Вы можете открыть актуальную версию документа прямо сейчас.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение ДА
(справочное)
Оригинальный текст модифицированных структурных элементов
ДА.1
1.1 Настоящий метод испытания описывает определение ползучести при растяжении, сжатии, а также разрушение при ползучести для пластмасс в определенных внешних условиях (см. п. 3.1.3).
Примечание - Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ Р 1.5-2012 (пункт 3.1) и ГОСТ 1.5-2001 (подраздел 3.7).
ДА.2
3.1 Определения терминов, относящихся к данному стандарту:
3.1.1 Модуль ползучести - соотношение исходного приложенного напряжения к деформации ползучести.
3.1.2 Деформация ползучести - общая деформация в любой момент времени, созданная приложенным напряжением в ходе испытания на ползучесть.
3.1.2.1 Ползучесть - в значении, используемом в тексте настоящего стандарта, отражает актуальное применение пластмасс в области инженерного проектирования. В научной практике ползучесть часто определяется как неупругая часть напряжения. Однако это определение не относится к существующим техническим формулам. Пластмассы имеют широкий диапазон времени задержки, а упругие части напряжения на практике невозможно отделить от неупругих. Поэтому при употреблении термина "деформация" в тексте настоящих методов испытания подразумевается сумма упругой деформации и дополнительной деформации с течением времени.
3.1.3 Деформация - изменения формы, размера и положения испытательного образца в результате сжатия, прогиба или удлинения.
3.1.4 Сжатие - при испытании на ползучесть при сжатии уменьшение длины в измерительной базе испытательного образца.
3.1.5 Прогиб - при испытании на ползучесть при изгибе изменение положения средней части испытательного образца.
3.1.6 Удлинение - при испытании на ползучесть при растяжении увеличение длины в измерительной базе испытательного образца.
3.1.7 Коэффициент гибкости - соотношение длины колонки постоянного сечения к ее наименьшему радиусу инерции; для образцов постоянного прямоугольного сечения радиус инерции равен произведению коэффициента 0,289 на наименьший размер поперечного сечения; для образцов постоянного круглого сечения радиус инерции равен произведению коэффициента 0,250 на диаметр.
3.1.8 Напряжение - для ползучести при растяжении или сжатии соотношение прилагаемой нагрузки к первоначальной площади поперечного сечения; для ползучести при изгибе, максимальное напряжение в волокне, рассчитанное в соответствии с АСТМ Д790.
Примечание - Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ Р 1.5-2012 (пункт 3.7) и ГОСТ 1.5-2001 (подраздел 3.9).
ДА.3
6 Аппаратура
6.1 Ползучесть при растяжении:
6.1.1 Захваты.
Захваты и способ захвата должен предполагать минимальное эксцентрическое нагружение образца. Для каждого конца образца используют поворотные или универсальные шарниры.
6.1.2 Рекомендуется, чтобы захваты допускали окончательное центрирование образца до приложения нагрузки. Захваты, допускающие смещение образца в пределах захватов при нагружении, не подходят для использования.
6.2 Ползучесть при сжатии:
6.2.1 Упорный стержень.
Для нагружения свободно лежащего образца используются параллельные упорные стержни (см. 8.2). Один из упорных стержней испытательной установки предпочтительно должен быть самовыравнивающимся и, в целях равномерного нагружения по поверхности образца, его размещают таким образом, чтобы образец можно было установить точно по центру, а результирующая нагрузка проходила через его центр.
6.2.2 Направляющая трубка.
При испытании тонких образцов (см. 8.3) во избежание деформации необходимо использовать направляющую трубку и сопутствующие приспособления. Подходящая конфигурация показана на рисунке 1. Направляющая трубка - трубный патрубок из нержавеющей стали 3,2 мм (0,125 дюйм), типоразмер 40, длиной 150 мм (6 дюйм), с расширением внутреннего диаметра до (6,860 0,025) мм (0,270 0,001 дюйм).
