Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение ДБ
(справочное)
Оригинальный текст модифицированных структурных элементов
ДБ.1
1.1 Данный метод устанавливает два метода испытаний: метод А (циклический) и метод В (статический) - для получения гидростатического проектного базиса (HDB) или расчетного значения давления (PDB) для труб из стекловолокна путем регрессионного анализа данных, получаемых при проведении испытаний труб или фитингов, или и тех и других, из одних и тех же материалов и одинаковой конструкции, по отдельности или в сборе. При этом и трубы из реактопластов, армированные стекловолокном (RTRP), и трубы из полимерцемента, армированные стекловолокном (RPMP), являются трубами из стекловолокна.
Примечание 1 - В рамках данного стандарта полимер не должен иметь природное происхождение.
1.2 Данный метод может быть использован для определения HDB труб из стекловолокна, где соотношение между внешним диаметром и толщиной стенки превышает 10:1.
Примечание 2 - Подобное ограничение, основанное на теории расчета тонкостенных труб, в дальнейшем будет ограничивать применение данного метода внутренними давлениями, которые, согласно соотношению для кольцевого напряжения, будут составлять примерно 20 % от получаемого гидростатического расчетного напряжения (HDS). Например, если напряжение составляет 5000 фунтов/кв.дюйм (34500 кПа), то внутреннее давление в трубе должно ограничиваться 1000 фунтами/кв.дюйм (6900 кПа) независимо от диаметра трубы.
1.3 Данный метод обеспечивает получение расчетного значения давления для изделий сложной формы или систем, в которых сложные поля механического напряжения могут серьезно затруднять использование кольцевого напряжения.
1.4 Концевые уплотнения образца в тестовых испытаниях могут быть закрепленными либо свободными, что приводит к определенным ограничениям.
1.4.1 Закрепленные концы. Образцы подвергаются внутреннему механическому напряжению только в окружном направлении, а гидростатическое расчетное давление применимо лишь к напряжениям, развивающимся в окружном направлении.
1.4.2 Свободные концы. Образцы подвергают внутреннему механическому напряжению и в окружном, и продольном направлениях, но таким образом, чтобы окружное напряжение вдвое превышало продольное. Данный метод не может применяться для оценки напряжений, вызываемых нагрузками с продольным напряжением, превышающим 50 % от значения HDS.
1.5 Значения, заявленные в единицах "дюйм-фунт" следует рассматривать в качестве стандартных. Значения, данные в скобках, представлены исключительно в ознакомительных целях.
Примечание 3 - Для настоящего стандарта не существует известного эквивалента ISO.
1.6 В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его применением. Пользователь настоящего стандарта несет ответственность за установление соответствующих правил по технике безопасности и охране здоровья, а также определяет целесообразность применения законодательных ограничений перед его использованием.
Примечание - Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5-2001 (подраздел 3.7).
ДБ.2
3.1 Терминология
3.1.1 Определения даны в соответствии с ASTM D883 и ASTM F412, а аббревиатуры приведены в соответствии с ASTM D1600, если не указано иное.
3.1.2 Свободное концевое уплотнение - уплотнительное устройство или механизм, крепящийся к концу испытуемого образца таким образом, что внутреннее давление производит продольное растягивающее напряжение в дополнение к кольцевому и радиальному напряжению в испытуемом образце.
3.1.3 Закрепленное концевое уплотнение - уплотнительное устройство или механизм, упирающийся в торец испытуемого образца, или внешняя структура, оказывающая сопротивление осевой нагрузке, производимой внутренним давлением, тем самым ограничивая напряжение только в прямых образцах кольцевого и радиального направления.
3.1.4 Прорыв - протекание испытательной жидкости каким-либо образом через образец, будь то трещина в стенке, местная течь или течь на расстоянии более одного диаметра от концевого уплотнения.
Примечание 4 - Для данного метода непротекающие образцы могут быть включены в протекающие при определенных условиях, обозначенных в подразделах 6.3, 9.3 и 12.2.
3.1.5 Труба из стекловолокна - труба, содержащая армирование стекловолокном, встроенное в структуру или окруженное затвердевшим термоактивным каучуком; композитная структура может содержать щебеночный, гранулированный или пластинчатый наполнитель, тиксотропные агенты, пигменты или красители, термопластичные или термоактивные добавки или покрытия.
3.1.6 Труба из полимерцемента, армированного стекловолокном (RPMP), - труба из стекловолокна с наполнителем.
