Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение D
(справочное)
Влияние потока воздуха на измерение интенсивности звука
Акустический зонд может подвергаться воздействию воздушного потока, например, при наличии ветра во время измерений вне помещения или вблизи потоков воздуха, создаваемых вентиляторами. В принципе, теоретические основы измерения интенсивности не применимы при наличии стационарных потоков газа, однако ошибками измерения можно пренебречь для малых значений числа Маха (Ма < 0,05), исключая случай большой реактивной составляющей звукового поля. Более существенные ошибки могут быть вызваны влиянием неустойчивости потока (турбулентностью).
Турбулентность может присутствовать в потоке, обтекающем акустический зонд, или может вызываться присутствием самого зонда. Флуктуации движения потока, свойственные турбулентности, связаны с флуктуациями давления, однако эти флуктуации имеют неакустическую природу и, как правило, не коррелированны с флуктуациями давления, вызванными действием какого-либо источника звука. Тем не менее, они регистрируются любым преобразователем давления, подвергающимся воздействию потока, и в результирующим сигнале их нельзя отличить от флуктуации, вызванных звуковым давлением. Турбулентность переносится со скоростью, близкой к средней (усредненной по времени) скорости потока, но содержит вихри (области регулярного движения), размеры которых значительно меньше длины волны типичной звуковой частоты, вследствие чего пространственные градиенты давления в турбулентности могут значительно превышать градиенты давления в звуковых волнах. Поэтому соответствующие скорости частиц могут значительно превышать скорости частиц в типичных звуковых полях. В результате может генерироваться сильный ложный сигнал интенсивности. Турбулентность, вызванная присутствием акустического зонда, может быть значительно скомпенсирована использованием подходящего ветрозащитного экрана. Однако турбулентные вихри (вызванные другими причинами, не связанными с акустическим зондом) могут также существовать в ветровых потоках и в потоке, генерируемом вентиляторами и нагнетателями. Средний (или усредненный по времени) поток вентилятора может быть эффективно уменьшен до нуля посредством дросселирования, но это не означает подавления турбулентных флуктуации давления, которые еще могут быть измерены на измерительной поверхности вблизи вентилятора и нагнетателя, и уменьшить которые с помощью ветрозащитного экрана акустического зонда очень трудно или невозможно. Особую осторожность следует соблюдать при измерении звуковой мощности вентиляторов и нагнетателей. Применение ветрозащитных экранов должно быть обязательным, а также желательно проведение тщательных экспериментов, гарантирующих, что измеренные с помощью акустического зонда значения интенсивности не являются псевдозвуком или флуктуациями турбулентного давления.
Назначение ветрозащитного экрана акустического зонда заключается в отклонении потока непосредственно от преобразователей давления. Из-за низкой скорости переноса турбулентности турбулентное давление и флуктуации скорости, действующие на внешней поверхности ветрозащитного экрана, не могут эффективно распространяться в центральную область экрана, где расположены преобразователи давления, в то время как звуковые волны проходят без значительного ослабления. В этом заключается принцип селективного действия ветрозащитного экрана.
Однако следует иметь в виду, что существует ограничение эффективности этой селективности. Очень интенсивные турбулентные флуктуации полностью не исключаются, и низкочастотная крупномасштабная турбулентность ослабляется меньше, чем высокочастотная мелкомасштабная. Так как частотный спектр ветровой и вентиляторной турбулентности быстро спадает с увеличением частоты, то именно низкочастотные измерения интенсивности (обычно < 200 Гц) подвержены наибольшему влиянию турбулентности.
Масштаб и частота турбулентности сильно зависят от природы процесса ее зарождения, и, следовательно, невозможно прямо влиять на каждую неустановившуюся или потоковую ситуацию, которая может встретиться при измерениях интенсивности звукового поля. Поскольку среднеквадратическое значение турбулентных флуктуаций давления увеличивается как квадрат средней скорости потока, следует ограничить сверху среднее значение скорости потока.
Как общее руководство необходимо отметить, что уровни интенсивности и/или скорости частиц в 1/3-октавных полосах частот имеют тенденцию оставаться высокими и даже возрастать на низких частотах (< 100 Гц), опасным и неочевидным признаком является такое же поведение уровней давления, а испытуемый источник может быть субъективно оценен как сильно излучающий на низких частотах. Другим качественным показателем зашумленности сигнала интенсивности звука турбулентной интенсивностью является высокая нестабильность измеряемых уровней интенсивности звука и скорости частиц. Когерентность между сигналами микрофонов акустического зонда не является надежным индикатором отсутствия шума турбулентности, поскольку низкочастотные крупномасштабные турбулентные флуктуации давления могут быть сильно коррелированны на расстояниях, типичных для расстояний между микрофонами.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.