Вы можете открыть актуальную версию документа прямо сейчас.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение В |
Приложение B |
(справочное) |
(справочное) |
Руководство по выбору фильтра |
Руководство по выбору фильтра |
Примечание - Руководство предназначено для пользователей стандарта и содержит рекомендации по выбору наиболее подходящего для конкретного применения фильтра или картриджа. Оно не содержит исчерпывающую информацию, а только основные положения, которые необходимо учитывать. В других случаях данные положения могут быть использованы при выборе других фильтрующих материалов, например пенополиуретана. |
Примечание - Приложение содержит рекомендации по выбору фильтра для конкретного применения. В приложении приведены лишь основные положения, подлежащие рассмотрению. Данные положения могут быть использованы также при выборе других фильтрующих материалов для отбора проб, например, пенополиуретана. |
В.1 Эффективность улавливания |
B.1 Эффективность улавливания |
В.1.1 Большинство фильтров, которые обычно применяют для отбора проб твердых частиц аэрозоля, имеют необходимую эффективность улавливания (см. 6.2) как вдыхаемой, так и респирабельной фракций. К таким фильтрам относятся объемные фильтры (например, из стекло- или кварцевого волокна) и мембранные фильтры [например, из смешанных эфиров целлюлозы или из полимерных материалов, таких как поливинилхлорид (ПВХ) или политетрафторэтилен (ПТФЭ)]. |
B.1.1 Большинство фильтров, которые обычно применяют для отбора проб твердых частиц аэрозоля, имеет необходимую эффективность улавливания (см. 6.2) как торакальной, так и респирабельной фракций взвешенных в воздухе частиц. Для этого применяют глубинные фильтры, например из стекло- или кварцевого волокна, и мембранные фильтры, например комбинированный фильтр из сложных эфиров целлюлозы и фильтры из полимерных материалов, таких как поливинилхлорид (ПВХ) или политетрафторэтилен (ПТФЭ). Результаты эффективности отбора проб используемых мембранных фильтров представлены в [17]. |
В.1.2 Эффективность улавливания целлюлозных (бумажных) фильтров может составлять менее 99 % и обычно их не применяют для отбора проб твердых частиц аэрозоля. Однако после обработки реактивом, например карбонатом натрия, их можно использовать в качестве вторичных фильтров для улавливания неорганических газов или паров, например паров триоксида мышьяка. |
B.1.2 Целлюлозные (бумажные) фильтры могут иметь эффективность улавливания менее 99 % и обычно не применяются для отбора проб взвешенных в воздухе частиц. Однако после обработки реактивом, например карбонатом натрия, их могут использовать как вторичный фильтр для улавливания неорганических газов или паров, например триоксида мышьяка. |
В.1.3 В ходе некоторых процессов, таких как испарение, протекающих при повышенной температуре, в воздухе могут образоваться ультрамелкие частицы аэрозоля, конденсирующиеся из паровой фазы, известные как дым. Фильтры, используемые для улавливания твердых частиц аэрозоля, могут быть менее эффективными при улавливании малых частиц диаметром значительно менее 1 мкм. Однако ультрамелкие частицы вскоре после образования обычно агломерируются с образованием частиц большего размера, которые эффективно улавливаются. Следовательно, фильтры с эффективностью улавливания, установленной в 6.2, подходят для отбора проб при процессах, сопровождающихся испарением. |
B.1.3 При некоторых процессах, таких как испарение, протекающих при повышенных температурах, в воздухе могут образовываться ультрамелкие частицы, конденсируемые из паровой фазы. Поэтому для улавливания твердых частиц диаметром значительно менее 1 мкм необходимо использовать фильтры с высокой эффективностью улавливания. Однако ультрамелкие частицы обычно агломерируются с образованием частиц большего размера, которые эффективно улавливаются фильтрами с меньшей эффективностью улавливания. Следовательно, фильтры с эффективностью улавливания, установленной в 6.2, являются подходящими для отбора проб в процессах с испарением. |
В.2 Пылеемкость |
B.2 Эффективность фильтрации |
В.2.1 Мембранные фильтры изготавливают из разнообразных полимерных материалов различными способами. В любом случае фильтр представляет собой тонкий гибкий диск из микропористого материала с определенным размером пор, структурой, плотностью распределения и т.д. Удерживание частиц происходит на поверхности мембранного фильтра, поэтому он имеет относительно низкую пылеемкость по сравнению с объемным фильтром. Если на мембранном фильтре уловлено чрезмерное количество пыли, то это может привести к закупорке пор и отказу насоса для отбора проб. Кроме того, проба может быть потеряна с фильтра при подготовке или транспортировании. Поэтому отбор проб на мембранные фильтры в среде с высоким содержанием пыли проводят в течение короткого периода времени или применяют объемные фильтры. |
B.2.1 Мембранные фильтры изготавливают из разнообразных полимерных материалов множеством различных способов. Мембранный фильтр представляет собой тонкий гибкий диск из микропористого материала с точно определенными размером, структурой, плотностью пор и т.д. Улавливание частиц происходит на поверхности мембранного фильтра, поэтому он имеет относительно низкую пылеулавливающую способность по сравнению с глубинным фильтром. Если на мембранном фильтре уловлено чрезмерное количество пыли, то это может привести к закупорке пор и выходу из строя насоса для отбора проб. Кроме того, проба может быть потеряна с фильтра при обработке или транспортировании. Поэтому при отборе проб на мембранные фильтры в окружающей среде с высоким содержанием пыли используют короткий период отбора проб, или применяют глубинные фильтры. |
