Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение G
(справочное)
Расчет на усталость по правилу Майнера с экстраполяцией нагрузки
G.1 Расчет на усталость
Усталостное разрушение наступает в результате накопленного повреждения, вызванного воздействием переменных нагрузок. С этой точки зрения процесс усталости развивается в результате приращения повреждения, которое следует из каждого гистерезисного цикла нагружения, представленного на диаграмме напряжение-деформация для рассматриваемого сечения. Таким образом, на временной диаграмме нагружения каждого сечения каждому локальному максимуму соответствует локальный минимум, что составляет полный цикл (расчет цикла методом дождевого потока, см. Matsuishi и Endo, 1968, или Dowling, 1972). Каждый из этих циклов характеризуется парными экстремальными величинами (или, эквивалентно, амплитудой и средним значением, то есть разностью между двумя парными экстремальными значениями цикла и средним значением цикла). Если принять допущение, что процесс накопления повреждения подчиняется линейной зависимости и для каждого цикла носит независимый характер (Palmgren, 1924, и Miner, 1945), тогда полное повреждение, D, можно выразить 1):
,
(G.1)
где - диапазон нагрузки для i-го цикла;
- число циклов до разрушения при постоянной величине амплитуды нагружения с диапазоном, заданным аргументом (т.е. - кривая S-N). Предполагается, что локальное напряжение в месте разрушения линейно связано с величиной нагрузки. Как правило, для расчета на усталость кривая S-N, отобранная для проектного расчета, имеет заданную вероятность выживания (часто 95 %) и уровень достоверности (часто 95 %), которые учитываются при построении кривой на основе экспериментальных данных для конкретного материала. Таким образом, искомый минимальный уровень надежности может ожидаться, когда суммарное повреждение достигнет единицы.
------------------------------
1)С целью облегчения изложения изменением уровня нагрузки, соответствующей средней точке каждого цикла, пренебрегают. Данное ограничение будет устранено позднее, когда результат колебания уровня нагрузки в средней точке цикла будет учтен заменой на эквивалентный цикл нагружения.
------------------------------
В процессе эксплуатации ВЭУ испытывает большое количество переменных циклов нагружения, являющихся результатом изменений параметров ветра в широком диапазоне. Поэтому при проектировании следует рассчитать спектр нагружения. Наибольшие циклы для этого спектра должны быть получены на основе достоверного соответствия данным, полученным в процессе моделирования или испытаний, продолжительность которых значительно короче, чем срок службы ВЭУ. Для каждого режима ветра, можно принять, что процесс нагружения моделируется стационарным вероятностным процессом. Таким образом, ожидаемое повреждение при заданной скорости ветра V и определенного периода времени Т будет определено:
,
(G.2)
где - спектр кратковременного нагружения, определенный как функция плотности для определенного числа циклов. В этом случае, ожидаемое число циклов в любом интервале диапазона нагружения (SA, SB) в течение периода времени T определяется:
.
Определение ожидаемого повреждения, накопленного в результате воздействия нормальных эксплуатационных нагрузок в течение всего срока эксплуатации, получается расширением временного интервала на полный срок эксплуатации и интегрированием по диапазону скоростей ветра, соответствующих режиму производства энергии. В результате получаем выражение:
,
(G.3)
где p(V) - функция плотности вероятности для скорости ветра на высоте оси ветроколеса для стандартных классов ВЭУ, описанных в 6.3.1.1.
Спектр нагружения для длительно действующих нагрузок имеет вид:
,
(G.4)
тогда
.
(G.5)
На практике во многих случаях удобно разделить диапазоны величин нагрузок и скоростей ветра на отдельные подгруппы - выборки. В этом случае, ожидаемое повреждение может быть аппроксимировано:
,
(G.6)
где - ожидаемое число циклов нагружения в течение срока эксплуатации в j-й выборке скорости ветра k-й - выборке величины нагрузки;
- величина, соответствующая центру k-й выборки величины нагрузки. Отсюда:
,
(G.7)
где - ширина j - выборки скорости ветра и
- ширина k-й выборки нагрузки.