3.1.7 Труба из реактопластов, армированных стекловолокном (RTRP), - труба из стекловолокна без наполнителя.
3.1.8 Кольцевое напряжение - растягивающее напряжение в стенках труб в кольцевом направлении из-за внутреннего давления. Кольцевое напряжение вычисляют по формуле
,
(1)
где S - кольцевое напряжение, фунты/кв. дюйм (кПа);
D - средний внешний диаметр армированной трубы, дюймы (мм);
Р - внутреннее давление, фунт/кв. дюйм (кПа);
t r - минимальная толщина армированной стенки, дюймы (мм).
Примечание 5 - Кольцевое напряжение определяют на прямых цилиндрических образцах. Оценка образцов более сложной формы может быть основана на давлении.
3.1.9 Гидростатический проектный базис (HDB) - кольцевое напряжение, определяемое для труб из стекловолокна с помощью данного метода, умножаемое на поправочный коэффициент для получения HDS.
3.1.10 Гидростатическое расчетное давление (HDP) - оценочное максимальное внутреннее гидростатическое давление, которое может быть применено к детали трубы циклически (метод А) или продолжительно (метод В) с высокой степенью вероятности, что утечка не произойдет.
3.1.11 Гидростатическое расчетное напряжение (HDS) - оценочное максимальное внутреннее растягивающее напряжение в стенке трубы в кольцевом направлении благодаря внутреннему гидростатическому давлению, которое может быть применено к образцу трубы циклически (метод А) или постоянно (метод В) с высокой степенью вероятности того, что утечка не произойдет.
3.1.12 Долгосрочное гидростатическое усилие (LTHS) - оценочное растягивающее напряжение в стенке трубы в кольцевом направлении благодаря внутреннему гидростатическому давлению, которое в случае циклического применения приведет к прорыву трубы после определенного количества циклов (метод А) или определенного количества часов (метод В).
Примечание 6 - Время определения LTHS или LTHP устанавливается согласно стандарту изделия. Как правило, время составляет 150 x 106 либо 657 x 106 циклов для метода А или 100000 либо 438000 часов для метода В.
3.1.13 Долгосрочное гидростатическое давление (LTHP) - оценочное внутренне давление в образце трубы, которое, в случае циклического применения приведет к прорыву трубы после определенного количества циклов (процесс А) или определенного количества часов (процесс В).
3.1.14 Расчетное значение давления (PDB) - внутреннее давление, рассчитанное для труб из стекловолокна при помощи данного метода и умноженное на поправочный коэффициент для получения значения HDP.
3.1.15 Номинальное давление (PR) - оценочное максимальное давление в трубе или фитинге, которое может быть применено продолжительно с высокой степенью вероятности того, что не произойдет прорыв образца трубы.
3.1.16 Поправочный коэффициент - число от 1,00 и менее, учитывающее погрешность всех значений и степеней для безопасной установки труб из стекловолокна. При этом коэффициент умножают на HDB и получают HDS и значение расчетного номинального давления или его умножают на PDB, при этом получают непосредственно значение номинального давления. В любом случае в результате гарантируется качественная и безопасная установка труб, при условии того, что во время установки надлежащим образом были использованы высококачественные детали.
3.2 Определения терминов, характерных для настоящего стандарта:
3.2.1 средний внешний диаметр - измерение, полученное в соответствии с ASTM D3567, без учета армированных или неармированных внешних толщин покрытия;
3.2.2 минимальная армированная толщина стенки - измерение, полученное в соответствии с ASTM D3567, без учета армированных или неармированных внешних толщин покрытия и накладки; толщина стен фитингов определяется в самом тонком месте фитинга.
Примечание - Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5-2001 (подраздел 3.9).
ДБ.3
4.1 Метод А заключается в воздействии минимум на 18 образцов трубы или фитинга или обоих образцов под циклическим внутренним давлением с частотой 25 циклов/мин и при нескольких различных значениях давления. Требуемая температура испытаний поддерживается путем циркуляции горячей жидкости через образцы или проведения испытаний в воздушной среде с контролируемой температурой.
4.1.1 Циклическое LTHS или циклическое LTHP трубы или фитинга получается путем экстраполяции графика в двойном логарифмическом масштабе линии линейной зависимости кольцевого напряжения или внутреннего давления от количества циклов до прорыва.