В.2.2 Объемные фильтры состоят из волокон, спрессованных с образованием нерегулярного трехмерного сита. Частицы удерживаются не только на поверхности фильтра, но также и внутри его структуры. Это обеспечивает значительно большую пылеемкость по сравнению с мембранными фильтрами. Поэтому при долговременном отборе проб в среде с высоким содержанием пыли рекомендуется использовать объемные, а не мембранные фильтры. Однако часто для объемных фильтров характерно большее улавливание частиц металлов, особенно некоторых, по сравнению с мембранными фильтрами, что также необходимо учитывать при выборе фильтра для отбора проб. |
B.2.2 Глубинные фильтры состоят из волокон, которые беспорядочно формируются в объемный нетканый материал. Частицы улавливаются не только на поверхности фильтра, но также и внутри его структуры, в его глубине. Это обеспечивает значительно большую пылеулавливающую способность, чем у мембранных фильтров. Поэтому при отборе проб в окружающей среде с высоким содержанием пыли в течение длительных периодов предпочтительным является использование глубинных, а не мембранных фильтров. Однако глубинные фильтры зачастую содержат большее количество металлов, чем мембранные фильтры. |
В.2.3 Пластиковые картриджи с фильтрами обычно имеют более высокую пылеемкость по сравнению с фильтрами, описанными в В.2.1 и В.2.2. |
B.2.3 Подложки для отбора проб (см. 6.2, примечание 3), состоящие из пластика с прикрепленным фильтром, обычно имеют более высокую пылеулавливающую способность, чем в случаях B.2.1 и B.2.2. |
Примечание - Картриджи также могут быть необходимы при улавливании нелипких твердых частиц, которые могут быть утеряны при переносе фильтра из пробоотборника в контейнер для транспортирования и/или сосуд для растворения. |
Примечание - Подложки для отбора проб применяют в случае отбора нелипких частиц, которые могут быть потеряны при переносе фильтра из пробоотборника в устройство для транспортирования и/или растворения. |
В.3 Содержание металлов |
B.3 Содержание металлов |
В.3.1 Содержание частиц металлов в\на фильтрах должно быть по возможности минимальным, так как оно может внести существенный вклад в холостые показания, изменчивость которых определяет, в частности, нижний предел диапазона измерений аналитического метода. Допустимое содержание частиц металла в фильтрах зависит от соответствующего предельного значения металла. Для каждого определяемого металла нижний предел диапазона измерений аналитического метода должен быть меньше, чем количество частиц металла, которое было бы уловлено при отборе воздуха с содержанием определяемого металла, составляющим 0,1 его ПДК за заданный период отбора проб (см. 8.1.2.1) при заданном расходе (см. 8.1.1.2). Если это условие не выполняется и предполагается, что содержание металла в/на фильтре может быть высоким, то необходимо использовать другой фильтр. |
B.3.1 Содержание металлов в фильтрах должно быть по возможности минимальным, так как оно может внести существенный вклад в холостую пробу, результат анализа которой определяет, в частности, нижний предел диапазона измерений аналитического метода. Содержание металла в фильтрах зависит от применяемого предельного значения. Для каждого определяемого металла нижний предел диапазона измерений аналитического метода должен быть меньше, чем количество металла, которое было бы уловлено при отборе проб воздуха с содержанием определяемого металла в 0,1 его предельного значения за заданный период отбора проб (см. 8.1.2.1) при заданном расходе (см. 8.1.1.2). Если это условие не выполняется и предполагается, что содержание металла в фильтре может быть высоким, то необходимо использовать другой фильтр. |
В.3.2 Для мембранных фильтров обычно характерно очень малое содержание частиц металлов, и в этом отношении они подходят для отбора проб практически всех металлов и металлоидов. |
B.3.2 Мембранные фильтры обычно имеют очень низкое содержание металлов и в этом отношении подходят для отбора проб почти всех металлов и металлоидов. |
В.3.3 Фильтры из стекловолокна не применяют для улавливания твердых частиц, содержащих некоторые металлы (например, алюминий, кальций и цинк), для которых они имеют относительно высокий уровень холостых показаний. В меньшей степени это относится к фильтрам из кварцевого волокна. |
B.3.3 Фильтры из стекловолокна не применяют для отбора проб на содержание некоторых металлов (например, алюминия, кальция и цинка), для которых они имеют относительно высокий уровень холостых показаний. В меньшей степени это относится к фильтрам из кварцевых волокон. |
В.4 Стабильность массы |
B.4 Стабильность массы |
В.4.1 Если фильтры (или картриджи) необходимо взвешивать для определения массы уловленной пыли, то они должны быть достаточно стойкими к удерживанию влаги, чтобы изменения массы холостой пробы, которые могут происходить в результате изменений атмосферных условий (температуры, влажности), были по возможности минимальными и воспроизводимыми. Например, фильтры из смешанных эфиров целлюлозы обычно не подходят для гравиметрического анализа, так как они поглощают значительное количество влаги. При проведении гравиметрического анализа применяют фильтры из ПВХ. |
B.4.1 Если фильтры (или подложки) необходимо взвешивать для определения количества уловленной пыли, то они должны обладать низкой влагоемкостью, чтобы изменения веса холостой пробы, которые могут происходить в результате изме |
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.