Учет данных результатов и требований 7.6.3 в отношении использования коэффициентов безопасности для нагрузок, дает выражение для расчета по предельной усталостной прочности:
,
(G.8)
где - произведение всех трех главных парциальных коэффициентов безопасности для нагрузок, материалов и последствий отказа соответственно. В дискретной форме это выражение приобретает вид:
.
(G.9)
Для всех случаев, когда существенное повреждение происходит более чем в одном случае нагружения из таблицы 2, доли повреждения вычисляются для всех случаев нагружения, используя левую часть выражения (G.9). Сумма вычисленных долей должна быть меньше или равна единице.
Излагаемый метод до этого момента пренебрегал изменением величины среднего значения каждого цикла нагружения. Один из простых способов, позволяющих учесть это изменение, состоит в том, чтобы рассчитать эквивалентный цикл нагружения, имеющий фиксированную величину среднего значения цикла нагружения и вызывающий точно такое же повреждение. В этом случае, повреждение в результате восприятия эквивалентного цикла является точно таким же, как и в результате циклов с переменными средними значениями. Таким образом, разрушение произойдет (в среднем) для того же самого числа циклов с постоянной амплитудой эквивалентного циклического диапазона Seq, как и для циклов в любом данном циклическом диапазоне и с любой соответствующей величиной среднего значения. Если обозначить семью кривых S-N для переменных средних значений - N (S, М), то уравнение эквивалентного повреждения
(G.10)
решается для Seq при заданных величинах S, М и выбранной постоянной величине среднего уровня цикла М0. В математических терминах это может быть представлено как:
,
(G.11)
где обратная функция относится к первой переменной функции, N, данной во второй переменной. Как правило, М0 выбирается так, чтобы дать величину R (отношение максимальной нагрузки к минимальной нагрузке) для эквивалентных циклов нагружения, которые находятся в середине диапазона величин, взятых непосредственно из данных нагружения. Часто приемлемой величиной является величина средней нагрузки, учитывающей все скорости ветра из рабочего диапазона. Для большинства случаев, когда кривые S-N определены аналитически (например, степенные или экспоненциальные зависимости), диапазон эквивалентного циклического нагружения легко вычисляется. Если диапазон становится большим, то необходимо проявить внимательность. В зависимости от величины среднего значения цикла максимальная или минимальная величина нагрузки для данного цикла может приблизиться к величине статической прочности. В этом случае простая высокочастотная кривая S-N может стать неприемлемой. Кроме того, для величин с большими диапазонами местные напряжения или деформация могут перейти от доминирующего состояния сжатие-сжатие или растяжение-растяжение к состоянию растяжение-сжатие, которое может иметь иное аналитическое представление кривой S-N. Важно использовать правильную зависимость S-N для определения диапазона эквивалентного цикла. Вначале для данной временной диаграммы определяются циклы по методу дождевого потока. Затем вычисляется ряд эквивалентных циклов с постоянным средним значением цикла (на основе правильно выбранных зависимостей S-N для каждого вида циклов нагружения). Дальнейшая оценка распределений этих эквивалентных циклов дает новый эквивалентный спектр кратковременного нагружения. Полученный новый спектр используется для подсчета числа циклов, используемых для определения долей повреждения для каждой выборки нагружения и скорости ветра. Главное преимущество данного метода состоит в том, что оценка эквивалентного спектра является статистически более ясной, чем прослеживание уровней средних значений как независимой переменной. Получаемое преимущество обусловлено тем, что середины выборок в этом методе отдельно не отслеживаются, и большинство циклов нагружения рассчитывается на основе типичных временных рядов измеренных нагрузок для каждой выборки нагрузки и скорости ветра.
