Свод правил СП 25.13330.2020
"СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах"
(утв. приказом Министерства строительства и жилищно-коммунального хозяйства РФ от 30 декабря 2020 г. N 915/пр)
Soil bases and foundations on permafrost soils
Дата введения - 1 июля 2021 г.
В соответствии с распоряжением Правительства РФ от 6 апреля 2021 г. N 887-р датой вступления в силу настоящего свода правил является 8 апреля 2021 г.
Части (разделы 4 (абзац шестой пункта 4.2), 5 (пункты 5.5, 5.7), 6 (пункт 6.3.9), 7 (пункты 7.2.6, 7.2.8, 7.2.10, 7.3.5, 7.3.6, 7.3.10, 7.4.2), 12 (пункты 12.2, 12.7, 12.8, 12.11, 12.15, 12.16), приложения Г, Д, Е (за исключением пункта Е.2)) настоящего документа включены в Перечень документов в области стандартизации, в результате применения которых на обязательной основе обеспечивается соблюдение требований Технического регламента о безопасности зданий и сооружений
Настоящий документ включен в Перечень документов в области стандартизации, в результате применения которых на добровольной основе обеспечивается соблюдение требований Технического регламента о безопасности зданий и сооружений с 1 июля 2021 г.
Введение
Настоящий свод правил разработан в целях соблюдения требований Федерального закона от 30 декабря 2009 г. N 384-ФЗ "Технический регламент о безопасности зданий и сооружений".
Настоящий документ содержит указания по проектированию оснований фундаментов зданий и сооружений, в том числе подземных, возводимых на территории распространения многолетнемерзлых грунтов.
Пересмотр свода правил подготовлен авторским коллективом АО "НИЦ "Строительство" - НИИОСП им. Н.М. Герсеванова (руководители темы - канд. техн. наук И.В. Колыбин, канд. техн. наук A.Г. Алексеев; д-р техн. наук Б.В. Бахолдин, д-р техн. наук Л.Р. Ставницер, канд. техн. наук С.Г. Безволев, канд. техн. наук Г.И. Бондаренко, канд. техн. наук О.Н. Исаев, канд. техн. наук В.Е. Конаш, канд. геол.-минерал. наук А.В. Рязанов, П.М. Сазонов, А.А. Чапаев, Э.С. Гречищева) при участии МГУ им. М.В. Ломоносова (д-р техн. наук Л.Н. Хрусталев, д-р геол.-минерал. наук И.А. Комаров) и канд. техн. наук В.И. Аксенова.
1 Область применения
Настоящий свод правил распространяется на проектирование оснований и фундаментов зданий и сооружений, возводимых на территории распространения многолетнемерзлых грунтов.
Настоящий свод правил не распространяется на проектирование оснований гидротехнических сооружений, земляного полотна автомобильных и железных дорог, аэродромных покрытий и фундаментов машин с динамическими нагрузками.
2 Нормативные ссылки
В настоящем своде правил приведены нормативные ссылки на следующие документы:
ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик
ГОСТ 6727-80 Проволока из низкоуглеродистой стали холоднотянутая для армирования железобетонных конструкций. Технические условия
ГОСТ 8732-78 Трубы стальные бесшовные горячедеформированные. Сортамент
ГОСТ 10704-91 Трубы стальные электросварные прямошовные. Сортамент
ГОСТ 12248-2010 Грунты. Методы лабораторного определения характеристик прочности и деформируемости
ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения
ГОСТ 19912-2012 Грунты. Методы полевых испытаний статическим и динамическим зондированием
ГОСТ 20295-85 Трубы стальные сварные для магистральных газонефтепроводов. Технические условия
ГОСТ 20522-2012 Грунты. Методы статистической обработки результатов испытаний
ГОСТ 23118-2012 Конструкции стальные строительные. Общие технические условия
ГОСТ 25100-2020 Грунты. Классификация
ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения
ГОСТ 31357-2007 Смеси сухие строительные на цементном вяжущем. Общие технические условия
ГОСТ 34028-2016 Прокат арматурный для железобетонных конструкций. Технические условия
ГОСТ Р 52544-2006 Прокат арматурный свариваемый периодического профиля классов А500С и В500С для армирования железобетонных конструкций. Технические условия
ГОСТ Р 54864-2016 Трубы стальные бесшовные горячедеформированные для сварных стальных строительных конструкций. Технические условия
ГОСТ Р 55724-2013 Контроль неразрушающий. Соединения сварные. Методы ультразвуковые
ГОСТ Р 58064-2018 Трубы стальные сварные для строительных конструкций. Технические условия
ГОСТ Р 58888-2020 Грунты. Метод полевых испытаний температурно-каротажным статическим зондированием
ГОСТ Р 58961-2020 Грунты. Метод полевых испытаний мерзлых грунтов термостатическим зондированием
СП 14.13330.2018 "СНиП II-7-81* Строительство в сейсмических районах" (с изменением N 1)
СП 16.13330.2017 "СНиП II-23-81* Стальные конструкции" (с изменениями N 1, N 2)
СП 20.13330.2016 "СНиП 2.01.07-85* Нагрузки и воздействия" (с изменениями N 1, N 2)
СП 22.13330.2016 "СНиП 2.02.01-83* Основания зданий и сооружений" (с изменениями N 1, N 2, N 3)
СП 24.13330.2011 "СНиП 2.02.03-85 Свайные фундаменты" (с изменениями N 1, N 2, N 3)
СП 28.13330.2017 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии" (с изменениями N 1, N 2)
СП 35.13330.2011 "СНиП 2.05.03-84* Мосты и трубы" (с изменениями N 1, N 2)
СП 36.13330.2012 "СНиП 2.05.06-85* Магистральные трубопроводы" (с изменениями N 1, N 2)
СП 47.13330.2016 "СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения"
СП 50.13330.2012 "СНиП 23-02-2003 Тепловая защита зданий" (с изменением N 1)
СП 63.13330.2018 "СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения" (с изменением N 1)
СП 64.13330.2017 "СНиП II-25-80 Деревянные конструкции" (с изменениями N 1, N 2)
СП 116.13330.2012 "СНиП 22-02-2003 Инженерная защита территорий, зданий и сооружений от опасных геологических процессов. Основные положения"
СП 131.13330.2018 "СНиП 23-01-99* Строительная климатология"
Примечание - При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования - на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссыпка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.
3 Термины, определения и обозначения
3.1 В настоящем своде правил применены следующие термины с соответствующими определениями:
3.1.1 бугор пучения: Выпуклая форма криогенного рельефа с ледяным или ледогрунтовым ядром, образующаяся в области многолетнемерзлых и сезонномерзлых пород в результате неравномерного льдообразования в породах.
3.1.2 грунт: Горные породы, почвы, техногенные образования, представляющие собой многокомпонентную и многообразную геологическую систему и являющиеся объектом инженерно-хозяйственной деятельности человека.
Примечание - Грунты могут служить:
- материалом основания зданий и сооружений;
- средой для размещения в них сооружений;
- материалом самого сооружения.
3.1.3 грунт мерзлый: Грунт с отрицательной или нулевой температурой, содержащий в своем составе видимые ледяные включения и (или) лед-цемент и характеризующийся криогенными структурными связями.
3.1.4 грунт многолетнемерзлый, грунт вечномерзлый: Грунт, находящийся в мерзлом состоянии постоянно в течение трех и более лет.
3.1.5 грунт пластичномерзлый: Дисперсный грунт, сцементированный льдом, но обладающий вязкими свойствами и сжимаемостью под внешней нагрузкой.
3.1.6 грунт пучинистый: Дисперсный грунт, который при переходе из талого в мерзлое состояние увеличивается в объеме вследствие образования кристаллов льда и имеет относительную деформацию морозного пучения .
3.1.7 грунт сезонномерзлый (сезонноталый): Грунт, находящийся в мерзлом или талом состоянии периодически в течение холодного или теплого сезона.
3.1.8 грунт твердомерзлый: Дисперсный грунт, прочно сцементированный льдом, характеризуемый относительно хрупким разрушением и практически несжимаемый под внешней нагрузкой.
3.1.9 криопег: Высокоминерализованные отрицательнотемпературные подземные воды, залегающие в толще многолетнемерзлых пород, также могут залегать ниже ее подошвы или выше кровли.
3.1.10 лед, грунт ледяной: Природное образование, состоящее из кристаллов льда с возможными примесями обломочного материала и органического вещества не более 10% об., характеризующееся криогенными структурными связями.
3.1.11 морозное пучение грунтов: Процесс увеличения объема и деформирования дисперсных грунтов при промерзании.
3.1.12 слой сезонного оттаивания: Поверхностный слой грунта, оттаивающий летом.
3.1.13 температура начала замерзания (оттаивания): Температура, при которой в порах грунта появляется (исчезает) лед.
3.1.14 термокарст: Образование просадочных и провальных форм рельефа и подземных пустот вследствие вытаивания подземного льда или оттаивания мерзлого грунта.
3.1.15 термостабилизация грунтов: Мероприятие или их комплекс, направленный на обеспечение требуемого температурного режима грунтов в течение срока эксплуатации инженерного сооружения.
3.1.16 термоэрозия: Разрушение и вынос оттаивающих и мерзлых дисперсных грунтов и льдов в результате теплового и механического воздействия водных потоков.
3.1.17 солифлюкция: Смещение (течение, оползание, соскальзывание, сплывы, оплывины) оттаивающего переувлажненного тонкодисперсного грунта на склонах в теплое время суток года, обусловленное сезонным промерзанием и оттаиванием.
3.1.18
специализированная организация: Организация, основным направлением деятельности которой является выполнение комплексных инженерных изысканий и проектирование оснований, фундаментов и подземных частей сооружений, располагающая квалифицированным и опытным персоналом, в т.ч. с обязательным привлечением научных кадров, соответствующим сертифицированным оборудованием и программным обеспечением. [СП 22.13330, пункт 3.38] |
3.1.19 репрезентативная метеорологическая станция: Метеостанция, результаты наблюдений которой показательны для местоположения строящегося объекта.
3.2 Обозначения, примененные в настоящем своде правил, приведены в приложении А.
4 Общие положения
4.1 Основания и фундаменты зданий и сооружений (далее - сооружения*), возводимых на территории распространения многолетнемерзлых грунтов, следует проектировать на основе результатов специальных инженерно-геологических изысканий, включающих специальные геокриологические и гидрогеологические изыскания с учетом конструктивных и технологических особенностей проектируемых сооружений, их теплового и механического взаимодействий с многолетнемерзлыми грунтами оснований и возможных изменений геокриологических условий в результате строительства и эксплуатации сооружений и освоения территории, устанавливаемых по данным инженерных изысканий и теплотехнических расчетов оснований.