4.1.2 Экспериментальная основа метода А должна соответствовать методу испытаний ASTM D2143, который является частью данного метода. Если какая-либо часть метода не соответствует методу, определенному в ASTM D2143, то необходимо использовать положения данного метода.
4.1.3 Стыки между образцами трубы и фитинга должны быть такими же, которые стандартно используются для испытуемых образцов.
4.2 Метод В заключается в воздействии минимум на 18 образцов трубы или фитинга или обоих образцов под постоянным внутренним гидростатическим давлением разного уровня в контролируемых условиях и измерении времени до прорыва для каждого уровня давления. Температура испытаний поддерживается путем погружения образцов в водяную баню с контролируемой температурой, или их испытания в воздушной среде с контролируемой температурой воздуха, или же за счет циркуляции жидкости необходимой температуры через образец.
Примечание 7 - Испытания в водяной бане исключают обнаружение утечки (см. 3.1.4) как визуально, так и электронными средствами.
4.2.1 Статическое LTHS или статическое LTHP трубы или фитинга получаются путем экстраполяции графика в двойном логарифмическом масштабе линии линейной зависимости кольцевого напряжения или внутреннего давления от времени до прорыва.
4.2.2 Экспериментальная основа метода В должна соответствовать методу испытаний, определенному в ASTM D1598, или методу испытаний, определенному в ASTM F948, или же им обоим, которые являются частью данного метода. Если какая-либо часть метода не соответствует выбранному методу, то необходимо использовать положения данного метода.
4.2.3 Стыки между образцами трубы и фитинга должны быть такими же, которые стандартно используются для испытуемых образцов.
4.3 Значение HDB определяется из значения LTHS в соответствии с разделом 7 или 10.
4.4 Значение PDB определяется из значения LTHS в соответствии с разделом 8 или 11.
4.5 Значение HDS для труб определяется путем умножения значения HDB на поправочный коэффициент.
4.6 Проверка значений HDB или PDB для других изделий - когда для образцов уже определены значения HDB или PDB согласно данному методу, и происходит изменение процесса или материала изделия, может быть произведено подтверждение исходных значений HDB или PDB в соответствии с разделом 12. Следует провести испытания по крайней мере шести образцов, и они должны отвечать установленным критериям.
Примечание - Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5-2001 (пункт 7.9.5).
ДБ.4 Метод А
6 Долгосрочное циклическое гидростатическое напряжение или долгосрочное циклическое гидростатическое давление
6.1 Выбирают свободное либо закрепленное концевое уплотнение, основанное на растягивающих напряжениях, вызываемых внутренним давлением и типом стыков в данной системе труб (см. 1.4)
6.2 Получают минимум 18 значений прорывного циклического напряжения для каждой заданной температуры в соответствии с методом испытаний ASTM D2143, за исключением следующего:
6.2.1 Определяют средний внешний диаметр и минимальную толщину армированных стенок в соответствии с методом испытаний ASTM D3567.
Примечание 9 - Из-за необходимости нарезания образца данное определение может быть произведено на образце, не прошедшем испытание. Вследствие этого при анализе используют заново рассчитанное исправленное кольцевое напряжение.
6.2.2 Повышенной температуры испытаний достигают путем циркуляции нагретой жидкости, применяемой в ходе испытания, через образец или при ее испытаниях в горячем воздухе. В любом случае жидкость должна поддерживаться в промежутке от 5 °F (3 °С) от выбранной температуры.
Примечание 10 - Когда повышение температуры в ходе испытаний поддерживается путем нагревания циркулирующей жидкости, применяемой при испытании, контролировать температуру окружающего воздуха нет необходимости.
6.2.3 Значения напряжения или давления должны быть отобраны таким образом, чтобы распределение точек прорыва было следующим:
Количество циклов до прорыва |
Точек прорыва (минимум) |
От 1000 до 10000 |
3 |
От 10000 до 100000 |
3 |
От 100000 до 1000000 |
3 |
От 1000000 до 10000000 |
3 |
Более 15000000 |
1 |
Всего |
18 |
6.3 Анализируют результаты испытаний, используя для каждого образца зависимость логарифма напряжения или давления из раздела 6, от логарифма числа циклов до прорыва, как описано в приложении А1.
Примечание 11 - Как правило, при испытаниях труб из стекловолокна по вертикальной оси (y) откладываются значения напряжения или давления, а по горизонтальной оси (х) - значения времени или циклов.