6.3 Ползучесть при изгибе:
6.3.2 Испытательный стенд.
Используют прочный испытательный стенд, поддерживающий образец за оба конца, пролет которого в 16 (плюс 4, минус 2) раз превышает толщину образца. Во избежание чрезмерного вдавливания образца радиус опоры должен составлять 3,2 мм (0,125 дюйм). Под образцом предусматривается достаточное пространство для нагружения балластом центральной части.
6.3.3 Скоба.
Необходимо использовать скобу, устанавливаемую над образцом, за которую подвешивается необходимый груз, обеспечивающий ползучесть изгиба в центральной части. Во избежание чрезмерного вдавливания или разрушения из-за концентрации нагрузки под скобой радиус скобы должен составлять 3,2 мм (0,125 дюйм). Способ соединения скобы с грузом должен исключать неравномерное нагружение, которое может возникать при несогласованности осей или установки стенда не по уровню.
6.3.4 Подходящая конфигурация показана на рисунке 2.
6.4 Система нагружения.
Система нагружения должна обеспечивать нагружение образца в пределах 1 % от заданной нагрузки. Механизм нагружения должен предусматривать быстрое и плавное нагружение согласно 11.3. При выполнении испытаний на разрушение при ползучести необходимо предусматривать, чтобы ударная нагрузка, вызванная разрушением образца, не передавалась на другие образцы, проходящие испытания.
6.4.1 Системы нагружения, обладающие преимуществом механической конструкции, для поддержания постоянного нагружения на протяжении всего испытания требуют тщательного расчета. Например, рычажная система должна быть рассчитана таким образом, чтобы нагрузка не изменялась при перемещении рычага в ходе испытания.
Рисунок 2 - Устройство для испытания на ползучесть при изгибе
6.5 Измерение удлинения, сжатия и прогиба.
6.5.1 Удлинение или сжатие измерительной базы образца под нагрузкой измеряется с помощью любого устройства, которое не будет оказывать механического (нежелательная деформация, зарубки и т.д.), физического (нагрев образца и т.д.) или химического воздействия. Желательно измерять удлинение непосредственно на образце, а не после снятия захватов. Для измерения сжатия используют смещение упорного стержня. Если удлинение измеряется после снятия захватов, необходимо определить поправочные коэффициенты, позволяющие рассчитать напряжение в измерительной базе. Эти поправочные коэффициенты зависят от геометрических параметров образца и его поведения под нагрузкой и измеряются относительно этих переменных.
6.5.2 Прогиб образца в центральной части измеряется с помощью циферблатного индикатора (без пружин нагрузки, измерительная нога на скобе) или катетометра.
6.5.3 Точность устройства измерения деформации должна быть в пределах 1 % измеряемой деформации.
6.5.4 Устройства измерения деформации должны быть откалиброваны по прецизионному микрометрическому винту или другому соответствующему стандарту при условиях, максимально идентичных условиям, существующим при испытании. Следует проявлять осторожность при использовании устройств измерения деформации, характеристики при калибровке которых с течением времени смещаются и зависят от температуры и влажности.
6.5.5 Устройства измерения деформации прочно фиксируют или садятся на образец, исключая проскальзывание. Измерители электрического сопротивления подходят только в том случае, если испытуемый материал позволяет обеспечить склеивание с образцом и если они соответствуют п. 6.5.1.
6.6 Измерение времени.
Точность устройств измерения времени должна составлять 1 % времени разрыва или разрушения, или времени, затраченного на каждое измерение ползучести, или и того, и другого.
6.7 Регулировка и измерение температуры.
6.7.1 Температура испытания, особенно вблизи от измерительной базы образца, должна поддерживаться в пределах 2 °С подходящим автоматическим устройством и указываться при записи результатов.
Примечание - Термическое сжатие и расширение, связанное с небольшими изменениями температуры при испытании, может привести к изменению заметной интенсивности ползучести, особенно вблизи температур перехода.