4.2 Исходные данные для проектирования должны предоставляться в необходимом и достаточном объеме, регистрироваться и интерпретироваться специалистами, обладающими соответствующей квалификацией и опытом.
Проектирование должно выполняться квалифицированным персоналом, имеющим соответствующий опыт проектирования и строительства на многолетнемерзлых грунтах. При этом должны быть обеспечены координация и связь между ними и специалистами по инженерным изысканиям.
Используемые материалы и изделия должны удовлетворять требованиям северной строительно-климатической зоны.
При проектировании оснований и фундаментов на многолетнемерзлых грунтах следует учитывать местные условия строительства, требования к охране окружающей среды, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных условиях.
Выбор строительных площадок и проектных решений оснований и фундаментов следует производить на основании технико-экономического сравнения возможных вариантов с оценкой их по приведенным затратам с учетом надежности.
Не допускается использование восстановленных стальных труб и других бывших в употреблении видов металлоконструкции при проектировании и строительстве зданий и сооружений с нормальным и повышенным уровнями ответственности, а также при строительстве и эксплуатации особо опасных, технически сложных и уникальных объектов.
Примечание - Здесь и далее уровень ответственности сооружения устанавливается в зависимости от класса сооружения согласно ГОСТ 27751.
4.3 Инженерные изыскания для строительства на многолетнемерзлых грунтах следует проводить в соответствии с СП 47.13330 и другими нормативными документами по инженерным изысканиям и исследованиям грунтов для строительства. Требования к инженерным изысканиям на многолетнемерзлых грунтах приведены также в [1].
Проектирование оснований без достаточного инженерно-геологического обоснования не допускается.
4.4 При возведении нового объекта или реконструкции существующего сооружения на застроенной территории необходимо учитывать его воздействие на окружающую застройку с целью сохранения расчетного температурного режима многолетнемерзлых грунтов прилегающих территорий и предотвращения недопустимых деформаций существующих сооружений.
4.5 Соответствие состояния грунтов основания и фундаментов проектным требованиям при сдаче сооружения в эксплуатацию должно быть подтверждено результатами натурных наблюдений или испытаний, выполненных в период строительства согласно проекту геотехнического мониторинга.
4.6 При проектировании оснований и фундаментов уникальных зданий и сооружений или их реконструкции, а также сооружений повышенного уровня ответственности, в том числе реконструируемых в условиях окружающей застройки, необходимо предусматривать научно-техническое сопровождение строительства.
Научно-техническое сопровождение представляет собой комплекс работ научно-аналитического, методического, информационного, экспертно-контрольного и организационного характера, осуществляемых в процессе изысканий, проектирования и строительства в целях обеспечения надежности сооружений с учетом применения нестандартных расчетных методов, конструктивных и технологических решений.
4.7 Состав работ по научно-техническому сопровождению инженерных изысканий, проектирования и строительства оснований и фундаментов должен определяться генеральным проектировщиком и согласовываться заказчиком строительства. В состав работ научно-технического сопровождения могут быть включены:
разработка рекомендаций к программе инженерно-геологических и инженерно-экологических изысканий;
анализ и оценка материалов инженерных изысканий;
разработка нестандартных методов расчета и анализа;
прогноз состояния оснований и фундаментов проектируемого объекта с учетом всех возможных видов воздействий;
прогноз влияния строительства на окружающую застройку, геологическую среду и экологическую обстановку;
оценка геокриологических рисков;
разработка рекомендаций к проекту геотехнического мониторинга;
разработка технологических регламентов на специальные виды работ;
выполнение научно-исследовательских и опытно-конструкторских работ;
обобщение и анализ результатов всех видов геотехнического мониторинга, их сопоставление с результатами прогноза;
разработка рекомендаций для корректировки проектных решений на основании данных геотехнического мониторинга при выявлении отклонений от результатов прогноза.
5 Характеристики многолетнемерзлых грунтов оснований
5.1 Подразделение и наименование разновидностей многолетнемерзлых грунтов следует производить в соответствии с ГОСТ 25100 с учетом особенностей их физико-механических свойств как оснований сооружений.
5.2 По особенностям физико-механических свойств среди многолетнемерзлых грунтов должны выделяться сильнольдистые, засоленные и заторфованные грунты, использование которых в качестве оснований сооружений регламентируется дополнительными требованиями, предусмотренными разделами 8, 9 и 10, а также твердомерзлые, пластичномерзлые и сыпучемерзлые грунты, выделяемые согласно 5.3.
5.3 Подразделение грунтов на твердомерзлые, пластичномерзлые и сыпучемерзлые при проектировании оснований и фундаментов следует производить в зависимости от их состава, температуры и степени заполнения пор льдом и незамерзшей водой в соответствии с ГОСТ 25100 на момент проведения инженерно-геологических изысканий с учетом температуры грунтов, измеренной в период отбора проб.
По сжимаемости грунта под нагрузкой к твердомерзлым следует относить практически несжимаемые грунты с коэффициентом сжимаемости , к пластичномерзлым - грунты с коэффициентом сжимаемости .
При отклонении проектных значений среднегодовой температуры грунта на глубине нулевых амплитуд колебаний от природных значений более чем на 0,5°С требуется уточнение величин деформационных характеристик в соответствии с ГОСТ 12248.
5.4 Необходимые для расчета оснований и фундаментов физические и деформационно-прочностные характеристики многолетнемерзлых грунтов следует определять на основании их непосредственных полевых или лабораторных испытаний.
5.5 В состав определяемых для расчета многолетнемерзлых оснований физических и механических характеристик грунтов помимо характеристик, предусмотренных СП 22.13330, должны дополнительно входить:
а) физические и теплофизические характеристики мерзлых грунтов, определяемые в соответствии с приложением Б;
б) деформационные и прочностные характеристики грунтов для расчета мерзлых оснований по деформациям и несущей способности: коэффициент сжимаемости мерзлого грунта или модуль деформации (7.2.17), расчетное давление R и сопротивление мерзлого грунта или грунтового раствора сдвигу по поверхности смерзания и , сопротивление сдвигу льда по поверхности смерзания с грунтом или грунтовым раствором (7.2.3), сопротивление мерзлого грунта под нижним концом и по боковой поверхности смерзания , рассчитанные по данным полевых испытаний в случае их выполнения;
в) деформационные характеристики грунтов для расчета оттаивающего основания по деформациям: коэффициенты оттаивания и сжимаемости при оттаивании грунта (7.3.8);
г) прочностные характеристики для мерзлых грунтов и их контактов и определяются по результатам длительных испытаний, и - по результатам неконсолидированно-недренированного и консолидированно-недренированного среза оттаивающего грунта. Для уникальных сооружений прочностные характеристики мерзлых грунтов и , а также деформационные характеристики и допускается определять по результатам длительных испытаний методом трехосного сжатия;
д) характеристики грунтов слоя сезонного промерзания-оттаивания для расчета оснований и фундаментов на воздействие сил морозного пучения грунтов (7.4.3 и 7.4.6): относительная деформация морозного пучения , расчетная удельная касательная сила пучения и удельное нормальное давление пучения грунта на подошву фундамента , а также характеристики мерзлых грунтов для расчета оснований на горизонтальные статические и сейсмические воздействия (11.5 и 11.6). Нормальное давление морозного пучения допускается определять в лабораторных условиях в установках без возможности бокового расширения. Определяются максимальное нормальное давление морозного пучения, деформация морозного пучения без приложения нормального давления, а также величины деформации морозного пучения при двух промежуточных величинах нормального давления между максимальным и нулевым. По результатам испытаний строят график нормального давления от относительной деформации морозного пучения. Величину нормального давления принимают по графику на основании данных о нагрузках и деформациях от сооружения. Допускается принимать величину нормальной силы морозного пучения по одному значению, определяемому в лабораторных условиях при приложении фактической нагрузки от сооружения на образец.
При необходимости следует определять и другие характеристики мерзлых грунтов, характеризующие особенности их состояния или взаимодействия с фундаментами (вид криогенной текстуры, коэффициент вязкости , эквивалентное сцепление , скорость вязкопластического течения льда , относительная деформация морозного пучения, нормальные и касательные силы морозного пучения, удельное отрицательное трение оттаивающего грунта на боковой поверхности и т.п.).
Все необходимые при проектировании характеристики многолетнемерзлых грунтов должны быть указаны в техническом задании на инженерно-геологические изыскания.
5.6 Нормативные значения характеристик грунта следует устанавливать для выделенных при изысканиях инженерно-геологических элементов на основании статистической обработки результатов экспериментальных определений с учетом предусмотренного проектом состояния и температуры грунтов основания.
5.7 Расчетные значения характеристик грунта определяются по формуле
, (5.1)
где и - соответственно расчетное и нормативное значения данной характеристики;
- коэффициент надежности по грунту, определяемый согласно 5.8.
5.8 Коэффициент надежности по грунту определяется в соответствии с ГОСТ 20522 с учетом вида (назначения) определяемой расчетной характеристики, состояния грунтов в основании сооружения и доверительной вероятности .
При определении расчетных значений деформационных и прочностных характеристик грунтов, используемых в качестве основания в мерзлом состоянии (принцип I), коэффициент надежности по грунту устанавливается при доверительной вероятности , принимаемой равной 0,85, а для оснований опор мостов и линий электропередачи - 0,9.
При определении расчетных значений деформационных и прочностных характеристик грунтов, используемых в качестве основания в оттаивающем или оттаянном состоянии (принцип II), коэффициент надежности по грунту следует устанавливать:
а) для расчета оттаивающих оснований по деформациям с учетом совместной работы сооружения (фундамента) и деформируемого основания (7.3.5) - при доверительной вероятности , принимаемой в соответствии с нормами проектирования конструкций сооружения, но не менее 0,95;
б) для расчета оттаивающих оснований по деформациям без учета совместной работы основания и сооружения (7.3.4), а также при предварительном оттаивании грунтов (7.3.10) - при доверительной вероятности , принимаемой согласно СП 22.13330.
При определении расчетных значений физических и теплофизических характеристик грунтов коэффициент надежности по грунту допускается принимать равным 1,0.
5.9 Для расчета оснований сооружений пониженного уровня ответственности и сооружений нормального уровня ответственности габаритными размерами не более 24 м, расположенных на геокриологически изученных площадках, сложенных незасоленными грунтами без органических включений, при отсутствии опасных геокриологических процессов, возводимых с сохранением мерзлого состояния грунтов, а также для выполнения предварительных расчетов оснований и привязки типовых проектов к местным условиям, расчетные значения прочностных характеристик мерзлых грунтов R, , и допускается принимать по их физическим характеристикам, составу и температуре в соответствии с табличными данными, приведенными в приложении В; расчетные значения теплофизических характеристик грунтов в этих случаях допускается принимать по таблицам приложения Б. При применении цементно-песчаного раствора в качестве заполнителя свободного пространства между стенкой скважины и поверхностью сваи при буроопускном способе погружения свай расчетное сопротивление цементно-песчаного раствора сдвигу по поверхности смерзания со сваей и сопротивление грунтов сдвигу по цементно-песчаному раствору необходимо определять по результатам лабораторных или полевых испытаний.