6.3.1 Образец, который протекает на расстоянии до одного диаметра от концевого уплотнения, может быть:
- включен в качестве точки прорыва, если находится ниже 95 % кривой пределов доверительного интервала;
- заменен и вновь испытан, при условии, что новый прорыв будет находиться на расстоянии дальше одного диаметра от концевого уплотнения;
- ликвидирован, а данные не засчитаны.
6.3.2 Образцы, не прорвавшиеся спустя более 15000000 циклов, могут быть засчитаны как прорывы при обозначении регрессионной прямой. Использование таких данных может привести к занижению или завышению значений циклических LTHS и LTHP. В любом случае должны быть удовлетворены требования доверительного интервала значений из раздела 6.
Примечание 12 - Непрорвавшиеся образцы могут быть испытаны далее и линии регрессии пересчитаны после возникновения прорыва.
6.3.3 Определяют конечную линию для экстраполяции по методу наименьших квадратов с использованием точек прорыва, а также точек непрорыва, выбранных по критериям, описанным в 6.3.1 и 6.3.2. Не следует использовать точки прорыва со значениями давления или напряжения, которые приводят к прорыву, происходящему менее чем за 500 циклов в среднем; определить данные точки путем усреднения количества испытаний циклов до прорыва с одинаковым уровнем напряжения или давления, например, при напряжении в 200 фунтов/кв.дюйм (1380 кПа) или давлении 20 фунтов/кв.дюйм (138 кПа). Включают в отчет все данные о точках прорыва, исключенных из расчета, и относят их к данной категории.
Примечание 13 - Поскольку данный процесс применим как для труб, так и для фитингов, рекомендуется, чтобы образец трубы и фитинг были испытаны одновременно как один образец путем использования стандартного процесса их соединения, с фитингом на одном из концов. Если фитинг прорывает первым, он может быть отделен, а испытание продолжено с целой трубой с механическим концевым уплотнением на месте фитинга. В случае если трубу прорывает первой, данные можно записать, заменить трубу и продолжать испытания до тех пор, пока не прорвет фитинг. Следуя этой рекомендации, испытатель сможет получать точки прорыва и для трубы, и для фитинга, проводя испытания только одного образца.
7 Циклическое гидростатическое расчетное значение
7.1 Вычисляют циклическое LTHS в определенное время (150 x 106 или 657 x 106 циклов), как описано в приложении А1.
7.2 Если S xy > 0 (см. А1.4), данные следует считать непригодными.
7.3 Вычисляют r в соответствии с А1. Если r является меньше применяемого минимального значения, приведенного в таблице А1.1, данные следует считать непригодными.
7.4 При необходимости определяют категорию циклического HDB в соответствии с таблицей 1.
8 Циклическое расчетное значение давления
8.1 Использовать процессы по 7.1, 7.2 и 7.3, подставив значение давления вместо напряжения.
8.2 При необходимости определить категорию циклического PDB в соответствии с таблицей 2.
Метод В
9 Долгосрочное постоянное гидростатическое напряжение
9.1 Выбирают свободное либо закрепленное концевое уплотнение, основанное на растягивающих напряжениях, вызываемых внутренним давлением и типом стыков в данной системе труб (см. 1.4)
Количество циклов до прорыва |
Точек прорыва (минимум) |
От 10 до 1000 |
4 |
От 1000 до 6000 |
3 |
Более 6000 |
3 |
Более 10000 |
1 |
Всего |
18 |
9.2 Получают минимум 18 значений точек прорыва для каждой заданной температуры в соответствии с методом испытаний ASTM D1598 либо методом испытаний ASTM F948, за исключением следующего:
9.2.1 Определяют средний внешний диаметр и минимальную толщину армированных стенок в соответствии с методом испытаний ASTM D3567 (примечание 9).
9.2.2 Внутри испытуемого образца трубы или фитинга должна быть вода. Внешней средой является воздух либо баня с контролируемой температурой воды (см. раздел 7). Можно использовать также другую среду, что должно быть описано в протоколе испытаний. Жидкость, применяемая в ходе испытания, должна поддерживаться в промежутке от 5 °F (3 °С) от выбранной температуры (см. примечание 10).
