Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение V
(рекомендуемое)
Управление энергопотреблением с помощью коммутационной аппаратуры и аппаратуры управления с целью экономии электроэнергии
V.1 Общие положения
Задачи энергоэффективности достигают не только применением более эффективных устройств и нагрузок, но также совершенствованием управления энергией. Управление энергией осуществляют посредством измерения, мониторинга и контроля энергопотребления нагрузок с целью приведения его к уровню, как раз достаточному для данного назначения. Аппаратура распределения и управления, составляющая часть системы управления энергией, также может способствовать ее совершенствованию в силу своей коммутационной способности.
V.2 Область применения данного приложения
Данное приложение представляет собой руководство в применении аппаратуры распределения и управления для управления нагрузками способом, обеспечивающим экономию электроэнергии. Принцип, разрабатываемый в данном приложении, основан на управлении энергией.
V.3 Термины и определения
V.3.1
управление энергией (energy management): Координированная деятельность, направляющая и управляющая применением энергии объекта. [CEN/CLC/TR 16103] |
V.3.2
система управления энергией (СУЭ) [energy management system (EnMS)]: Комплекс взаимосвязанных или взаимодействующих элементов для выработки политики и целей в области энергии, а также процессов и процедур для достижения этих целей. [ISO 50001:2011] |
V.3.3 электрический коэффициент полезного действия (electrical energy efficiency): Ряд мер, адаптированных к электрической системе или назначению для оптимизации общего потребления электрической энергии, требующейся либо для нормальной работы, либо для работы в резервном режиме.
V.3.4
коэффициент использования энергии (энергетическая эффективность) (energy efficiency): Пропорция или другое количественное соотношение между выходной работоспособностью, облуживанием, продуктом или энергией и входной энергией. [ISO 50001:2011] |
V.3.5
нагрузка (токоиспользующее оборудование) (load): Электрическое оборудование, предназначенное для превращения электрической энергии в другой вид энергии, например световую, тепловую, механическую энергию). [IEC 60050-826:2004] |
V.3.6 снижение пиковой нагрузки (peak shaving): Процесс в электрической системе, направленный на непревышение суммарной энергетической потребности.
Примечание - Снижения пиковой нагрузки можно достигнуть планированием энергетической потребности внутри производственной системы, сбросом нагрузки или автономным производством энергии.
V.3.7
сброс нагрузки (load shedding): Процесс принудительного выборочного отключения нагрузок от системы энергоснабжения вследствие аномального условия для поддержания целостности остальной системы. [IEC 60050-603:1987] |
V.4 Электрический коэффициент полезного действия и безопасность
Безопасность людей и собственности является вопросом первостепенной важности в положениях об энергоэффективности. Как следствие, все руководства по достижению энергоэффективности не противоречат требованиям по безопасности, включенным в стандарты на изделия конкретного вида.
V.5 Принципы энергоэффективности (системный подход)
V.5.1 Общие положения
Оптимизация электрической энергии нуждается в глобальном подходе к управлению потреблением электроэнергии, включая учет всех рабочих режимов.
V.5.2 Стратегия управления энергией
Энергоэффективность в первую очередь касается нагрузок и их эксплуатации. Двигатели занимают 70 % всего энергопотребления в промышленности (сведения из Директивы N 640/2009 Комиссии Европейского сообщества). Следует также учитывать архитектуру распределения электроэнергии (генерирование и передача), а также источники питания и проводные системы.
V.5.3 Управление энергией посредством автоматизации и контроля
Управление энергией посредством автоматизации является ключевым вопросом в энергоэффективности.
Разработка автоматизации последних десятилетий в перспективе нуждается в пересмотре для внедрения новых моделей, актуальных сейчас ввиду возрастания важности энергосбережения (доступность и стоимость).