6.7.2 Принимают меры по обеспечению точности измерений температуры по измерительной базе образца в ходе испытания. Устройства измерения температуры должны регулярно проходить проверку по температурным стандартам и фиксировать температуру зоны измерения образца.
6.7.3 Измерения температуры производят через определенные интервалы времени или регистрируют непрерывно, обеспечивая точное определение средней температуры и соответствие положениям 6.7.1.
6.8 Регулировка и измерение параметров среды.
6.8.1 Если средой испытания является воздух, относительная влажность регулируется в пределах 6 % во время испытания, если не указано иное, или если было доказано, что влажность не влияет на характеристики ползучести испытуемого материала. Контрольные и измерительные приборы должны быть устойчивы к длительным интервалам использования и обеспечивать точность в пределах 1 %. [Регулировать относительную влажность воздуха, как известно, сложно при температурах, значительно выходящих за пределы диапазона от 10 °С до 40 °С (от 50 °F до 100 °F).].
6.8.2 Состав среды испытания поддерживают в неизменном состоянии на протяжении всего испытания. (Необходимо принимать меры предосторожности по недопущению физического контакта, ликвидации токсичных паров и защите от опасности взрыва в соответствии с потенциальным характером опасности той или иной используемой среды.)
6.9 Регулировка вибрации.
Испытания на ползучесть весьма чувствительны к ударам и вибрации. Расположение аппаратуры, испытательного оборудования и креплений должны обеспечивать изоляцию образца от вибрации. Многопозиционное испытательное оборудование должно иметь достаточную жесткость во избежание значительных прогибов испытательного оборудования в ходе испытания на ползучесть или разрешение при ползучести. В течение времени разрыва или разрушения необходимо предусматривать средства предотвращения тряски других образцов под вертикальной нагрузкой от разрушенного испытательного образца, используя подходящую сеть или подушку.
Примечание - Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5-2001 (пункт 7.9.6).
ДА.4
8 Испытательные образцы
8.1 Испытательные образцы для измерения ползучести при растяжении должны соответствовать типу I или II, как указано в АСТМ Д638. Образцы, описанные в АСТМ Д1822, используют для испытания на разрушение при ползучести. Выступы обрезают, при необходимости, по размеру захватов, при условии соблюдения требований к захвату, приведенных в п. 1.1.
8.2 Образцы для испытания на ползучесть при сжатии должны быть надлежащим образом подготовлены в соответствии с процедурой, описанной в АСТМ Д695, за исключением того, что длину необходимо увеличить, чтобы коэффициент гибкости находился между 11 и 15. Стандартный испытательный образец должен иметь форму правильного цилиндра или призмы. Предпочтительное поперечное сечение образца составляет 12,7 х 12,7 мм (0,50 х 0,50 дюйм) и 12,7 мм (0,50 дюйм) в диаметре. Поверхности испытательных образцов должны быть плоскими и параллельными.
8.3 Испытательные образцы для измерения ползучести при сжатии с помощью направляющей трубки, описанной в п. 6.2.2, должны быть в форме тонких брусков квадратного поперечного сечения, стороны которого составляют (4,850 0,025) мм (0,191 0,001 дюйм), а длина диагоналей равна (6,860 0,025) мм (0,270 0,001 дюйм). Образец должен быть длиной 51 мм (2,0 дюйм), торцы обрабатывают перпендикулярно боковым сторонам.
8.4 Испытательные образцы для измерения ползучести при изгибе должны иметь форму прямоугольных брусков, отвечающих требованиям раздела 5 АСТМ Д790. Предпочтительными размерами образцов являются 63,5 х 12,7 х 3,18 мм (2,5 х 0,5 х 0,125 дюйм) или 127 х 12,7 х 6,4 мм (5,0 х 0,5 х 0,25 дюйм). Малые допуски образца и размеры пролета не имеют решающего значения при условии использования фактических размеров в расчетах нагрузок.