6 Основные положения проектирования оснований и фундаментов
6.1 Принципы использования многолетнемерзлых грунтов в качестве основания
6.1.1 При строительстве на многолетнемерзлых грунтах в зависимости от конструктивных и технологических особенностей зданий и сооружений, инженерно-геокриологических условий и возможности целенаправленного изменения свойств грунтов основания применяется один из следующих принципов использования многолетнемерзлых грунтов в качестве основания сооружений:
принцип I - многолетнемерзлые грунты основания используются в мерзлом состоянии, сохраняемом в процессе строительства и в течение всего периода эксплуатации сооружения, или с допущением их промораживания в период строительства и эксплуатации;
принцип II - многолетнемерзлые грунты основания используются в оттаянном или опаивающем состоянии (с их предварительным оттаиванием на расчетную глубину до начала возведения сооружения или с допущением их оттаивания в период эксплуатации сооружения).
6.1.2 Принцип I следует применять, если грунты основания можно сохранить в мерзлом состоянии при экономически целесообразных затратах на мероприятия, обеспечивающие сохранение такого состояния. На участках с твердомерзлыми грунтами, а также при повышенной сейсмичности района следует принимать использование многолетнемерзлых грунтов по принципу I.
При строительстве на пластичномерзлых грунтах следует предусматривать мероприятия по понижению температуры грунтов (6.3.1-6.3.4) до установленных расчетом значений, а также учитывать в расчетах оснований пластические деформации этих грунтов под нагрузкой согласно указаниям 7.2.16-7.2.18.
6.1.3 Принцип II следует применять при наличии в основании скальных или других малосжимаемых грунтов, деформация которых при оттаивании не превышают предельно допустимых значений для проектируемого сооружения, при несплошном распространении многолетнемерзлых грунтов, а также в тех случаях, когда по техническим и конструктивным особенностям сооружения и инженерно-геокриологическим условиям участка при сохранении мерзлого состояния грунтов основания не обеспечивается требуемый уровень надежности строительства.
6.1.4 Выбор принципа использования многолетнемерзлых грунтов в качестве основания сооружений, а также способов и средств, необходимых для обеспечения принятого в проекте температурного режима грунтов, следует производить на основании сравнительных технико-экономических расчетов.
6.1.5 В пределах застраиваемой территории (промышленный узел, поселок, микрорайон и т.д.) следует предусматривать, как правило, один принцип использования многолетнемерзльгх грунтов в качестве оснований. Это требование следует учитывать также при проектировании новых и реконструкции существующих зданий и сооружений на застроенной территории, размещении мобильных (временных) зданий и прокладке инженерно-технических сетей.
Применение разных принципов использования многолетнемерзльгх грунтов в пределах застраиваемой территории допускается на обособленных по рельефу и другим природным условиям участках, а в необходимых случаях на природно-необособленных участках, если предусмотрены и подтверждены расчетом специальные меры по обеспечению расчетного теплового режима грунтов в основании соседних зданий, возведенных (или возводимых) по принципу I (резервирование зон безопасности, устройство мерзлотных и противофильтрационных завес и т.п.).
6.1.6 Линейные сооружения допускается проектировать с применением на отдельных участках трассы разных принципов использования многолетнемерзльгх грунтов в качестве основания. При этом следует предусматривать меры по приспособлению их конструкций к неравномерным деформациям основания в местах перехода от одного участка к другому, а при прокладке их в пределах застраиваемой территории следует соблюдать требования, предусмотренные 6.1.5.
6.2 Глубина заложения и конструкции фундаментов
6.2.1 Глубина заложения фундаментов, считая от уровня планировки (подсыпки или срезки), назначается с учетом требований СП 22.13330 и принятого принципа использования многолетнемерзлых грунтов в качестве основания сооружения и должна проверяться расчетом по устойчивости фундаментов на действие сил морозного пучения грунтов согласно 7.4.2 и 7.4.6.
6.2.2 При использовании многолетнемерзлых грунтов в качестве основания по принципу I минимальную глубину заложения фундаментов рекомендуется принимать по таблице 6.1 в зависимости от расчетной глубины сезонного оттаивания грунта , определяемой согласно приложению Г.
Таблица 6.1
Фундаменты |
Минимальная глубина заложения фундаментов , м |
Фундаменты всех типов, кроме свайных |
|
Свайные фундаменты зданий и сооружений |
|
Сваи опор мостов |
|
Фундаменты зданий и сооружений, возводимых на насыпях |
Не нормируется |
6.2.3 При использовании многолетнемерзлых грунтов в качестве основания по принципу II минимальную глубину заложения фундаментов следует принимать в соответствии с требованиями СП 22.13330 в зависимости от расчетной глубины сезонного промерзания грунта , определяемой согласно приложению Г, и уровня подземных вод, который принимается с учетом образования под сооружением зоны оттаивания грунта.
Допускается закладывать фундаменты в слое сезонного промерзания-оттаивания грунта, если это обосновано расчетом оснований и фундаментов (7.4.6).
Допускается устройство фундаментов малоэтажных зданий на поверхности грунта или на подсыпке при обосновании расчетом по второй группе предельных состояний, учитывающим возможное оттаивание грунтов и морозное пучение слоя сезонного промерзания-оттаивания.
6.2.4 Конструкции фундаментов должны удовлетворять требованиям, предъявляемым к материалу фундаментов по прочности в соответствии с требованиями СП 24.13330, СП 28.13330, СП 35.13330, а элементы фундаментов, находящиеся в пределах слоя сезонного промерзания и оттаивания грунта и выше, - также требованиям по морозостойкости, водонепроницаемости и устойчивости к воздействию агрессивных сред в соответствии с требованиями СП 28.13330 и СП 35.13330.
Металлические сваи следует проектировать из стальных электросварных прямошовных и бесшовных труб в соответствии с ГОСТ 20295, ГОСТ 10704, ГОСТ 8732, ГОСТ Р 54864, ГОСТ Р 58064 и их аналогов.
Назначение марок сталей и категорий сталей по ударной вязкости свай следует осуществлять в соответствии с требованиями СП 16.13330.
Электросварные трубы, сваренные высокочастотной сваркой (ВЧС), следует применять только после объемной термической обработки (ОТО). Для электросварных труб допускается не предусматривать ОТО при условии, что они изготавливаются с применением дуговой сварки под флюсом.
Металлические и деревянные конструкции фундаментов в слое сезонного промерзания и оттаивания грунта должны быть защищены от коррозии и гниения. Антикоррозионную защиту следует выполнять для всех металлических поверхностей подземных конструкций в слое сезонного промерзания-оттаивания и ниже на 1 м. Для забиваемых свай антикоррозионная защита должна быть устойчивой к механическому воздействию. Возможность применения антикоррозионной защиты должна быть подтверждена лабораторными и полевыми исследованиями. В случаях, когда слой сезонного промерзания-оттаивания грунта не сливается с многолетнемерзлыми грунтами, следует также выполнять антикоррозионную защиту свай до глубины на 1 м ниже отметки залегания кровли многолетнемерзлых пород.
Для железобетонных конструкций, сооружаемых в климате со среднемесячной температурой наиболее холодного месяца ниже минус 20°С и на многолетнемерзлых грунтах, следует применять тяжелый бетон со средней плотностью 2200-2500 , который в зависимости от условий работы отвечает требованиям по прочности, морозостойкости и водонепроницаемости, изложенным в таблице 6.2.
Таблица 6.2 - Требования к бетону по прочности, морозостойкости и водонепроницаемости
Группа конструкций |
Условия работы конструкции |
Минимальный класс бетона по прочности на сжатие В |
Минимальные марки бетона |
Минимальное воздухововлечение, % |
||
Характеристика режима работы |
Расчетная зимняя температура наружного воздуха |
по морозостойкости F |
по водонепроницаемости W |
|||
1 |
Железобетонные конструкции, расположенные в сезонно-оттаивающем слое грунта и подвергающиеся попеременному замораживанию и оттаиванию в водонасыщенном состоянии |
Ниже минус 40°С |
35 |
400 |
10 |
4 |
Ниже минус 20°С до минус 40°С включ. |
30 |
200 |
8 |
4 |
||
2 |
Наземные железобетонные конструкции, подвергающиеся воздействию атмосферных осадков и попеременному замораживанию и оттаиванию |
Ниже минус 40°С |
30 |
200 |
8 |
4 |
Ниже минус 20°С до минус 40°С включ. |
25 |
150 |
6 |
4 |
||
3 |
Железобетонные конструкции, защищенные от атмосферных осадков и подвергающиеся замораживанию и оттаиванию |
Ниже минус 40°С |
25 |
150 |
6 |
- |
Ниже минус 20°С до минус 40°С включ. |
25 |
150 |
6 |
- |
||
Примечания 1 Расчетная зимняя температура наружного воздуха принимается по средней температуре воздуха наиболее холодной пятидневки в зависимости от района строительства согласно СП 131.13330. 2 Марки по морозостойкости и водонепроницаемости для конструкций водоснабжения и канализации, а также для свай и свай-оболочек следует устанавливать согласно требованиям соответствующих нормативных документов. 3 В случае присутствия хлоридов в надмерзлотных водах для обеспечения защиты стальной арматуры от коррозии марку бетона по водонепроницаемости и толщину защитного слоя бетона устанавливают по таблице Г.1 СП 28.13330. 4 При проектировании сооружений с полами по грунту для железобетонных конструкций фундаментов группы 1 следует применять бетон, соответствующий требованиям по прочности, морозостойкости и водонепроницаемости, указанным в строке для температур наружного воздуха ниже 20°С до минус 40°С включительно. |
В условиях климата со среднемесячной температурой наиболее холодного месяца ниже минус 20°С следует применять следующую стальную арматуру:
- горячекатаную гладкую класса A-I (А240) по ГОСТ 34028;
- горячекатаную кольцевого периодического профиля классов А-II (А300), А-III (А400) по ГОСТ 34028;
- термомеханически упрочненную серповидного профиля классов А500С по ГОСТ Р 52544;
- термомеханически упрочненную и горячекатаную серповидного профиля класса А500С по ГОСТ Р 52544;
- холоднодеформированную волочением с последующей накаткой периодического профиля класса Вр-1 по ГОСТ 6727;
- холоднодеформированную прокаткой периодического профиля класса В500С по ГОСТ Р 52544.