Информация о состоянии, измерения датчиками, команды от операторов и информация об окружающей среде являются непременными входными потоками для системы управления энергией (СУЭ). Функция системы автоматизированного управления энергией гарантирует потребление электроэнергии в нужное время, с нужной целью и в нужном количестве, от простого до сложного (контакторные реле, простые схемы управления, автоматические выключатели с расширенными функциями или системы управления двигателями, программируемые логические контроллеры и т.д.). Контакторы и пускатели являются существенными в управлении энергией для коммутации дистанционных отдельных или групповых нагрузок без существенных энергопотерь.
Их применяют во всех областях, включая производство, процессы управления, обслуживание производственных помещений, автоматизацию здания.
Пример 1 - В автоматизации здания существует общее понятие о том, что система управления оптимизирует расход энергии в соответствии с планом размещения, внешними условиями (температура, освещение) и фактическим присутствием людей. От понятия до эффективной реализации может быть значительный промежуток из-за, например, сложности моделирования термочувствительности здания, неточности обнаружения особей, несогласованности коммуникационных интерфейсов.
Пример 2 - В обособленном производстве сбережение неполезного потребления резервной энергии нагрузок является важной областью усовершенствования. Оно состоит в частичном или полном отключении нагрузок на время коротких, продолжительных или незапланированных перерывов в работе. Аргумент против - обеспечение повторного включения в ограничения по времени.
V.6 Применение энергоэффективности
V.6.1 Сбережение полупроводниковых потерь
Контакторы могут также применяться с полупроводниковыми устройствами управления в качестве полупроводниковых контакторов или пускателей. Например, шунтирование контактором силовых полупроводниковых элементов (например, для контакторов или пускателей по IEC 60947-4-2), когда на полной скорости удается избежать потерь в полупроводниковой цепи. Этим ограничиваются более высокие энергопотери в полупроводниковом контакторе или пускателе во время пуска и остановки.
Примечание - Обычно энергосбережение составляет 90 % полупроводниковых потерь.
Более того, последовательное включение контактора с полупроводниковым устройством позволяет избежать токов утечки в отключенном положении, что способствует сбережению энергии.
V.6.2 Коррекция коэффициента мощности
Коррекция коэффициента мощности сильно влияет на энергоэффективность электроустановки. Так, коэффициент мощности должен быть около 1. Поскольку коэффициент мощности зависит от включаемых нагрузок, то автоматическая батарея конденсаторов (с регулируемым реактивным сопротивлением в зависимости от уровня гармоник или без него), управляемая контакторами в режиме АС-6b, оптимизирует энергоэффективность.
V.6.3 Сброс нагрузки
При инициировании сброса нагрузки общая нагрузка систематически снижается до достижения требуемого уровня, со снижением вручную, или выключением отдельных нагрузок, или с помощью автоматизированной системы. Все нагрузки в производственном помещении должны быть определены по разным категориям, включая критические, существенные и несущественные. Обычно сбрасывают только несущественные нагрузки, а порядок сброса может быть определен.
V.6.4 Управление двигателем с фиксированной скоростью
Индукционный двигатель переменного тока - это двигатель, наиболее часто используемый в промышленности и сетях питания бытовых электроприборов.
Индукционный двигатель переменного тока может потреблять энергии больше, чем ему обычно необходимо для выполнения работы, особенно если работает при 30 % номинальной нагрузки, или в режиме холостого хода, или торможения. Лучший выбор двигателя или его управления будет способствовать улучшению общей энергоэффективности системы электродвигателя.
Примечание - Несколько коммутационных устройств без плавких предохранителей с рассеянием мощности в пределах 0,5 % мощности нагрузки должны быть отключены.
Индукционные двигатели в основном проектируются как устройства с фиксированной скоростью. Существует практически только два способа изменения скорости вращения индукционного двигателя переменного тока (с короткозамкнутым ротором): применение преобразователя частоты или применение двигателя с отдельной обмоткой для разных скоростей. Для назначений с регулируемой скоростью используют трехфазный двигатель переменного тока с преобразователем частоты. Для назначений с фиксированной скоростью пускатель двигателя (прямого пуска от сети, с переключением со звезды на треугольник, двухступенчатый, плавного пуска) в вопросе лучшего энергосбережения является оптимальным решением.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.