9.2.3 Значения напряжения или давления для испытаний должны быть выбраны таким образом, чтобы получить следующее распределение точек прорыва:
Таблица 1 - Категории гидростатического расчетного значения с помощью метода А или метода В
Категория HDB |
Интервал рассчитанных значений |
||
Фунт/кв.дюйм а |
кПа |
Фунт/кв.дюйм |
кПа |
2500 |
17200 |
От 2400 до 3010 |
От 16500 до 20700 |
3150 |
21700 |
От 3020 до 3820 |
От 20800 до 26300 |
4000 |
27600 |
От 3830 до 4790 |
От 26400 до 33000 |
5000 |
34500 |
От 4800 до 5990 |
От 33100 до 40900 |
6300 |
43400 |
От 6000 до 7590 |
От 41000 до 52900 |
8000 |
55200 |
От 7600 до 9590 |
От 53000 до 65900 |
10000 |
68900 |
От 9600 до 11990 |
От 66000 до 82900 |
12500 |
86200 |
От 12000 до 15290 |
От 83000 до 105900 |
16000 |
110000 |
От 15300 до 18990 |
От 106000 до 130900 |
20000 |
138000 |
От 19000 до 23990 |
От 131000 до 169900 |
25000 |
172000 |
От 24000 до 29990 |
От 170000 до 209900 |
31500 |
217000 |
От 30000 до 37990 |
От 210000 до 259900 |
40000 |
276000 |
От 38000 до 47000 |
От 260000 до 320000 |
а Стандартный уровень напряжения, выбранный в соответствии с ISO 3, серия R10. |
Таблица 2 - Категории гидростатического расчетного значения с помощью метода А или метода В
Категория PDB |
Интервал рассчитанных значений |
|||
Фунт/кв.дюйм |
Бар а |
кПа |
Фунт/кв.дюйм |
кПа |
91 |
6,3 |
530 |
От 87 до 110 |
От 605 до 760 |
116 |
8 |
800 |
От 111 до 143 |
От 765 до 990 |
150 |
10 |
1000 |
От 144 до 172 |
От 995 до 1180 |
180 |
12,5 |
1250 |
От 173 до 220 |
От 1190 до 1510 |
230 |
16 |
1600 |
От 221 до 287 |
От 1520 до 1980 |
300 |
20 |
2000 |
От 288 до 345 |
От 1990 до 2380 |
360 |
25 |
2500 |
От 346 до 438 |
От 2390 до 3020 |
460 |
31,5 |
3150 |
От 439 до 556 |
От 3030 до 3830 |
580 |
40 |
4000 |
От 557 до 695 |
От 3840 до 4790 |
725 |
50 |
5000 |
От 696 до 876 |
От 4800 до 6040 |
910 |
63 |
6300 |
От 877 до 1110 |
От 6050 до 7680 |
1160 |
80 |
8000 |
От 1115 до 1380 |
От 7690 до 9580 |
1450 |
100 |
10000 |
От 1390 до 1720 |
От 9590 до 11800 |
1800 |
125 |
12500 |
От 1730 до 2220 |
От 11900 до 15300 |
а Стандартный уровень напряжения, выбранный в соответствии с ISO 3, серия R10. |
9.2.4 Поддерживают внутреннее испытательное давление в каждом образце с точностью до 1 % от выбранного значения. Измеряют время до прорыва с точностью до 2 % или 40 ч, если 40 ч составляют менее 2 % от измеряемого значения времени.
9.3 Анализируют результаты испытаний, используя для каждой точки прорыва зависимость логарифма напряжения или давления в фунтах/кв.дюйм или кПа от логарифма времени прорыва в часах, как описано в приложении А1 (примечание 9).
9.3.1 Образец, который протекает на расстоянии до одного диаметра от концевого уплотнения, может быть:
- включен в качестве точки прорыва, если находится ниже 95 % кривой пределов доверительного интервала;
- заменен и вновь испытан, при условии, что новый прорыв будет находиться на расстоянии дальше одного диаметра от концевого уплотнения;
- ликвидирован, а данные не засчитаны.
9.3.2 Образцы, не прорвавшиеся через более чем 10000 ч, могут быть засчитаны как прорывы при обозначении регрессионной прямой. Использование таких данных может привести к занижению или завышению значений постоянных LTHS и LTHP. В любом случае должны быть удовлетворены требования доверительного интервала значений из 9.3.1.
Примечание 14 - Непрорвавшиеся образцы могут быть испытаны далее и линии регрессии пересчитаны после возникновения прорыва.
