Вы можете открыть актуальную версию документа прямо сейчас.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение А
(справочное)
Руководство по выбору приемлемой процедуры подготовки образцов при исследовании генотоксичности
А.1 Общие положения
Данное положение дает указания по выбору подходящей/приемлемой процедуры приготовления проб при изучении генотоксичности медицинских изделий. При выборе метода пользователь/исследователь должен учитывать физико-химические свойства материала медицинского изделия и технологию производства медицинского изделия. Например, многие полимеры в медицинских изделиях содержат, в дополнение к относительно инертным высокомолекулярным полимерам, другие компоненты, такие как остаточные мономеры, олигомеры, катализаторы, технологические добавки и т.д. Подобные компоненты присутствуют в различных количествах в зависимости от источников сырья, процессов производства и предназначенной функции примесей. Также дополнительные виды химических веществ могут вырабатывать при таких производственных процессах, как горячая закупорка, сварка или стерилизация изделия. Все перечисленное может мигрировать из изделия в организм человека и является предметом оценки риска.
Информация, связанная с анализом биологического риска, может быть представлена в научных источниках или получена от производителя(ей) или поставщика(ов). Если информация по качественным и количественным характеристикам готового изделия или факсимиле представлена в достаточном объеме, включая материалы и технологические добавки, используемые при производстве изделия, то не проводят исследование.
При оценке достаточности доступной информации пользователь/исследователь должен включить в свой анализ следующее:
- Эквивалентен ли процесс производства готового изделия (включая стерилизацию, если применимо)?
- Содержит ли изделие те же примеси и контаминанты (такие как технологические добавки, не прореагировавшие мономеры, катализаторы)?
Для проведения оценки риска в соответствии с ISO 14971 процедура анализа риска должна включать следующие три этапа:
- характеристика материала/изделия;
- идентификация опасности;
- оценка риска.
Однако если объем необходимой информации не достаточен, исследования должны быть проведены. Биологические методы исследования, включая процедуру пробоподготовки, должны быть спланированы с учетом целей определения биологических опасностей и оценки риска.
Выбор надлежащего приготовления проб критичен для получения значимых результатов исследований генотоксичности. Ненадлежащее приготовление проб может приводить к недооценке риска генотоксичности. Например, экстракция полимеров водой ранее общепринято считалась имитацией миграции продуктов выщелачивания in situ из полимеров в кровь. Тем не менее Цуджи и соавторы [76] продемонстрировали, что диэтилгексилфталат (DEHP) не экстрагировался из поливинилхлоридных трубок кровопроводящей магистрали при использовании воды в качестве экстрагирующего растворителя. Они продемонстрировали, что плазма человека экстрагировала значительные количества DEHP, а процент DEHP, экстрагируемый плазмой человека, сходен с наблюдаемым при экстракции 40 %-ным этанолом. Основываясь на этом исследовании, Обэ и соавторы [77] смогли воспроизвести поражение глаз, встречающееся у пациентов, получавших диализ с использованием конкретного ацетатного диализатора, путем введения кроликам экстрактов, полученных с помощью 40 %-ного этанола.
А.2 Материалы изделия
А.2.1 Низкомолекулярные химические вещества (LMWC)
LMWC, неполимерные вещества, содержащиеся в медицинских изделиях, могут проникать через клеточные мембраны, реагируя с ДНК, генами или хромосомами, что может приводить к генотоксичным реакциям (например, цианакрилатный клей) (см. А.2.2.1).
А.2.2 Полимеры (включая полимеры природного происхождения)
Полимер является химическим веществом, состоящим из молекул, отличающихся последовательностью одного или более типов звеньев мономера и составляющих простое весовое большинство молекул, содержащих по меньшей мере три мономерных звена. Эти звенья ковалентно связаны как минимум с одним из таких же мономерным звеном или другим химическим соединением и состоят из менее чем просто весового большинства молекул той же молекулярной массы. Такие молекулы должны быть ранжированы по молекулярной массе, которые отличаются в основном по количеству мономерных звеньев. Распространенными типами полимеров являются: биостабильные синтетические полимеры (в частности, полиэтилен, полиметилметакрилат, силикон); полимеры природного происхождения (такие как целлюлоза, альгинат, желатин, коллаген) и биодеградируемые полимеры [например, поли-L-молочная кислота (PLLA), полигликолевая кислота)].