Дополнительным практическим результатом, возникающим при определении кратковременного спектра нагружения, является получение большого количества маленьких циклов, определенных методом дождевого потока. Эти маленькие циклы могут часто встречаться в соседних по времени точках, поэтому между ними может быть установлена связь. Маленькие циклы могут также искажать форму аналитической аппроксимации хвоста распределения. Поэтому при аппроксимации хвоста краткосрочного распределения рекомендуется рассматривать только циклы выше пороговой величины. Пороговая величина с наименьшим 95-ным процентилем обычно дает хорошие практические результаты. Понижение пороговой величины может быть оправдано, если маленькие циклы были исключены или, если увеличенное число данных, используемых для отображения процесса, как ожидают, приведет к существенной дополнительной статистической надежности.
Для практического применения при проектировании ВЭУ необходимо определить эквивалентный спектр кратковременного нагружения от смоделированных динамических данных, а затем вычислить накопленное в период эксплуатации повреждение. Один из методов выполнения этой задачи должен соответствовать следующему порядку:
- выбрать базовый средний уровень как среднюю величину уровня нагружения, учитывающую все скорости ветра;
- из полученных моделированием данных для определенной скорости ветра извлечь последовательность локальных максимумов и минимумов. Последовательности локальных максимумов и минимумов из повторяющихся временных рядов для тех же самых режимов ветра рекомендуется объединить в один ряд;
- определить величину диапазона и среднее значение цикла для каждого смоделированного цикла нагружения методом дождевого потока;
- определить эквивалентный диапазон для каждого цикла нагружения относительно выбранного базового уровня среднего значения цикла;
- определить аналитическое выражение, соответствующее вероятностному распределению эквивалентных циклов для случая краткосрочного нагружения FST(SV, Т) для данных выше назначенного порога. Описание одного из методов подбора аналитического выражения для распределения может быть найдено в работах Мориарти и Холлея, 2003. Для выбранного типа распределения должна быть проверена степень точности соответствия данным и достаточность набора данных для выполнения надежной оценки поведения хвоста распределения по сравнению с имеющимися данными;
- определить ожидаемое число циклов в каждой выборке в течение срока службы, используя данные, когда выборка нагружения ниже порогового значения, и подобранное аналитическое распределение для нагружения, когда выборка нагружения выше порогового значения, в соответствии с формулой:
(G.12)
где - число смоделированных циклов усталости, насчитываемых в данных для j-й выборки скорости ветра и k-й выборки нагружения ниже назначенного порога;
- число усталостных циклов, подсчитанных при моделировании, выше порога, и
показывает часть времени, которую# скорость ветра находится в выборке j, в случае принятия распределения скорости ветра по Рэлею;
- просуммировать долевые повреждения, используя левую часть уравнения (G.9);
- просуммировать полное повреждение за весь срок службы для всех случаев усталостного нагружения.
При использовании данного метода следует проверить:
- достаточна ли величина выбранного разрешения для выборок скорости ветра и диапазона нагружения для обеспечения желаемой численной точности, и
- достаточно ли большие величины диапазона нагружения используются, чтобы достоверно представить хвост распределения нагрузки на длинном интервале времени.
Первая проблема может быть исследована аппроксимированием ошибки как половины разности между результатами, вычисленными с двумя различными разрешениями выборки, пропускающими данные от каждой другой скорости ветра или диапазона нагружения. В качестве альтернативы должно быть вычислено суммарное повреждение, используя оконечные точки величин выборок, вместо средних величин для получения граничного результата. Вторая проблема может быть исследована, если прогрессивно увеличивать величину наибольшего диапазона выборки нагружения до обнаружения незначительного прироста накопленного в течение срока службы повреждения.
Следует отметить, что поскольку отношение является большим числом, то наибольшая необходимая выборка нагружения может быть значительно больше, чем наибольший цикл, полученный при моделировании данных. Такой результат получается потому, что полная смоделированная временная диаграмма нагружения намного меньше, чем срок службы ВЭУ, и необходимо выполнить статистическую экстраполяцию для того, чтобы достоверно определить повреждение, соответствующее хвостовой части распределения для длительного нагружения.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.