9.3.3 Определяют конечную линию для экстраполяции по методу наименьших квадратов с использованием точек прорыва, а также точек непрорыва, выбранных по критериям, описанным в 9.3.1 и 9.3.2. Не следует использовать точки прорыва со значениями давления или напряжения, которые приводят к прорыву, происходящему менее чем за 0,3 ч в среднем; определяют данные точки путем усреднения количества испытаний циклов до прорыва с одинаковым уровнем напряжения или давления, например, при напряжении в 200 фунтов/кв.дюйм (1380 кПа) или давлении 20 фунтов/кв.дюйм (138 кПа). Включают в отчет все данные о точках прорыва, исключенных из расчета, и относят их к данной категории (примечание 12).
10 Постоянное гидростатическое расчетное значение
10.1 Вычисляют постоянное LTHS в определенное время (100000 или 438000 ч), как описано в приложении А1.
10.2 Если S xy > 0 (см. А1.4), данные следует считать непригодными.
10.3 Вычисляют r в соответствии с А1.4.3. Если r менее применяемого минимального значения, приведенного в таблице А1.1, данные следует считать непригодными.
10.4 При необходимости определяют категорию циклического HDB в соответствии с таблицей 1.
11 Постоянное расчетное значение давления
11.1 Используют процессы по 7.1, 7.2 и 7.3, подставив давление вместо напряжения.
11.2 При необходимости определяют категорию циклического PDB в соответствии с таблицей 2.
12 Проверка значений HDB или PDB
12.1 В то время как трубы имеют конкретные значения HDB или PDB, определенные в соответствии с методом А или методом В, любое изменение материала, процесса производства, конструкции или толщины вкладышей может потребовать сортирующую оценку, как описано в 12.2, 12.3, 12.4, 12.5 и 12.6.
12.2 Вычисляют и строят доверительный и прогнозируемый интервалы при доверительной вероятности 95 % исходной прямой регрессии в соответствии с А1.4 с использованием данных, полученных ранее.
Примечание 15 - Прогнозируемый интервал определяет границы отдельных наблюдений, в то время как доверительный интервал определяет границы прямой регрессии.
Примечание 16 - При 95 %-ном доверительном интервале есть 2,5 %-ная вероятность того, что среднее значение прямой регрессии может оказаться над верхней границей доверительного интервала, и 2,5 %-ная вероятность того, что среднее значение для прямой регрессии окажется ниже нижней границы. Для 95 %-ного прогнозируемого интервала есть 2,5 %-ная вероятность того, что отдельные точки данных окажутся за верхней границей прогнозирования, и 2,5 %-ная вероятность того, что отдельные точки данных окажутся за нижней границей прогнозирования.
12.3 Из исходной линии регрессии выбрать уровни напряжения или давления по меньшей мере для двух наборов образцов, где в каждом наборе находится по три и более образца, испытуемых при одном и том же уровне напряжения и давления, например напряжения в пределах 200 фунт/кв.дюйм (1380 кПа) и давления в пределах 20 фунт/кв.дюйм (138 кПа) следующим образом:
12.3.1 Для метода А
Количество циклов до прорыва (среднее по набору) |
Число точек прорыва (минимум) |
От 15000 до 300000 |
3 |
Более 1500000 |
3 |
Всего |
6 |
В целях повторного подтверждения разрешено засчитывать за разрушенные те образцы, которые не разрушились после 1800000 циклов, при условии, что это может привести к завышению значений прямой регрессии HDB или PDB.
12.3.2 Для метода В
Количество часов до прорыва (среднее по набору) |
Число точек прорыва (минимум) |
От 10 до 200 |
3 |
Более 1000 |
3 |
Всего |
6 |
В целях повторного подтверждения разрешено засчитывать за разрушенные те образцы, которые не разрушились через более чем 1200 часов, что может привести к завышению значений прямой регрессии HDB или PDB.
12.4 Любые изменения в материале труб и процессе производства можно считать незначительными и допустимыми, если результаты, полученные в 12.2, отвечают следующим критериям.
12.4.1 Средняя точка прорыва для каждого уровня напряжения или давления находится не ниже нижнего предела 95 %-ного доверительного интервала прямой регрессии.
12.4.2 Нижняя точка прорыва для каждого уровня напряжения или давления находится не ниже нижнего 95 %-ного предела прогнозирования исходной прямой регрессии.
12.4.3 Точки прорыва располагаются на исходной прямой регрессии. Ниже исходной прямой регрессии может находиться не более двух третей точек прорыва.