Рекомендуется применять арматуру с гарантией ударной вязкости северного исполнения горячекатаную класса Ас-II (Ас300) по ГОСТ 34028 и термомеханически упрочненную класса Ас500С по ГОСТ 13015.
При низкой температуре до минус 60°С увеличивается предел текучести арматуры в среднем на 8%-10% и модуль упругости арматуры на 2%-3%, но эти данные допускается не учитывать в расчете железобетонных конструкций, и расчетные сопротивления и модуль упругости принимают по [2],
6.2.5 Ленточные и столбчатые фундаменты должны быть выполнены из монолитного или сборного железобетона. Для зданий, строящихся с использованием оснований фундаментов по принципу I, предпочтительно использовать сборные элементы фундамента.
Ленточные и столбчатые фундаменты под малоэтажные здания до трех этажей допускается не заглублять в грунт, а располагать на подсыпке или в теле подсыпки. Подсыпка выполняется из крупноскелетного непучинистого материала. Для определения глубины оттаивания следует проводить теплотехнический расчет и расчет по второй группе предельных состояний и, при необходимости, применить слой теплоизоляции под сооружением в теле подсыпки.
При устройстве свайных фундаментов в многолетнемерзлых грунтах допускается применять виды и конструкции свай, предусмотренные СП 24.13330, в том числе буронабивные, сваи-оболочки, а также составные (комбинированные) сваи из разных материалов.
6.2.6 В проекте свайных фундаментов должны быть указаны способы устройства свай, а также температурные условия, при которых разрешается нагружение свай.
6.2.7 Полые сваи и сваи-оболочки следует заполнять бетоном класса не ниже В7,5, а в пределах слоя сезонного промерзания-оттаивания и выше - бетоном класса не ниже В15 для обеспечения прочности и долговечности. Допускается заполнять внутреннюю полость полых свай и свай-оболочек сухой цементно-песчаной смесью (ЦПС) или цементно-песчаным раствором при соблюдении следующих требований:
- конструкция сваи должна быть герметичной;
- качество сварных швов должно проверяться визуально и ультразвуковым контролем (УЗК) по ГОСТ Р 55724 и ГОСТ 23118;
- не допускается наличие в свае посторонних предметов, воды, снега и льда;
- должно обеспечиваться 100% заполнение внутреннего пространства сваи с учетом самоуплотнения ЦПС и изменения объема цементно-песчаного раствора при его замерзании.
Дополнительно при применении сухой ЦПС:
- необходимо предусматривать мероприятия по исключению попадания воды и снега в сухую ЦПС;
- соотношение цемента и песка в сухой ЦПС должно определяться проектом с учетом условий строительства, а также размещаемых на фундаменте конструкций, но не менее 1:5;
- для приготовления сухой ЦПС с целью исключения коррозии изнутри следует использовать портландцемент общестроительного назначения без минеральных добавок и непучинистый незасоленный песок;
- при приготовлении сухой ЦПС необходимо обеспечить допустимый уровень ее влажности согласно ГОСТ 31357.
Дополнительно при применении цементно-песчаного раствора:
- следует применять цементно-песчаный раствор марки по прочности на сжатие не ниже M100 с пределом прочности на сжатие не менее 10 МПа, пределом прочности на растяжение при изгибе не менее 3 МПа, морозостойкостью не менее 50 циклов (F50);
- при заполнении сваи раствором в зимнее время монтаж оголовка допускается выполнять после полного замерзания или твердения раствора.
6.2.8 При устройстве буронабивных свай в многолетнемерзлых грунтах, используемых в качестве оснований по принципу I, применение химических добавок для ускорения твердения бетона, уложенного в распор с мерзлым грунтом не рекомендуется.
6.3 Устройство оснований и фундаментов при использовании многолетнемерзлых грунтов по принципу I
6.3.1 При использовании многолетнемерзлых грунтов в качестве оснований сооружений по принципу I для сохранения мерзлого состояния грунтов основания и обеспечения их расчетного теплового режима в проектах оснований и фундаментов необходимо предусматривать: устройство вентилируемых подполий или холодных первых этажей зданий (6.3.2), укладку в основании сооружения вентилируемых труб, каналов или применение вентилируемых фундаментов (6.3.3), установку сезоннодействующих охлаждающих устройств жидкостного или парожидкостного типов - СОУ (6.3.4), а также осуществление других мероприятий (теплозащитные экраны и др.) по устранению или уменьшению теплового воздействия сооружения на мерзлые грунты основания.
Выбор одного или сочетания нескольких мероприятий должен производиться на основании расчетов: прогнозного (на период строительства и эксплуатации) теплотехнического, устойчивости и несущей способности с учетом конструктивных и технологических особенностей сооружения, опыта местного строительства и экономической целесообразности.
6.3.2 Вентилируемые подполья с естественной или побудительной вентиляцией следует применять для сохранения мерзлого состояния грунтов в основаниях зданий и сооружений, в том числе сооружений с повышенными тепловыделениями. Требуемый тепловой режим вентилируемого подполья устанавливается теплотехническим расчетом согласно приложению Д.
Подполья в соответствии с теплотехническим расчетом и условиями снегозаносимости допускается устраивать открытыми, с вентилируемыми или закрытыми продухами в цоколе здания; при необходимости у продухов следует устраивать вытяжные или приточные трубы, располагая воздухозаборные отверстия выше наибольшего уровня снегового покрова. Закрытые подполья, а также холодные первые этажи зданий следует устраивать при ширине зданий до 15 м и среднегодовых температурах грунта ниже минус 2°С.
Высота подполья должна приниматься по условиям обеспечения его вентилирования, но не менее 1,2 м от поверхности грунта в подполье до низа выступающих конструкций перекрытия; при размещении в подполье коммуникаций - по условиям свободного к ним доступа, но не менее 1,4 м. Под отдельными участками сооружения шириной до 6 м при отсутствии в них коммуникаций и фундаментов высоту подполья допускается уменьшать до 0,6 м.
Поверхность грунта в подполье должна быть с твердым покрытием и спланирована с уклонами в сторону наружных отмосток или водосборов, обеспечивающих беспрепятственный отвод воды от сооружения. Допускается применять гибкие водонепроницаемые покрытия с осуществлением мероприятий по сохранению их целостности в период эксплуатации. При устройстве покрытий следует обеспечивать гидроизоляцию на контакте свай (фундамента) с материалом покрытия.
Инженерные тепловыделяющие коммуникации, размещаемые в вентилируемом подполье, должны быть теплоизолированы.
6.3.3 Вентилируемые трубы или каналы, а также вентилируемые фундаменты можно устраивать с естественной или побудительной вентиляцией и их следует применять для сохранения мерзлого состояния грунтов в основании сооружений с полами по грунту, при устройстве свайных фундаментов, малозаглубленных или поверхностных фундаментов на подсыпках, а также мобильных зданий и зданий в комплектно-блочном исполнении.
Вентилируемые трубы, каналы и вентилируемые фундаменты следует укладывать выше уровня подземных вод в пределах подсыпки из непучинистого грунта с уклонами в сторону объединительных коллекторов. Для уменьшения теплопритока в грунт и высоты подсыпки под полами сооружения следует предусматривать укладку тепло- и гидроизоляции.
Теплотехнический расчет оснований при использовании указанных систем охлаждения грунтов следует производить согласно 7.2.9.
6.3.4 Сезоннодействующие охлаждающие устройства следует применять для сохранения мерзлого состояния грунтов оснований, для повышения несущей способности и обеспечения устойчивости опор линейных сооружений в пластичномерзлых грунтах, а также для создания ледогрунтовых завес, восстановления нарушенного при эксплуатации сооружения теплового режима грунтов в его основании и в других целях.
6.3.5 Для сокращения сроков строительства и повышения расчетных нагрузок на фундаменты следует предусматривать предварительное (до возведения сооружения) охлаждение высокотемпературных и пластичномерзлых грунтов (путем очистки поверхности от снега, с помощью СОУ и т.д.) при последующем поддержании расчетного температурного режима грунтов за счет постоянно действующих охлаждающих устройств.
6.3.6 На участках, где слой сезонного промерзания-оттаивания не сливается с многолетнемерзлым грунтом, необходимо предусматривать меры по стабилизации или поднятию верхней поверхности многолетнемерзлого грунта до расчетного уровня путем предварительного охлаждения и промораживания грунтов основания. Глубину заложения фундаментов при этом следует определять расчетом, но принимать не менее 2 м ниже верхней поверхности многолетнемерзлого грунта. Допускается закладывать фундаменты в пределах немерзлого слоя грунта, если это обосновано расчетом основания.
6.3.7 При использовании многолетнемерзлых грунтов в качестве оснований по принципу I могут применяться свайные, столбчатые и другие типы фундаментов, в том числе фундаменты на искусственных (насыпных и намывных) основаниях. Выбор типа фундамента и способа устройства основания устанавливается проектом в зависимости от инженерно-геокриологических условий строительства, конструктивных особенностей сооружения и технико-экономической целесообразности.
6.3.8 По условиям применимости и способам погружения в многолетнемерзлый грунт сваи подразделяются на:
а) буроопускные - сваи сплошные и полые, свободно погружаемые в скважины, диаметр которых превышает (не менее чем на 5 см) размер их наибольшего поперечного сечения, с заполнением свободного пространства раствором цементно-песчаным, глинисто-песчаным, известково-песчаным или другого состава по проекту, принимаемым по условиям обеспечения заданной прочности смерзания сваи с грунтом; допускаются к применению в любых грунтах при средней температуре грунта по длине сваи минус 0,5°С и ниже, полезную нагрузку на буроопускную сваю можно передавать только после достижения расчетных температур грунтов основания;
б) опускные - сваи сплошные и полые, свободно (или с пригрузом) погружаемые в оттаянный грунт в зоне диаметром до двух наибольших поперечных размеров сваи: допускаются к применению в твердомерзлых грунтах песчаных и глинистых, содержащих не более 15% крупнообломочных включений при средней температуре грунта по длине сваи не выше минус 1,5°С;
в) бурозабивные (забивные) - сваи сплошные и полые, рассчитанные на восприятие ударных нагрузок и погружаемые забивкой в лидерные скважины (без лидерных скважин), диаметр которых меньше наименьшей стороны сваи прямоугольного поперечного сечения или диаметра сваи круглого поперечного сечения; допускаются к применению в пластичномерзлых грунтах с содержанием крупнообломочных включений до 10% на основании пробных погружений свай на данной площадке;
г) бурообсадные - полые сваи и сваи-оболочки, погружаемые в грунт путем его разбуривания в забое через полость сваи с периодическим осаживанием погружаемой сваи; применяются при устройстве свайных фундаментов в сложных инженерно-геокриологических условиях и при наличии межмерзлотных подземных вод;
д) винтовые - полые сваи с винтом или одной или несколькими лопастями, погружаемые завинчиванием с контролируемым вдавливанием в лидерные скважины (без лидерных скважин), диаметр которых меньше наибольшего поперечного сечения ствола сваи; допускаются к применению в пластичномерзлых грунтах с содержанием крупнообломочных включений до 10% на основании пробных погружений свай на данной площадке.
