждаться калибровками, которые должны совпадать с моментом использования таких средств.
ДА.5 12 Оценка
12.1 Значения свойств не подлежат расчету применительно ко всем образцам, которые свидетельствуют о повреждении или разрушаются при определенном очевидном дефекте, если только такой дефект не представляет собой исследуемую переменную. Если расчеты таких значений по данному образцу не проводятся, проводят повторные испытания.
12.2 В том случае, если на достаточно большом количестве образцов в выборке демонстрируется повреждение, которое имеет исходную точку или распространяется на значительное расстояние от места произведенного вдавливания, удара, то условия опор требуется пересмотреть. Учитываемые факторы должны включать в себя центровку фитинга, центровку индентора, центровку направляющей ударяющего тела, зазоры между образцом и ограничителями смещения, а также "сужение" по толщине образца.
ДА.6 15 Точность и систематическая погрешность
15.1 Точность: данные, требуемые для разработки свидетельства о точности измерений, для данной методики испытаний отсутствуют.
15.2 Систематическая погрешность: определить систематическую погрешность для данного метода испытаний не представляется возможным по причине отсутствия эталонных данных в нормативных ссылках.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.