А.2.2.1 LMWC, содержащиеся в полимерах
Полимерные материалы часто содержат небольшое количество LMWC, таких как примеси, катализаторы, технологические добавки и продукты радиации. Эти LMWC могут являться потенциально генотоксичными. В случаях инвазивного контакта LMWC могут мигрировать из полимера в организм пациента. Следовательно, LMWC в полимерах должны быть оценены с точки зрения их генотоксического риска. Миграция LMWC из полимерного изделия в жидкие среды организма расценивается как феномен, сходный с миграцией LMWC из пищевого контейнера в пищу. В пищевом контейнере степень миграции выражается:
- как функция общего содержания LMWC в полимере;
- коэффициент диффузии LMWC в полимере; и
- константа равновесия распределения LMWC между полимером и пищей (см. [82]).
Таким образом, предположения и уравнения, выведенные для пищевых контейнеров, могут быть использованы для оценки риска LMWC в медицинских изделиях.
А.2.2.2 Олигомеры
Олигомером является молекула полимера, состоящая лишь из нескольких мономерных звеньев (димер, тример, тетрамер). Олигомеры могут присутствовать в полимерах и мигрировать из полимера. Олигомеры с реактивными химическими группами в своей структуре представляют возможную опасность для здоровья из-за своей потенциальной генотоксичности. Эксперты OECD на третьем совещании (1993 г.) по полимерам (см. [78]) пришли к заключению, что необходимо учитывать следующие параметры с точки зрения влияния полимеров на здоровье пациентов:
- среднюю молекулярную массу;
- содержание низкомолекулярных веществ;
- наличие реактивных функциональных групп;
- наличие биодоступных металлов, входящих в структуру полимера.
К реактивным функциональным группам относят, например, галогенангидриды, кислотные ангидриды, альдегиды, гемиацетали, метиламиды, метиламины или метилмочевины, алкоксисиланы (>С2), алилловые эфиры, сопряженные олефины, цианаты, эпоксиды, имины, незамещенные орто- или парафенольный гидроксил, боковые группы акрилатов и метакрилатов, азиридины, карбодиимиды, галосиланы, гидросиланы, гидразины, изоцианаты, изотиоцианаты, альфа- или бета-лактоны, метокси- или этоксисиланы, винилсульфоны или аналогичные соединения (см. [79]).
А.2.2.3 Биодеградируемые полимеры
Биодеградируемым полимером является полимер, который ожидаемо склонен к деструкции, резорбции или деполимеризации, включая те полимеры, которые могут значительно разрушаться после изготовления и использования, даже если они для этого не предназначены. У биодеградируемых полимеров общее количество LMWC из полимера высвобождается в организм. Большинство биодеградируемых полимеров сходно с полиэфиром и обычно не имеет реактивных функциональных групп, как указано в отчете OECD. LMWC, содержащиеся в биодеградируемом полимере или добавленные к нему, должны быть оценены на предмет их генотоксичности.
А.2.3 Неорганические материалы: продукты износа металлов, сплавов и керамики
Количество и генотоксичность ионов металла, высвобождаемых из неорганических материалов (например, нержавеющая сталь, титановый сплав, гидроксиапатит, трикальций фосфат, окись алюминия и двуокись циркония), представляют потенциальную опасность для здоровья. Например, в лимфоцитах пациента в месте имплантированного тазобедренного сустава из металла наблюдали генотоксические эффекты in vivo. Многие ионы металлов играют важную регулирующую роль в организме, и эта роль зависит от их химических характеристик и валентного состояния. Ионы металла связываются с белками в физиологических жидкостях (таких как кровь, лимфа и моча) и могут частично входить в разные фракции биомолекул. Ионы металла усваиваются клеткой, где они могут связываться с компонентами ядра и изменять клеточные сигналы как местно, так и системно. Таким образом, генотоксический профиль ионов металла должен быть определен и оценен насколько это возможно, основываясь на данных научной литературы.
А.3 Методы приготовления проб
А.3.1 Общие положения
Идеальной схемой приготовления проб для оценки риска генотоксичности изделия является использование общего количества экстрагируемого вещества, получаемого из цельного изделия. Тем не менее такой подход непрактичен для более крупных изделий. Для этой группы изделий экстракцию проводят для части исследуемого образца путем надлежащей процедуры приготовления проб с последующим применением в системе тестов.