Допускается применять другие способы погружения или устройства свай в многолетнемерзлые грунты (буронабивные, буроинъекционные и др.), если это не приводит к недопустимому повышению температуры грунтов основания и недопустимому понижению несущей способности свай, что должно быть подтверждено полевыми испытаниями, экспериментальными данными и теплотехническим расчетом. При устройстве буронабивных, буроинъекционных свай должны изготовляться опытные сваи, в которых контролируется набор прочности тела сваи, определяются сопротивление мерзлого грунта сдвигу по бетону, температура по длине сваи и ее сплошность, а также проводятся испытания таких свай на действующие при эксплуатации вдавливающие, выдергивающие и горизонтальные нагрузки. Количество испытаний должно составлять не менее двух для каждого характерного геологического разреза и типоразмера сваи.
6.3.9 Расстояние между осями свай следует принимать равным:
для буроопускных и бурообсадных свай - не менее двух диаметров скважины при ее диаметре до 1 м включительно и не менее диаметра скважины плюс 1 м при ее диаметре 1 м и более:
для опускных, бурозабивных и забивных свай - не менее трех наибольших размеров поперечного сечения сваи.
Размещение свай в плане, их число, размеры и способы устройства ростверков назначаются в зависимости от конструкции здания, размещения технологического оборудования и нагрузок на фундаменты в соответствии с требованиями СП 24.13330 с учетом расчетной несущей способности свай, определяемой согласно 7.2.2, высоты холодного подполья (6.3.2) и температурно-влажностных воздействий; укладка ростверков по грунту или с зазором менее 0,15 м от поверхности грунта, а для устоев мостов - менее 0,5 м не допускается.
Проходку лидерных скважин для установки буроопускных свай допускается выполнять с помощью струйной технологии при условии отсутствия в геологическом строении валунов размерами, сопоставимыми с диаметром скважин. Вода должна иметь положительную температуру, в летний период - это температура наружного воздуха (но не ниже 10°С), в зимний период воду следует подогревать до 20°С в зависимости от температуры наружного воздуха. Диаметр скважины должен превышать минимум на 5 см наибольший размер поперечного сечения сваи.
Несущую способность винтовых свай по грунту следует определять по результатам полевых испытаний, учитывающих реологические свойства мерзлых грунтов (критерий стабилизация деформации должен составлять менее 0,2 мм за последние 24 ч). Сваи должны быть рассчитаны по материалу как на момент устройства (завинчивание-погружение), так и на период эксплуатации. Применение винтовых свай допустимо для сооружений нормального и пониженного уровней ответственности.
Винтовые сваи, устраиваемые в многолетнемерзлых грунтах, используемые по принципу II, следует рассчитывать по требованиям СП 24.13330 с учетом изменения свойств грунтов при оттаивании.
6.3.10 Столбчатые или плитные фундаменты, возводимые на естественном многолетнемерзлом основании, следует устраивать сборно-монолитными и монолитными. Глубина заложения фундаментов, их размеры и несущая способность устанавливаются расчетом согласно указаниям 7.2.2-7.2.4, с учетом требований 6.2.1 и 6.2.2.
Обратную засыпку котлованов под фундаменты следует производить талым (непучинистым при промерзании) грунтом. При льдистости грунтов основания под подошвой фундаментов следует устраивать песчаную подушку толщиной не менее 0,2 м.
6.3.11 При проектировании сооружений на искусственных основаниях (насыпях или подсыпках) следует предусматривать устройство фундаментов мелкого заложения (столбчатые, ленточные, плитные, с вентилируемыми каналами и др.). Фундаменты следует закладывать в пределах высоты подсыпки, определяемой теплотехническим расчетом с учетом дополнительных мероприятий по сохранению мерзлого состояния грунтов оснований, предусмотренных 6.3.3 и 6.3.10.
Подсыпку следует устраивать из непучинистого песчаного или крупнообломочного грунта, укладываемого после промерзания сезоннооттаивающего слоя; допускается для устройства подсыпок применять шлаки или другие отходы производства, если их осадки под нагрузками от сооружений не больше расчетных, и если они не подвержены морозному пучению и разрушению, растворению и размоканию.
При устройстве фундаментов на подсыпках основания и фундаменты следует рассчитывать по несущей способности и деформациям в соответствии с требованиями СП 22.13330 и с учетом результатов прогнозных теплотехнических расчетов.
6.4 Устройство оснований и фундаментов при использовании многолетнемерзлых грунтов по принципу II
6.4.1 При проектировании оснований и фундаментов зданий и сооружений, возводимых с использованием многолетнемерзлых грунтов по принципу II, следует предусматривать мероприятия по уменьшению деформаций основания (6.4.2) или мероприятия по приспособлению конструкций сооружения к восприятию неравномерных деформаций основания (6.4.5), назначаемые по результатам расчета основания по деформациям.
Выбор одного из указанных мероприятий или их сочетания производится на основании технико-экономического расчета. При этом мероприятия по уменьшению деформаций основания следует предусматривать в любом случае, если расчетные осадки сооружения превышают значения, допустимые по архитектурным и технологическим требованиям, а для сооружений, возводимых по типовым проектам, - также установленные для них предельные значения деформаций по условиям прочности и устойчивости конструкций.
Мероприятия по приспособлению конструкций сооружения к неравномерным деформациям оттаивающего основания следует назначать по результатам расчета совместной работы основания и сооружения.
6.4.2 Для уменьшения деформаций основания в зависимости от конкретных условий строительства следует предусматривать:
предварительное (до возведения сооружения) искусственное оттаивание и уплотнение грунтов основания;
замену льдистых грунтов основания талым или непросадочным при оттаивании песчаным или крупнообломочным грунтом;
ограничение глубины оттаивания мерзлых грунтов основания, в том числе со стабилизацией верхней поверхности многолетнемерзлого грунта в процессе эксплуатации сооружения;
увеличение глубины заложения фундаментов, в том числе с прорезкой льдистых грунтов и опиранием фундаментов на скальные или другие малосжимаемые при оттаивании грунты.
6.4.3 Глубину предварительного оттаивания или замены льдистых грунтов основания на малосжимаемые при оттаивании грунты следует устанавливать по результатам расчета основания по деформациям согласно 7.3.10.
Контуры зоны оттаивания или замены грунтов основания в плане должны выходить за контуры сооружения не менее чем на половину глубины предварительного оттаивания грунта.
Допускается принимать меньшую площадь предварительного оттаивания или замены грунтов в плане, а также производить локальное предварительное оттаивание грунтов под фундаментами (вместо сплошного оттаивания под всей площадью сооружения), если это обосновано расчетом основания по деформациям и устойчивости.
Оттаивание грунтов оснований можно производить способами электрооттаивания, парооттаивания или за счет других источников тепла. При этом должны быть предусмотрены меры по обеспечению установленной проектом степени уплотнения оттаянного грунта.
6.4.4 Для ограничения глубины оттаивания грунтов в основании сооружения следует предусматривать устройство теплоизолирующих подсыпок и экранов, увеличение сопротивления теплопередаче полов первых этажей и другие мероприятия по уменьшению теплового влияния сооружения на грунты основания, а также стабилизацию верхней поверхности многолетнемерзлого грунта (в том числе при многолетнемерзлых грунтах несливающегося типа) ниже глубины заложения подошвы фундаментов путем регулирования температуры воздуха в подпольях или технических этажах здания согласно приложению Е.
6.4.5 Приспособление конструкций сооружений к неравномерным деформациям основания должно обеспечиваться:
а) увеличением прочности и пространственной жесткости здания, достигаемой устройством поэтажных, связанных с перекрытиями железобетонных и армокирпичных поясов, усилением армирования конструкций, замоноличиванием сборных элементов перекрытия, усилением цокольно-фундаментной части, равномерным расположением сквозных поперечных стен, а также разрезкой протяженных зданий на отдельные отсеки длиной до полуторной ширины здания;
б) увеличением податливости и гибкости сооружения путем разрезки его конструкций деформационными швами, устройством шарнирных сопряжений отдельных конструкций с учетом возможности их выравнивания и рихтовки технологического оборудования.
Допускается предусматривать комбинацию указанных мероприятий применительно к особенностям проектируемого сооружения. При этом, бескаркасные жилые и общественные здания следует, как правило, проектировать по жесткой конструктивной схеме; для промышленных сооружений могут применяться гибкие и комбинированные конструктивные схемы. Цокольно-фундаментную часть зданий в типовых проектах следует разрабатывать в нескольких вариантах, рассчитанных по прочности на разные пределы допустимых деформаций основания.
6.4.6 При использовании многолетнемерзлых грунтов в качестве оснований по принципу II следует, как правило, применять:
а) для сооружений с жесткой конструктивной схемой, возводимых на оттаивающих грунтах, - усиленные армопоясами ленточные фундаменты, в том числе в виде жестких перекрестных лент, воспринимающих и перераспределяющих усилия, вызванные неравномерной осадкой оттаивающего основания, а в необходимых случаях - плитные фундаменты; на предварительно оттаянных и уплотненных грунтах допускается применять столбчатые, ленточные и другие виды фундаментов на естественном основании, а также свайные фундаменты, если это обусловлено грунтовыми условиями;
б) для сооружений с гибкой конструктивной схемой - столбчатые и отдельно стоящие фундаменты под колонны, гибкие ленточные фундаменты, а в необходимых случаях также свайные фундаменты.
6.4.7 В случаях, когда в основании сооружений залегают скальные или другие малосжимаемые при оттаивании грунты, следует применять столбчатые фундаменты, свайные фундаменты из свай-стоек, в том числе из составных и буронабивных свай.
Сваи следует погружать, как правило, буроопускным способом в скважины, диаметр которых не менее чем на 15 см превышает наибольшие размеры поперечного сечения сваи, с заполнением свободного пространства цементно-песчаным или другим раствором но проекту. Заделку свай-стоек в скальные грунты следует производить в соответствии с требованиями СП 24.13330.