8.5 Испытательные образцы могут изготовлять методом литьевого формования или прямого формования, а также путем механической обработки листов или других заготовок. Когда целью испытания является получение расчетных параметров, метод изготовления образцов должен соответствовать методу, используемому для конкретного практического применения.
8.6 Образцы, изготовленные из листового материала, вырезают в том же направлении. Если материал может быть анизотропным, для испытания следует вырезать ряд образцов из каждого из двух основных направлений листа.
8.7 Ширину и толщину образца измеряют при комнатной температуре с помощью подходящего микрометра с точностью до 0,025 мм (0,001 дюйм) и 0,005 мм (0,0002 дюйм), соответственно, по пяти или более точкам вдоль измерительной базы или пролета до начала испытаний.
8.8 В случае с материалами, размеры которых могут существенно изменяться только из-за установленной среды (например, усадка некоторых термореактивных пластмасс из-за вторичного отверждения при повышенных температурах), необходимо предусматривать испытание ненагруженных контрольных образцов вместе с испытательным образцом, чтобы можно было компенсировать изменения, которые не относятся к ползучести. При каждой температуре испытания следует испытать не менее трех образцов.
8.9 При испытании на ползучесть при одной температуре минимальным количеством испытательных образцов для каждого напряжения является два образца, если используются четыре или более уровней напряжения или если используется меньшее число уровней.
8.10 В случае испытания на разрушение при ползучести необходимо испытать не менее двух образцов для каждого уровня напряжения, указанного в 10.2.1 при каждой температуре.
Примечание - Результаты разрушения при ползучести имеют значительный разброс, при котором типично отклонение половины к полному ряду значений времени разрушения. Поэтому в целях получения удовлетворительных результатов, возможно, потребуется проводить испытание более чем двух образцов при каждом уровне напряжения.
9 Кондиционирование
9.1 В случае с испытаниями, для которых кондиционирование является обязательным, выполняют кондиционирование испытательных образцов при температуре (23 2) °С (73,4 3,6) °F и относительной влажности (50 10) % в течение не менее 40 ч до начала испытания в соответствии с процедурой А АСТМ Д618.
9.2 Образец необходимо предварительно выдержать в среде испытания в течение не менее 48 ч до начала испытаний. Материалы, свойства ползучести которых, предположительно, зависят от содержания влаги, следует приводить в состояние равновесной влажности, соответствующей условиям испытания, до начала испытаний.
Примечание - Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5-2001 (пункт 7.9.7).
ДА.5
11 Методика
11.1 Устанавливают правильно подготовленный и измеренный образец в захваты, приспособление для испытания на ползучесть при сжатии или испытательный стенд для испытания на ползучесть при изгибе. При необходимости устанавливают правильно подготовленный и измеренный контрольный образец рядом с испытательным образцом тем же образом.
11.2 Крепят устройства измерения деформации к образцу (и контрольному образцу) или, в случае с оптическими устройствами, устанавливают их в рабочее состояние. Выполняют первоначальное контрольное измерение для удлинения или прогиба.
11.2.1 Если среда испытания будет нарушена при присоединении устройства измерения деформации, устанавливают устройства до установки образца.
11.3 Быстро и плавно прикладывают полную нагрузку на образец, предпочтительно через 1-5 с. Ни в коем случае время нагружения не может превышать 5 с. Запускают таймер в момент начала нагружения.
11.4 При использовании каких-либо средств для создания условий испытания наносят их по всей измерительной базе образца сразу после нагружения.
11.4.1 Если средство для создания условий испытания легко испаряется, накрывают образец, чтобы замедлить испарения, не влияя на прилагаемую нагрузку. Периодически пополняют объем летучего вещества.
Примечание - В случае с жидкими средствами можно обернуть пленкой измерительную базу или пролет, а жидким веществом пропитать ватный тампон под пленкой.