Выбор способа приготовления проб для любого материала или изделия, предназначенного для использования в человеческом организме, требует структурированного подхода, который учитывает химический состав и физико-химические свойства материала или изделия. Приготовление проб должно следовать диаграмме решений на рисунке А.1. Это диаграмма процесса решений, используемого при выборе метода экстракции (методы А, В или С) для материала изделия, кроме тех случаев, когда медицинское изделие или материал медицинского изделия должны быть оценены согласно особой процедуре приготовления проб, описанной в А.4. Применяемые растворители или экстрагирующие растворители не должны вызывать химическую реакцию с исследуемым образцом. При использовании метода А требуется прямое применение исследуемого образца в системе исследования. Данный метод используется, когда исследуемый образец может быть растворен или суспензирован в надлежащем растворителе, совместимом с системой исследования. Если исследуемый образец не может быть растворен или суспензирован в полярном или неполярном растворителе, избирают методы экстрагирования В и С, основываясь на физических характеристиках материалов, из которых состоит изделие. Выбор методов В или С зависит от процента экстрагируемых веществ, выделяемых исследуемым образцом.
Рисунок А.1 - Структурированный подход к выбору процедуры приготовления проб
Следует отметить процент содержания экстрагируемых веществ (выраженный как процент количества осадка по сравнению с общим весом изделия, см. А.3.3.4) для каждого растворителя. Распространенными экстрагирующими растворителями являются метанол и ацетон.
Метанол лучше подходит для экстракции водорастворимых веществ, а ацетон - жирорастворимых веществ. Экстракты метанола и ацетона выпаривают отдельно до сухости для определения процентного содержания экстрагируемых веществ, полученных из системы исследования каждым растворителем. Процент содержания экстрагируемых веществ с каждым растворителем должен быть записан.
В предварительных исследованиях могут быть использованы дополнительные растворители для материалов при наличии надлежащего обоснования. Летучие растворители могут разложить исследуемый материал или неэффективно экстрагировать осадок из исследуемого материала.
Таблица А.1 может быть полезна при выборе подходящего растворителя для экстракции медицинских изделий. Эта таблица приводит список распространенных экстрагирующих растворителей и их коэффициент распределения октанол-вода, log Kow. Растворитель с более отрицательным log Kow распределяется в воде более эффективно, чем в октаноле. Растворитель с более положительным log Kow распределяется в октаноле быстрее, чем в воде. Выбор растворителя должен быть обоснован.
Таблица А.1 - Распространенные экстрагирующие растворители
Растворитель |
log Kow |
Диметилформамид |
- 1,01 |
Метанол |
- 0,74 |
Этанол |
- 0,30 |
Ацетон/2-пропанон |
- 0,24 |
Дихлорметанa) |
+ 1,25 |
Хлороформa) |
+ 1,97 |
Гексанa) |
+ 3,90 |
a) Эти химические вещества могут быть предметом контроля для рассмотрения вопросов безопасности. |
А.3.2 Метод А
Исследуемый образец растворен либо суспензирован (или частично растворен) в растворителе. Окончательный объем приготовления исследуемого образца в системе исследования млекопитающих in vitro не должен превышать 10 %, если исследуемый образец растворен в водном растворителе, таком как вода или раствор хлорида натрия. Максимальная концентрация, тестируемая in vitro в тест-системе на клетках млекопитающих, составляет 5 мг/мл. В тесте оценки обратных мутаций на бактериях 100 мкл исследуемого образца наносят на чашку с агаром. Максимальная концентрация для испытания в тесте оценки обратных мутаций на бактериях составляет 5 мг на чашку.
Выбор дозы должен быть основан на профиле токсичности в контексте теста на генотоксичность. В некоторых случаях предварительное ранжирование доз может быть полезным для выбора надлежащей дозы. Также возможно использование единственной дозы, если токсичность не ожидается (см. инструкцию по оценке дозы в каждом тесте в ISO/TR 10993-33). В исследованиях in vivo максимальный объем исследуемого образца, который может быть введен при однократной инъекции, обычно составляет 20 мл/кг массы тела для мышей и 10 мл/кг для крыс. Для приготовлений нетоксичных исследуемых образцов максимальная доза составляет 2000 мг/кг массы тела. Для подготовки токсичных исследуемых образцов необходимо проводить предварительное исследование для определения диапазона доз in vivo, которые можно использовать в основном исследовании.
Если применимо, можно использовать данные исследований острой токсичности в целях сохранения здоровья животных. Пользователи должны руководствоваться ISO/TR 10993-33 для получения детальной информации. Принципы, изложенные в [107], могут применять в качестве руководства по растворам высшей дозы.
А.3.3 Метод В
А.3.3.1 Общие положения
Для выбора методов подготовки проб В или С необходимо проводить предварительное тестирование в соответствии с процедурой подготовки исследуемого образца (см. А.3.3.2) и экстракции (см. А.3.3.3).