7 Расчет оснований и фундаментов
7.1 Общие указания
7.1.1 При проектировании оснований и фундаментов сооружений, возводимых на многолетнемерзлых грунтах, следует выполнять теплотехнические расчеты основания и расчеты основания и фундаментов на силовые воздействия. В расчетах основания и фундаментов необходимо учитывать принцип использования многолетнемерзлых грунтов в качестве основания, тепловое и механическое взаимодействие сооружения и основания.
7.1.2 Основания и фундаменты следует рассчитывать по двум группам предельных состояний: по первой - по несущей способности, по второй - по деформациям (осадкам, прогибам и пр.), затрудняющим нормальную эксплуатацию конструкций сооружения, а элементы железобетонных конструкций - и по трещиностойкости.
При расчете по предельным состояниям несущую способность основания и его ожидаемые деформации следует устанавливать с учетом температурного режима грунтов основания, а при принципе I - также с учетом продолжительности действия нагрузок и реологических свойств грунтов.
Фундаменты как элементы конструкций в зависимости от их материала следует рассчитывать в соответствии с требованиями СП 16.13330, СП 35.13330, СП 63.13330, СП 64.13330. Расчет указанных конструкций приведен также в [2] и [3].
7.1.3 Расчет оснований следует производить:
а) при использовании многолетнемерзлых грунтов по принципу I: по несущей способности - для твердомерзлых грунтов; по несущей способности и деформациям - для пластичномерзлых и сильнольдистых грунтов, а также подземных льдов;
б) при использовании многолетнемерзлых грунтов по принципу II: по несущей способности - в случаях, предусмотренных СП 22.13330; по деформациям - во всех случаях, при этом для оснований, оттаивающих в процессе эксплуатации сооружения, расчет по деформациям следует производить из условия совместной работы основания и сооружения.
Расчет оснований по деформациям следует производить на основные сочетания нагрузок и воздействий; расчет по несущей способности - на основные и особые сочетания нагрузок и воздействий.
7.1.4 Нагрузки и воздействия, передаваемые на основания сооружением, следует устанавливать расчетом в соответствии с требованиями СП 20.13330 с учетом СП 22.13330, СП 24.13330, а для оснований опор мостов и труб под насыпями - согласно СП 35.13330.
При использовании многолетнемерзлых грунтов по принципу I, если грунты основания находятся в твердомерзлом состоянии, а также в случаях, предусматриваемых СП 22.13330, нагрузки и воздействия на основание допускается назначать без учета их перераспределения надфундаментными конструкциями сооружения.
При использовании многолетнемерзлых грунтов в качестве основания по принципу II нагрузки на основание следует определять, как правило, с учетом совместной работы основания и сооружения.
7.1.5 Нагрузки и воздействия, которые по СП 20.13330, могут относиться как к длительным, так и к кратковременным, при расчете мерзлых оснований по несущей способности должны относиться к кратковременным, а при расчете оснований по деформациям - к длительным.
Воздействия, вызванные осадками грунтов при предусмотренном в проекте оттаивании их в процессе эксплуатации сооружения, следует относить к длительным; воздействия, связанные с возможным протаиванием и просадками грунтов при нарушениях эксплуатационного режима сооружения, - к особым.
7.2 Расчет оснований и фундаментов при использовании многолетнемерзлых грунтов по принципу I
7.2.1 Расчет оснований фундаментов по первой группе предельных состояний (по несущей способности) производится исходя из условия
, (7.1)
где F - расчетная нагрузка на основание;
- несущая способность основания, определяемая расчетом (7.2.2), а для оснований свайных фундаментов - дополнительно и по данным полевых испытаний свай (7.2.10) и статического зондирования (приложение Л);
- коэффициент надежности по ответственности сооружения, принимаемый в соответствии с требованиями СП 22.13330 в зависимости от вида и уровня ответственности сооружения, а для оснований опор мостов - согласно СП 35.13330 и 12.13.
7.2.2 Несущая способность основания , кН, вертикально натуженной висячей сваи или столбчатого фундамента определяется по формуле
, (7.2)
где - температурный коэффициент, учитывающий изменения температуры грунтов основания из-за случайных изменений температуры наружного воздуха, определяется по приложению П;
- коэффициент условий работы основания, принимаемый по 7.2.4;
R - расчетное сопротивление мерзлого грунта под нижним концом сваи или под подошвой столбчатого фундамента, кПа, определяется согласно 7.2.3;
А - площадь подошвы столбчатого фундамента или площадь опирания сваи на грунт, , принимаемая для сплошных свай равной площади их поперечного сечения (или площади уширения). для полых свай, погруженных с открытым нижним концом, - площади поперечного сечения сваи брутто при заполнении ее полости бетоном или цементно-песчаным раствором на высоту, обеспечивающую несущую способность по смерзанию с внутренней поверхностью сваи не менее несущей способности у нижнего конца сваи;
- расчетное сопротивление мерзлого грунта или грунтового раствора сдвигу по боковой поверхности смерзания сваи или столбчатого фундамента в пределах (i-го слоя грунта, кПа, определяемое согласно 7.2.3;
- площадь поверхности смерзания i-го слоя грунта с боковой поверхностью сваи, а для столбчатого фундамента - площадь поверхности смерзания грунта с нижней ступенью фундамента, ;
n - число выделенных при расчете слоев многолетнемерзлого грунта.
Примечания
1 При расчете несущей способности основания столбчатого фундамента силы смерзания фунта, определяемые вторым слагаемым формулы (7.2), учитываются только при условии выполнения обратной засыпки пазух котлована влажным талым грунтом с уплотнением, что должно быть отмечено в проекте.
2 В случаях, когда слой сезонного промерзания-оттаивания не сливается с многолетнемерзлым грунтом, несущую способность свай в пределах немерзлого слоя грунта допускается учитывать по СП 24.13330. При этом должны быть предусмотрены меры по стабилизации верхней поверхности многолетнемерзлого грунта, а расчетные сопротивления таликовых грунтов (кроме крупнообломочных и песков со степенью влажности не превышающей 0,8) вдоль боковой поверхности свай, принимаемые по нормативным таблицам СП 24.13330, следует брать с понижающими коэффициентами: 0,8 - для глинистых грунтов, 0,9 - для песчаных водонасыщенных грунтов; для других грунтов понижающие коэффициенты определяют по опытным данным.
3 Рекомендуется при определении несущей способности оснований выполнять расчет на первый год эксплуатации. Распределение температур грунта по глубине рассчитывается по формуле (7.8), при этом температурный коэффициент принимается равным . В случае, когда несущая способность основания на первый год эксплуатации меньше несущей способности, определенной по расчетным значениям температуры, установившимся в эксплуатационном периоде, и с учетом температурного коэффициента, за несущую способность следует принимать данное значение.
4 При расчете несущей способности основания свайного фундамента следует учитывать возможное возникновение отрицательного (негативного) трения грунта на боковой поверхности свай с учетом требований СП 24.13330.
7.2.3 Расчетное давление на мерзлый грунт под подошвой фундамента R и расчетные сопротивления мерзлого грунта или грунтового раствора сдвигу по поверхности смерзания фундамента устанавливаются по данным испытаний грунтов, проводимых в соответствии с ГОСТ 12248, с учетом коэффициента надежности по грунту , принимаемому согласно 5.8, и расчетных температур грунта основания , и , определяемых теплотехническим расчетом по 7.2.7 и 7.2.8. В расчет принимается наихудшее значение. В случае предварительного охлаждения грунтов расчетные температуры , и определяются теплотехническим расчетом только по 7.2.7.
По результатам испытаний грунтов шариковым штампом или на одноосное сжатие расчетные значения R, кПа, вычисляются по формуле
, (7.3)
где - нормативное значение предельно длительного сцепления, кПа, принимаемое равным: при испытаниях грунтов шариковым штампом и - при испытаниях на одноосное сжатие, где и - соответственно предельно длительное эквивалентное сцепление и сопротивление грунта одноосному сжатию;
- расчетное значение удельного веса грунта, ;
d - глубина заложения фундамента, м;
- коэффициент надежности по грунту.
Нормативное значение допускается принимать согласно приложению Л.
В случаях, предусмотренных 5.9, расчетные значения R и допускается принимать но таблицам приложения В.
При расчетах несущей способности оснований значения R следует принимать: для свайных фундаментов - при расчетной температуре грунта на глубине z, равной глубине погружения сваи; для столбчатых фундаментов - при расчетной температуре грунта на глубине заложения подошвы фундамента.
Расчетные сопротивления сдвигу следует принимать: для свайных фундаментов - при температуре грунта на глубине середины i-го слоя грунта; для столбчатых фундаментов - при температуре грунта на глубине, соответствующей середине нижней ступени фундамента.
При расчетах несущей способности оснований висячей сваи, расположенной в однородных по составу многолетнемерзлых грунтах, по формуле (7.2) значения принимается при средней (эквивалентной) температуре грунта (7.2.7).
Для буроопускных свай за расчетное сопротивление сдвигу принимают наименьшие из значений сопротивления растворов сдвигу по поверхности смерзания со сваей и сопротивления грунтов сдвигу по раствору (цементно-песчаному, известково-песчаному или грунтовому) ; для буронабивных свай - по значению . При расчете теплового взаимодействия сооружения с многолетнемерзлыми грунтами основания рекомендуется учитывать внесение в массив грунта тепла из-за применения раствора при устройстве буроопускных свай, а также бетона для заполнения внутренней полости полых свай. При расчете несущей способности комбинированных свай (деревометаллических, сборно-монолитных и др.) значения следует принимать с учетом разной прочности смерзания с грунтом их различных элементов в соответствии с указаниями приложения В.
Для свай (кроме бурозабивных), опираемых на песчано-щебеночную подушку высотой не менее трех диаметров скважины, при диаметре скважины не более полутора диаметров сваи, расчетное значение R допускается принимать для грунта подушки, а значение А - равным площади забоя скважины. При опирании свай на льдистые грунты с льдистостью расчетные значения R следует принимать с понижающим коэффициентом .
Для кратковременных нагрузок с временем действия t, равным или меньшим продолжительности перерывов между ними, расчетные значения R и допускается принимать с повышающим коэффициентом (кроме опор мостов) в соответствии с таблицей 7.1.
Таблица 7.1
Время действия нагрузки t, ч |
0,1 |
0,25 |
0,5 |
1 |
2 |
8 |
24 |
Коэффициент |
1,7 |
1,5 |
1,35 |
1,25 |
1,2 |
1,1 |
1,05 |
7.2.4 Коэффициент условий работы основания принимается по таблице 7.2 в зависимости от вида и способов устройства фундаментов (кроме опор мостов).