11.5 Измеряют удлинение сжатия образца в соответствии со следующим примерным графиком: 1, 6, 12, и 30 мин; 1, 2, 5, 20, 50, 100, 200, 500, 700 и 1000 ч. Для испытаний на ползучесть, длительность которых превышает 1000 ч, деформацию следует измерять ежемесячно или чаще.
11.5.1 Если в графике отношения деформации при ползучести ко времени предполагаются или присутствуют разрывы, показания следует снимать чаще, чем указано выше.
11.6 Измеряют температуру, относительную влажность и другие переменные среды и деформации контрольного образца по такому же графику, как и деформацию испытательного образца.
11.7 После завершения интервала испытания без разрушения необходимо быстро и плавно снять нагрузку.
Примечание - При необходимости, в ходе нагружения можно начать измерение восстановления по графику, приведенному в п. 11.5. Рассчитывают деформацию восстановления согласно п. 12.2.
Примечание - Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5-2001 (пункт 7.9.8).
ДА.6
12 Расчет
12.1 Для измерения растяжения или сжатия рассчитывают напряжение для каждого образца в МПа (или фунт-сила/дюйм2) путем деления нагрузки на среднее значение исходной площади поперечного сечения уменьшенного сечения.
12.2 Для измерения изгиба рассчитывают максимальное напряжение в волокне для каждого образца в МПа (или фунт-сила/дюйм2) следующим образом
,
(1)
где S - напряжение, МПа (фунт-сила/дюйм2);
Р - нагрузка, Н (фунт-сила);
L - длина, мм (дюйм);
b - ширина, мм (дюйм);
d - глубина, мм (дюйм).
12.3 Для измерения растяжения или сжатия рассчитывают деформацию путем деления удлинения или сжатия в моменты, указанные в п. 11.5, на исходную базу измерения подготовленного образца, умножают деформацию на 100, чтобы получить деформацию в процентах.
12.4 Для измерения изгиба рассчитывают максимальную деформацию наружного волокна центрального пролета следующим образом
,
(2)
где r - максимальная деформация, мм/мм (дюйм/дюйм);
D - максимальный прогиб центрального пролета, мм (дюйм);
d - глубина, мм (дюйм);
L - длина, мм (дюйм).
Умножают деформацию на 100, чтобы получить деформацию в процентах.
12.5 В том случае, когда материал демонстрирует значительное изменение размеров только из-за среды испытания, необходимо использовать один из следующих подходов в зависимости от предполагаемого использования результатов.
12.5.1 Поправляют каждое измерение деформации под нагрузкой путем алгебраического сложения ее значения со средним значением деформации, измеренным на трех ненагруженных контрольных образцах в один момент и при одной температуре. Усадка контрольного образца, использованного для измерения растяжения, считается положительной (+); расширение считается отрицательным (-). Усадка контрольного образца, использованного для измерения сжатия, считается отрицательным (-), а расширение - положительным (+). Прогиб вверх контрольного образца, использованного для измерения изгиба, считается положительной (+); прогиб вниз считается отрицательным (-). Рассчитывают приведенную деформацию, используя значение деформации, поправленное на изменение размеров, вызванное средой испытания. Умножают приведенную деформацию на 100, чтобы получить деформацию в процентах.
12.5.2 Если из-за предполагаемого использования результатов испытания не желательно корректировать деформацию под нагрузкой на значительное изменение размеров, вызванное средой испытания, то деформация, рассчитанная в соответствии с 12.2 или 12.2.1, будет называться неоткорректированной деформацией. Рассчитывают изменение деформации, вызванное средой, в соответствии с 12.2 или 12.2.1, используя среднее значение деформации контрольного образца. Умножают на 100, чтобы получить изменение деформации, вызванное средой, в процентах. Усадка контрольного образца, использованного для измерения растяжения, считается положительной (+), а расширение считается отрицательным (-). Усадка контрольного образца, использованного для измерения сжатия, считается отрицательным (-), а расширение положительным (+). Прогиб вверх контрольного образца, использованного для измерения изгиба, считается положительной (+); прогиб вниз считается отрицательным (-).