Метод В выбирают, если процентное содержание экстрагируемых веществ, полученное в предварительном исследовании, отвечает следующим критериям:
a) для изделий массой < 0,5 г, таких как контактные или интраокулярные линзы, необходимо использовать метод В, если процентное содержание экстрагируемых веществ в исследуемом образце 1 %;
b) для изделий массой 0,5 г необходимо использовать метод В, если процентное содержание экстрагируемых веществ в исследуемом образце 0,5 %.
Если процентное содержание экстрагируемых веществ не отвечает критериям, приведенным выше, экстракт должен быть приготовлен, используя метод С.
А.3.3.2 Приготовление исследуемого образца
Исследуемый образец погружают в летучую органическую экстрагирующую среду, которая экстрагирует остаточные вещества из исследуемого образца, но не растворяет исследуемый образец. Если внешний вид или вес исследуемого образца подтверждает частичное разложение, следует использовать метод С. Исследуют два или более растворителя, чтобы определить, какой растворитель экстрагирует наивысшее процентное содержание экстрагируемых веществ из исследуемого образца (см. А.3.3.3 и А.3.3.4). Распространенными экстрагирующими растворителями являются метанол и ацетон. Экстрагированный выпаренный осадок исследуемого образца растворяют или суспензируют в растворителе, совместимом с тест-системой оценки генотоксичности. Окончательный объем органического или водного растворителя в культуре не должен превышать 1 % (органический) и 10 % (водный) в тесте оценки хромосомных аберраций или в тесте лимфомы мышей. В мутационном тесте на бактериях необходимо наносить 100 мл остаточного раствора/суспензии на чашку с агаром. Максимальная исследуемая концентрация в тесте оценки хромосомных аберраций in vitro или в тесте лимфомы мышей in vitro составляет 5 мг/мл. Максимальная концентрация в тесте оценки обратных мутаций на бактериях составляет 5 мг на чашку. Процедура экстракции образца приведена в А.3.3.3 (см. [86]).
Для теста in vivo экстрагированный и выпаренный осадок исследуемого образца растворяют или суспензируют в растворителях, совместимых с тест-системой. Выбор наивысшей дозы и способа введения такой же, как и в методе А.
Принципы, изложенные в [107], могут быть использованы в качестве руководства по растворам высшей дозы.
А.3.3.3 Процедура
Измельчают нужное количество исследуемого образца на маленькие кусочки и помещают их в стеклянный контейнер вместе с экстрагирующей средой. Необходимо использовать пропорцию в 1 г к 10 мл или достаточный объем для погружения исследуемого образца. Если исследуемый образец невозможно разрезать, используют достаточный объем для покрытия исследуемого образца, предпочтительно пропорцию в 1 г к 10 мл.
Примечание - Подробности по экстракции абсорбирующих материалов содержатся в ISO 10993-12.
Экстрагируют исследуемый образец в течение (24 2) ч при комнатной температуре с постоянным взбалтыванием.
После экстракции фильтруют экстракты через химически стойкий фильтр с низким связыванием для удаления исследуемого образца.
Выливают экстракт в грушевидную колбу с известной постоянной массой m1 и выпаривают экстрагирующий растворитель в экстракте до сухости или до постоянного веса при помощи концентрационной установки пониженного давления при температуре 30 °С. Определяют массу колбы после выпаривания m2.
Вычисляют процент экстрагированных веществ.
Часть осадка может быть использована для проверки растворимости/однородности в совместимых с тест-системой растворителях.
Нельзя нагревать ни экстракт, ни дозовые растворы во избежание химических изменений осадков или потери летучих соединений.
Примечание - Полная экстракции по методу Сокслета может быть рассмотрена как альтернативный метод.
Выпаривание экстракта после экстракции неприменимо в тех случаях, когда ожидаемый осадок в изделии является легколетучим (например, этиленоксид, низкомолекулярные акрилатные мономеры).
При приготовлении проб по методу В оба экстракта исследуемого образца, если они отвечают критериям метода В, должны использовать отдельно. Если только один экстракт исследуемого образца отвечает критериям В, только этот экстракт применим для исследования генотоксичности. Другой экстракт не используют.
Следует растворить или суспензировать осадок экстрагируемых веществ в растворителе на основе максимизации тестовой концентрации для соответствующей системы исследования. Этот растворитель может быть идентифицирован, например, используя осадок, полученный в предварительном исследовании по методу В. Используют этот раствор в течение 24 ч.