Таблица 7.2
Виды фундаментов и способы их устройства |
Коэффициент |
Столбчатые и другие виды фундаментов на естественном основании |
1,0 |
То же, на подсыпках |
0,9 |
Буроопускные сваи с применением грунтовых растворов, превышающих по прочности смерзания вмещающие грунты |
1,1 |
То же, при равномерной прочности грунтовых растворов и вмещающего грунта |
1,0 |
Опускные и буронабивные сваи |
1,0 |
Бурообсадные, забивные и бурозабивные сваи при диаметре лидерных скважин менее 0,8 диаметра свай |
1,0 |
Бурозабивные при большем диаметре лидерных скважин |
0,9 |
Значения коэффициента , приведенные в таблице 7.2, допускается увеличивать пропорционально отношению полной нагрузки на фундамент к сумме постоянных и длительных временных нагрузок, но не более чем в 1,2 раза, если расчетные значения деформаций основания при этом не превышают предельно допустимых значений.
7.2.5 Передача на фундаменты проектных нагрузок допускается, как правило, при температуре грунтов в основании сооружения не выше установленных на эксплуатационный период расчетных значений. В необходимых случаях следует предусматривать мероприятия по предварительному (до загружения фундаментов) охлаждению пластичномерзлых грунтов (6.3.5) до установленных расчетом значений температуры.
При соответствующем обосновании расчетом основания по деформациям и несущей способности допускается загружать фундаменты при температурах грунта выше расчетных, но не выше значений: - для песчаных и крупнообломочных грунтов и - для глинистых, где - температура начала замерзания грунта (Б.5). Несущая способность основания в этом случае должна определяться при расчетных температурах грунта, устанавливаемых без учета теплового влияния сооружения по формуле (7.8), принимая коэффициент по расчету.
В случае, если в проекте предусматриваются фундаменты, обладающие достаточной несущей способностью в грунтах как в талом, так и в мерзлом их состоянии, передача на фундаменты части проектных нагрузок в процессе строительства допускается при любых значениях температуры грунтов в основании сооружения. При этом проверку несущей способности свай по грунту следует выполнять как в талом состоянии основания, соответствующем начальному этапу строительства, так и в мерзлом состоянии, соответствующем завершению строительства, путем проведения соответствующих расчетов и контрольных испытаний свай.
7.2.6 Расчетные температуры грунтов , и определяются расчетом теплового взаимодействия сооружения с многолетнемерзлыми грунтами основания в периодически установившемся тепловом режиме с учетом переменных в годовом периоде условий теплообмена на поверхности, формы и размеров сооружения, глубины заложения и расположения фундаментов в плане, а также теплового режима сооружения и принятых способов и средств сохранения мерзлого состояния грунтов основания.
При расчетах многолетнемерзлых оснований по несущей способности и деформациям расчетные температуры грунтов , и следует принимать равными:
- максимальной в годовом периоде температуре грунта в установившемся эксплуатационном режиме на глубине заложения фундамента , отсчитываемой от верхней поверхности многолетнемерзлого грунта;
- максимальной в годовом периоде средней по глубине заложения фундамента температуре многолетнемерзлого грунта в установившемся эксплуатационном режиме (эквивалентная температура грунта);
- температура многолетнемерзлого грунта на данной глубине z от его верхней поверхности, принимаемой на момент установления температуры .
7.2.7 Для оснований свайных, столбчатых и других видов фундаментов сооружений с холодным (вентилируемым) подпольем, опор трубопроводов, линий электропередачи, антенно-мачтовых сооружений, кроме оснований опор мостов, расчетные температуры грунтов , и допускается определять по формулам:
для оснований сооружений с холодным подпольем
под серединой сооружения
; (7.4)
под краем сооружения
; (7.5)
под углами сооружения
; (7.6)
для опор линий электропередачи, антенно-мачтовых сооружений и трубопроводов
, (7.7)
где - расчетная среднегодовая температура на верхней поверхности многолетнемерзлого грунта в основании сооружения, °С, определяемая согласно приложению Д;
- температура начала замерзания грунта, °С, определяемая согласно приложению Б;
- расчетная среднегодовая температура грунта, °С, определяемая согласно приложению Г, при наличии данных полевых измерений температуры грунтов следует использовать нормативное значение среднегодовой температуры многолетнемерзлого грунта;
, и - коэффициенты сезонного изменения температуры грунтов основания, принимаемые по таблице 7.3 в зависимости от значения параметра , ,
где z - глубина от кровли многолетнемерзлого грунта, м;
- объемная теплоемкость, , определяемая согласно приложению Б;
- теплопроводность мерзлого грунта, , определяемая согласно приложению Б;
, и - коэффициенты теплового влияния сооружения, принимаемые по таблице 7.4 в зависимости от отношений z/B и L/B, L и В - соответственно длина и ширина сооружения, м;
- коэффициент теплового влияния изменения поверхностных условий при возведении фундаментов линейных сооружений, принимаемый по таблице 7.5 в зависимости от вида и глубины заложения фундаментов z, м.
Таблица 7.3
Коэффициенты |
Значения , |
|||||||||
0 (0) |
1000 (25) |
2000 (50) |
3000 (75) |
4000 (100) |
6000 (125) |
8000 (150) |
10000 (175) |
15000 (250) |
20000 (300) |
|
0 (0) |
0,28 (0,38) |
0,47 (0,61) |
0,61 (0,76) |
0,71 (0,85) |
0,85 (0,91) |
0,92 (0,94) |
0,96 (0,96) |
0,99 (0,99) |
1,00 (1,00) |
|
0 (0) |
0,30 (0,40) |
0,52 (0,67) |
0,67 (0,85) |
0,80 (0,95) |
0,95 (1,01) |
1,02 (1,03) |
1,03 (1,03) |
1,01 (1,01) |
1,00 (1,00) |
|
0 (0) |
0,14 (0,21) |
0,26 (0,38) |
0,38 (0,51) |
0,47 (0,61) |
0,61 (0,68) |
0,70 (0,74) |
0,77 (0,78) |
0,85 (0,85) |
0,90 (0,88) |
Таблица 7.4
Форма сооружения в плане |
L/B |
Коэффициенты k для определения , и |
|||||||||||
при z/B |
при z/B |
при z/B |
|||||||||||
0,25 |
0,5 |
1,0 |
2,0 |
0,25 |
0,5 |
1,0 |
2,0 |
0,25 |
0,5 |
1,0 |
2,0 |
||
Прямоугольная |
1 |
0,41 ------ 0,21 |
0,67 ------ 0,38 |
0,87 ------ 0,57 |
0,96 ------ 0,75 |
0,17 ------ 0,09 |
0,28 ------ 0,16 |
0,39 ------ 0,25 |
0,47 ------ 0,34 |
0,06 ------ 0,03 |
0,10 ------ 0,05 |
0,17 ------ 0,09 |
0,22 ------ 0,14 |
2 |
0,33 ------ 0,17 |
0,56 ------ 0,31 |
0,80 ------ 0,50 |
0,93 ------ 0,68 |
0,15 ------ 0,08 |
0,26 ------ 0,14 |
0,37 ------ 0,23 |
0,45 ------ 0,32 |
0,04 ------ 0,02 |
0,08 ------ 0,04 |
0,14 ------ 0,08 |
0,20 ------ 0,12 |
|
3 |
0,32 ------ 0,16 |
0,53 ------ 0,30 |
0,76 ------ 0,47 |
0,91 ------ 0,65 |
0,15 ------ 0,08 |
0,25 ------ 0,14 |
0,36 ------ 0,22 |
0,44 ------ 0,31 |
0,04 ------ 0,02 |
0,08 ------ 0,04 |
0,13 ------ 0,07 |
0,19 ------ 0,12 |
|
0,29 ------ 0,14 |
0,50 ------ 0,27 |
0,71 ------ 0,44 |
0,84 ------ 0,62 |
0,15 ------ 0,07 |
0,25 ------ 0,14 |
0,35 ------ 0,22 |
0,42 ------ 0,30 |
0,03 ------ 0,02 |
0,07 ------ 0,04 |
0,12 ------ 0,07 |
0,18 ------ 0,11 |
||
Круглая |
- |
0,45 ------ 0,23 |
0,71 ------ 0,41 |
0,89 ------ 0,62 |
0,97 ------ 0,78 |
0,22 ------ 0,13 |
0,32 ------ 0,20 |
0,40 ------ 0,28 |
0,45 ------ 0,36 |
- |
- |
- |
- |
Примечания 1 В числителе указаны значения коэффициентов k для температур и , в знаменателе - для температуры . 2 При z/B = 0 коэффициенты , и следует принимать равными 0. |
Таблица 7.5
Виды фундаментов |
Коэффициент при z, м |
||
до 2 |
от 2 до 6 |
св. 6 |
|
Массивные и свайные с ростверком, заглубленным в грунт |
0,7 |
0,9 |
1,0 |
Свайные с высоким ростверком и сборные под опоры рамно-стоечного типа |
0,9 |
1,0 |
1,0 |
7.2.8 Расчетные температуры многолетнемерзлых грунтов основания без учета теплового влияния сооружения определяются по формуле
, (7.8)
где обозначения те же, что в формуле (7.4).
7.2.9 Расчетные температуры грунтов оснований фундаментов, охлаждаемых системой вентилируемых труб, каналов или полостей в фундаментах (6.3.3), следует определять из совместного теплотехнического расчета основания и системы охлаждения, исходя из условия
, (7.9)
где - расчетная среднегодовая температура на верхней поверхности многолетнемерзлого грунта в основании сооружения, отвечающая проектному положению границы сезонного оттаивания грунтов, включая грунты подсыпки.
При равномерном расположении охлаждающих труб или каналов под всей площадью сооружения расчетные температуры грунтов в его основании , и допускается определять, как для сооружений с холодным подпольем (7.2.7) при среднем по площади сооружения значений температуры .
Расчетные температуры грунтов оснований фундаментов, при использовании термостабилизации грунтов допускается рассчитывать численными методами с учетом изменения температур при эксплуатации сооружения.
7.2.10 Несущая способность основания одиночной сваи по результатам полевых испытаний свай статической вдавливающей нагрузкой определяется по формуле
, (7.10)
где k - коэффициент, учитывающий различие в условиях работы опытной и проектируемых свай и определяемый по формуле
, (7.11)
и - значение несущей способности соответственно проектируемой и опытной свай, рассчитанные по формуле (7.2) по значениям R и , принимаемым по таблицам приложения В: для проектируемой сваи - при расчетных температурах грунта, устанавливаемых согласно 7.2.3 и 7.2.6, а для опытной сваи - при температурах, измеренных при испытании;
- нормативное значение предельно длительного сопротивления основания опытной сваи статической нагрузке, определяемое по данным испытания сваи;
- коэффициент надежности по грунту, принимаемый равным 1,1.
7.2.11 Число испытаний грунтов сваями и нагрузки при испытаниях определяются проектом в зависимости от сложности инженерно-геокриологических условий, расчетных нагрузок, передаваемых на основание, и числа типоразмеров свай.