Рисунок 4 - Кривые логарифмической зависимости модуля ползучести от времени при различных уровнях напряжения
12.6 Рассчитывают модуль ползучести в МПа (или фунт-сила/дюйм2) путем деления исходного напряжения на деформацию в момент, определенный в 11.5.
Примечание - В целях сопоставления материалов график зависимости модуля ползучести от времени не только реалистично классифицирует материалы, но также дает значения модуля для использования во многих расчетных формулах (см. рисунок 4).
12.7 При каждой температуре испытания рассчитывают статистическое уравнение регрессии методом наименьших квадратов для зависимости логарифма напряжения от логарифма времени разрыва или разрушения. Из уравнения регрессии вычисляют напряжение разрыва или разрушения в МПа (или фунт-сила/дюйм2) при 1000 ч (см. рисунок 5).
12.8 Для вычисления напряжения для создания 1 % деформации при 1000 ч строят для каждой температуры испытания изохрону 1000 ч зависимости "напряжение - деформация" (см. рисунок 3) и интерполируют на напряжение при 1 % деформации. Изохрону 1000 ч зависимости "напряжение - деформация" можно построить по нескольким кривым ползучести (не менее трех, а предпочтительно больше) при различных напряжениях, строят кривую отношения напряжения к деформации, рассчитанным по измерениям деформации при 1000 ч.
Рисунок 5 - Кривая логарифмической зависимости времени разрушения (механического разрушения)
12.8.1 Изохроны зависимости "напряжение - деформация" строят для моментов времени, отличных от 1000 ч, для проведения анализа или специальных случаев технического расчета с относительно кратковременными нагрузками и материалами, демонстрирующими явную ползучесть в такие моменты времени. В случаях с длительным нагружением и в целом кривые модуля ползучести более полезны.
Примечание - Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5-2001 (пункт 7.9.9).
ДА.7
13 Протокол
13.1 Результаты испытаний заносят в протокол испытаний, который должен содержать:
13.1.1 Описание испытуемого материала, включая всю соответствующую информацию о составе, подготовке, изготовлении, торговом наименовании, кодовом обозначении, дате изготовления, способе формования, отжиге и т.д.
13.1.2 Сроки проведения испытаний на ползучесть.
13.1.3 Размеры испытательного образца.
13.1.4 Номер метода испытания и дату проверки.
13.1.5 Метод предварительного кондиционирования и описание условий испытаний, включая относительную влажность, температуру, а также концентрации и состава сред, за исключением воздуха, типов прилагаемых нагрузок и т.д.
13.2 Для каждой температуры испытания строят кривую отношения логарифма деформации, %, и логарифма времени, ч, под нагружением, где напряжение является параметром (см. рисунок 6).
Рисунок 6 - Кривые логарифмической зависимости деформации ползучести от времени при различных уровнях деформации
13.2.1 В случае исправления измерений деформации нагруженных образцов от ненагруженных контрольных образцов строят кривую зависимости логарифма приведенной деформации, %, от логарифма времени, ч, под нагрузкой, и на этом же графике строят кривую зависимости логарифма среднего изменения размеров, %, вызванного средой, от логарифма времени.
13.2.2 В случае существенного изменения деформации, вызванного только средой, но из-за предполагаемого использования результатов нежелательно корректировать деформацию под нагрузкой, строят кривую зависимости логарифма неоткорректированной деформации, %, от логарифма времени под нагрузкой, и на этом же графике строят кривую зависимости логарифма среднего изменения деформации, %, контрольного образца от логарифма времени.
13.2.3 В том случае, когда материал демонстрирует значительное изменение размеров, вызванное только средой испытания, свойства, рассчитанные на данных о ползучести (например, модуль ползучести или изохроны зависимости "напряжение - деформация"), должны быть обозначены как приведенные или неоткорректированные, в зависимости от использованного подхода.
Примечание - Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5-2001 (пункт 7.9.10).
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.