А.3.3.4 Представление результатов
Вычисляют массу остаточных веществ WR в грушевидной колбе путем определения изменения массы колбы по формуле
,
(А.1)
где - масса колбы после выпаривания экстракта;
- масса колбы.
Вычисляют относительное содержание экстрагируемых веществ (в процентах) путем определения пропорции массы экстрагируемых материалов к массе исследуемого образца и умножения на 100 по формуле
,
(А.2)
где - процентное содержание экстрагируемых веществ;
- масса исследуемого образца до экстракции.
Фиксируют относительное содержание экстрагируемых веществ, %, для каждого растворителя.
Отчет об исследовании должен включать обоснование выбора экстрагирующего растворителя и относительное содержание осадка, %, для каждого исследуемого растворителя.
А.3.4 Метод С
А.3.4.1 Общие положения
Метод С является экстракционным методом, имитирующим условия использования изделия, аналогичным описанному в ISO 10993-12. Исследуемый образец экстрагируется в растворителе/среде, совместимым(ой) с тест-системой. Приготовление исследуемого образца должно соответствовать тест-системе. Используют данный экстракт в течение 24 ч.
А.3.4.2 Процедура
А.3.4.2.1 Для теста оценки обратных мутаций на бактериях исследуемый образец измельчают на маленькие кусочки, при возможности, и экстрагируют согласно ISO 10993-12.
А.3.4.2.2 Для теста in vitro на клетках млекопитающих исследуемый образец измельчают на маленькие кусочки, если необходимо, и экстрагируют согласно ISO 10993-12.
А.3.4.2.3 Если в качестве полярного растворителя для экстракции используют культуральную среду без сыворотки, исследуемый экстракт тестируют неразбавленным после добавления сыворотки и перед добавлением определенного количества клеток. Исследуемый экстракт в клеточной культуральной среде с сывороткой (как неполярный растворитель) тестируют как неразбавленный экстракт. Если в качестве полярного растворителя для экстракции используют раствор хлорида натрия, исследуемый экстракт должен быть разведен до 10 % клеточной культуральной средой, обогащенной сывороткой, перед дозированием клеток. Исследуемый экстракт диметилсульфоксида или этанола необходимо исследовать как однопроцентный после разведения клеточной культуральной средой, обогащенной сывороткой. Для цитотоксичных исследуемых экстрактов следует рассмотреть приемлемый предел цитотоксичности для проб при выборе адекватной дозы исследуемого экстракта.
Примечание 1 - Температура (37 1) °С в течение (48 2) ч также может быть приемлемой, если для экстракции использована клеточная культуральная среда с сывороткой или без нее.
А.3.4.2.4 Для исследования in vivo исследуемый образец рубят на маленькие кусочки, при возможности, и экстрагируют согласно указаниям настоящего стандарта.
А.3.4.2.5 Исследуемый экстракт вводят животным внутривенно (раствор хлорида натрия) или интраперитонеально (гидрофобный) в зависимости от используемого растворителя. Объем не должен превышать 20 мл/кг массы тела для мышей и 10 мл/кг для крыс.
А.4 Дополнительное руководство по специальным процедурам приготовления проб
А.4.1 Биодеградируемые полимеры
Для изделий, сделанных из биодеградируемых полимеров, можно использовать модифицированный метод В для приготовления исследуемого материала, так как существует возможность высвобождения всего количества LMWC в организм пациента. С помощью растворителей, подходящих для растворения и переосаждения, фильтруют полученный раствор для удаления отложений. Фиксируют данные о любом осадке на фильтровальной бумаге после фильтрации. Выпаривают растворители из фильтрата (например, можно использовать ротационный испаритель). Записывают количество образовавшегося осадка. Растворяют или суспензируют осадок в растворителе/среде, совместимыми с тест-системой, и используют для тестирования.
А.4.2 Неорганические материалы: продукты износа металлов, сплавов и керамики
При оценке генотоксичности изделий из неорганических материалов, таких как протезы тазобедренного сустава, основным вопросом является генотоксический потенциал ионов металла, выделяемых продуктами износа и/или коррозией в течение клинического воздействия, и их количество. Так как тесты в настоящем стандарте предназначены для измерения генотоксичного потенциала экстрактов готового изделия (в растворе), а не его частиц, потребуются альтернативные подходы к оценке генотоксичности продуктов износа или частиц.
А.4.3 LMWC
Когда исследуемый образец состоит из единственного или множественных LMWC, риск генотоксичности может быть оценен путем применения его раствора/суспензии в среде, совместимой с тест-системой. Применим метод А.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.