12.5 Данные, отвечающие критериям, указанным в 12.4, могут считаться частью исходного набора данных и являются подходящими для определения новой линии регрессии и HDB или PDB, используя все точки разрушения. Образцы, которые не разрушились после 1200 ч или 1800000 ч циклов, не подходят для построения новой линии регрессии, однако являются подходящими для использования этих точек в целях повторного подтверждения.
12.6 В случае если данные не отвечают критериям, указанным в 12.4, изменения следует считать значительными и должна быть создана новая линия регрессии. Пока проводятся новые испытания, за нижнюю границу HDB или PDB для материалов или изменения процесса производства можно считать следующее:
12.6.1 Нижнюю границу доверительного интервала при доверительной вероятности 95 % значений, полученных путем экстраполяции точек разрушения по 12.3.1 до 657 000 000 циклов (50 лет) или точек разрушения по 12.3.2 до 438 000 ч (50 лет) в соответствии с процедурой, приведенной в приложении А1.
12.6.2 Нижнюю границу доверительного интервала при доверительной вероятности 95 % исходной прямой регрессии за 50 лет.
13 Гидростатическое расчетное напряжение или гидростатическое расчетное давление
13.1 Получают HDS или HDP путем умножения HDB или PDB, как описано в процессе А или процессе В, с помощью поправочного коэффициента, выбранного для применения к определению двух групп условий. Первая группа рассматривает изменения условий испытаний и производства, особенно стандартные изменения в материале, производстве, характеристиках, способах транспортировки, а также процессы оценки в данном методе. Вторая группа рассматривает применение, особенно установку, внешние условия, температуру, возможные опасности, желаемый срок эксплуатации и выбранную степень надежности.
Примечание 17 - Целью данного метода не является предоставление поправочных коэффициентов. Поправочный коэффициент должен быть выбран инженером-проектировщиком после полной оценки условий обслуживания и инженерными свойствами конкретных материалов пластмассовых труб. Рекомендованные поправочные коэффициенты не будут разработаны или выпущены ASTM.
14 Номинальное давление
14.1 Для данных, основанных на кольцевом напряжении, вычисляют номинальное давление из HDS по формуле ISO, приведенной в 3.1.8 для каждого диаметра и толщины стенки трубы, изготовленной из определенных испытанных материалов и конструкций.
14.2 Для данных, основанных на внутреннем давлении, вычисляют номинальное давление непосредственно из HDP для изделий, сделанных из определенных испытанных материалов и конструкций.
Примечание - Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5-2001 (пункт 7.9.8).
ДБ.5
15.1 Предоставляют отчет о следующей информации:
15.1.1 Полное обозначение образца, включая тип, источник, кодовый номер изготовителя, номер партии, а также важную хронику, если таковая имеется.
15.1.2 Характеристика образца, включая номинальный размер, среднюю и минимальную толщину армированной стенки, средний внешний диаметр, а также теплоизолирующий материал и его толщину, если изделие было теплоизолировано.
15.1.3 Характеристики фитинга, включая тип фитинга, а также все пункты, перечисленные в 15.1.2.
15.1.4 Применяемый процесс (метод А или метод В) а также маркировка данного метода испытаний согласно ASTM.
15.1.5 Тип концевого уплотнения, закрепленное или свободное.
15.1.6 Температура поддерживания во время испытаний.
15.1.7 Испытания внешних и внутренних условий трубы.
15.1.8 Таблица напряжений и давлений в фунтах/кв.дюйм или кПа, а также количество циклов прорыва (метод А) и времени до прорыва (метод В) всех испытуемых образцов; природа прорыва и изделие, где он случился, фитинг или труба. Образцы, которые были приняты за изделия с прорывом после нахождения под напряжением или давлением в течение более чем 15000000 циклов или же более чем 10000 ч, должны быть выделены.
15.1.9 Определенное LTHS или LTHP.
15.1.10 Значение r.
15.1.11 HDB или HDP.
15.1.12 Источник HDB или PDB (7.1 или 7.2 для процесса А или 10.1 или 10.2 для процесса В) и все рассчитанные значения в соответствии с таблицей 1 или таблицей 2.
15.1.13 Какие-либо нехарактерные отклонения, замеченные при проведении испытаний.
15.1.14 Даты проведения испытаний.
15.1.15 Названия лабораторий и фамилия ответственного за проведение испытаний.
Примечание - Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5-2001 (пункт 7.9.10).
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.