Для сложных инженерно-геокриологических условий и сооружений повышенного уровня ответственности при проектировании может быть принято решение о проведении испытаний грунтов сваями на стадии инженерно-геологических изысканий.
Для стадии инженерно-геологических изысканий определение несущей способности грунтов сваями рекомендуется проводить:
а) эталонной сваей
- вдавливающей нагрузкой - не менее шести испытаний для каждого характерного геологического разреза;
- выдергивающей и горизонтальной (при значительных выдергивающих нагрузках и наличии сильнопучинистых грунтов, а также в сейсмических районах и наличии значительных горизонтальных нагрузок) не менее двух испытаний;
б) натурной сваей
- вдавливающей нагрузкой - не менее двух испытаний для каждого характерного геологического разреза;
- выдергивающей и горизонтальной - не менее одного испытания.
На стадии строительства контрольные испытания устроенных свай с целью проверки соответствия несущей способности грунтов расчетным нагрузкам, установленным в проекте свайного фундамента, рекомендуется проводить в зависимости от общего числа свай в свайном поле фундамента:
- вдавливающей нагрузкой: до 200 свай - два испытания; 200-1000 свай - 1% числа свай; более 1000 свай - 0,5% числа свай, но не менее десяти испытаний;
- выдергивающей и горизонтальной: до 2000 свай - два испытания; более 2000 свай - 0,1% числа свай.
7.2.12 Количественную оценку характеристик механических свойств и несущей способности оснований свай в многолетнемерзлых грунтах по данным статического зондирования проводят согласно приложению Л на основе эмпирических или полуэмпирических зависимостей (таблиц), устанавливаемых в результате корреляционно-регрессионного анализа данных параллельных испытаний грунтов прямыми методами и методом статического зондирования.
7.2.13 Несущую способность основания столбчатого фундамента, нагруженного внецентренно сжимающей нагрузкой, допускается определять в соответствии с требованиями СП 22.13330. При этом эксцентриситеты приложения равнодействующей всех нагрузок на уровне подошвы фундамента следует определять с учетом смерзания грунта с боковой поверхностью нижней ступени фундамента по формулам:
; (7.12)
, (7.13)
где и - соответственно эксцентриситеты приложения равнодействующей всех нагрузок относительно осей прямоугольной подошвы фундамента со сторонами а и b, м;
и - моменты внешних сил от расчетных нагрузок относительно тех же осей, ;
F - расчетная вертикальная нагрузка, кН, от сооружения на основание, включая вес фундамента и грунта, лежащего на его уступах;
- часть момента внешних сил, , воспринимаемая касательными силами смерзания многолетнемерзлого грунта с боковыми поверхностями нижней ступени фундамента высотой и вычисляемая по формуле
, (7.14)
где и - обозначения те же, что в формуле (7.2);
- расчетное сопротивление мерзлого грунта сдвигу, кПа, принимаемое по 7.2.3.
При эксцентриситете нагрузки относительно одной оси фундамента допускается , , определять по формуле
, (7.15)
где а - сторона подошвы фундамента, параллельная плоскости действия момента, м.
7.2.14 Расчет свайных фундаментов па действие горизонтальных нагрузок (сил и/или моментов) и воздействий (температурного расширения ростверка и пр.) следует производить с учетом инженерно-геокриологических условий и совместной работы свай и грунтового основания с использованием апробированных геотехнических программ. Расчетная схема должна соответствовать требованиям пункта 7.1.2 СП 24.13330.2011. Методика расчета должна учитывать влияние продольной силы на изгиб, а также поперечных сил и деформаций на продольное сжатие ствола сваи.
Взаимодействие сваи с грунтом (по боковой поверхности и нижнему торцу) допускается учитывать с помощью нелинейных контактных элементов (контактной модели). При малых (упругих, линейных) деформациях жесткость контактного элемента должна соответствовать стандартным деформационным характеристикам грунта (модуль деформаций, коэффициент Пуассона). Прочность и пластические деформации, грунта (контактных элементов у боковой поверхности сваи и под ее нижним торцом) следует рассчитывать с применением условия предельного равновесия Кулона-Мора. При расчете свайных групп характеристики контактных элементов следует определять с учетом взаимовлияния между сваями через грунт.
Для расчетов свайных фундаментов сооружений нормального уровня ответственности допускается применение линейных контактных элементов при условии проведения расчета по приложению В СП 24.13330.2011 с учетом инженерно-геокриологических условий согласно приложению Ж.
7.2.15 Расчет фундаментов, воспринимающих значительные горизонтальные усилия, следует производить на плоский сдвиг в соответствии с требованиями СП 22.13330.
7.2.16 Расчет оснований по второй группе предельных состояний (по деформациям) производится исходя из условия
, (7.16)
где - деформация пластичномерзлого основания под нагрузкой от сооружения, определяемая согласно 7.2.17 и 7.2.18;
- предельно допустимая деформация основания сооружения за расчетный срок его эксплуатации, определяется согласно СП 22.13330.
7.2.17 Осадки оснований фундаментов, возводимых на пластичномерзлых грунтах, следует определять:
а) для ленточных и столбчатых фундаментов - в соответствии с СП 22.13330, применяя расчетную схему в виде линейно-деформируемого полупространства или линейно-деформируемого слоя конечной толщины;
б) для одиночных свайных фундаментов - по данным полевых испытаний свай статической вдавливающей нагрузкой, а для кустов или групп свай - согласно СП 24.13330 с использованием расчетных схем, основанных на модели грунта как линейно-деформируемой среды.
Расчетные деформационные характеристики пластичномерзлых грунтов (коэффициент сжимаемости или модуль деформации ) следует принимать по данным компрессионных испытаний при расчетной температуре грунта, устанавливаемой по формуле (7.8), а также по результатам полевых статических испытаний пластичномерзлых грунтов моделями фундаментов (штампами, сваями) и статического зондирования в соответствии с приложением Л.
7.2.18 Осадки оснований, сложенных сильнольдистыми грунтами и подземными льдами, а также в случаях загружения фундаментов при температуре грунтов основания выше расчетных значений, принятых для установившегося эксплуатационного режима (7.2.5), следует определять с учетом изменения деформационных характеристик грунтов в зависимости от температуры и времени, а также развития пластических деформаций льда, согласно указаниям 8.8 и приложения И.
7.3 Расчет оснований и фундаментов при использовании многолетнемерзлых грунтов по принципу II
7.3.1 Расчет оснований и фундаментов по первой группе предельных состояний (по несущей способности) следует проводить для фундаментов мелкого заложения в соответствии с требованиями СП 22.13330, для свайных фундаментов - в соответствии с требованиями СП 24.13330, с учетом 7.3.15-7.3.17.
Примечание - Расчетные сопротивления оттаявших или оттаивающих грунтов вдоль боковой поверхности свай, принимаемые по СП 24.13330, следует принимать с понижающими коэффициентами согласно примечанию 2 (7.2.2).
7.3.2 Расчет оснований по второй группе предельных состояний (по деформациям) следует производить с учетом совместной работы основания и сооружения. Расчет оснований по деформациям без учета совместной работы основания и сооружения допускается выполнять в случаях, предусмотренных СП 22.13330, а также для выбора принципа использования многолетнемерзлых грунтов в качестве оснований и необходимых мероприятий для уменьшения деформаций основания.
7.3.3 Расчеты оттаивающих оснований по деформациям необходимо производить в пределах расчетной глубины оттаивания грунтов в основании сооружения за заданный срок его эксплуатации с учетом развития зоны оттаивания во времени.
Расчетную глубину оттаивания грунтов в основании сооружения следует определять на основании расчета теплового взаимодействия сооружения с многолетнемерзлым грунтом с учетом формы, размеров и теплового режима сооружения, температуры и теплофизических свойств грунтов основания.
Для простых по форме сооружений с равномерной по площади температурой, в том числе для заглубленных сооружений, расчетную глубину оттаивания грунтов в их основании H допускается определять по приложению К.
7.3.4 Расчет оснований по деформациям без учета совместной работы оттаивающего основания и сооружения следует производить исходя из условия
, (7.17)
где s - осадка основания фундаментов (совместная деформация основания и сооружения при оттаивании грунтов в процессе эксплуатации сооружения под воздействием собственного веса грунта и дополнительной нагрузки от сооружения в пределах расчетной глубины оттаивания H);
- предельное значение осадки основания фундамента (совместной деформации основания и сооружения), устанавливаемое согласно СП 22.13330, а для мостов - СП 35.13330.
7.3.5 Расчет оснований и фундаментов по деформациям с учетом совместной работы основания и сооружения по первой группе предельных состояний на воздействия, вызываемые неравномерными осадками оттаивающего основания, следует проводить исходя из условия
, (7.18)
где - расчетные усилия, возникающие в элементах конструкций сооружения при неравномерных осадках оттаивающего основания;
- предельные значения сопротивления элементов конструкции сооружения, рассчитываемые по нормам проектирования соответствующих конструкций;
- коэффициент условий работы системы "основание-сооружение", принимаемый равным 1,25;
- коэффициент надежности по назначению сооружения, принимаемый равным 1,2, 0,95 и 0,9 соответственно для сооружений повышенного, нормального и пониженного уровней ответственности.
Расчет усилий в элементах фундаментных конструкций и реактивных давлений грунтов следует выполнять численными методами на основании уравнений строительной механики с учетом зависимостей реактивных давлений от неравномерных осадок основания. При этом оттаивающее основание допускается рассматривать как линейно-деформируемый слой конечной толщины. Допускается применять другие расчетные схемы, в том числе с использованием вероятностных методов расчета, учитывающих статистическую неоднородность основания. При расчете оснований и фундаментов по деформациям среднее давление на основание под подошвой фундамента от основного сочетания нагрузок не должно превышать расчетного давления на основание R, определяемого в соответствии со СП 22.13330 по расчетным характеристикам оттаивающих грунтов.
7.3.6 Осадку оттаивающего в процессе эксплуатации сооружения основания следует определять по формуле
, (7.19)
где - составляющая осадки основания, обусловленная действием собственного веса оттаивающего грунта, определяемая по 7.3.7;
- составляющая осадки основания, обусловленная дополнительным давлением на грунт от действия веса сооружения, определяемая по 7.3.9.
7.3.7 Составляющую осадки основания , м, следует определять по формуле
, (7.20)
где n - число выделенных при расчете слоев грунта;
и - коэффициент оттаивания, доли единицы, и коэффициент сжимаемости, , i-го слоя оттаивающего грунта, принимаемые по экспериментальным данным согласно 7.3.8;
- вертикальное напряжение от собственного веса грунта в середине i-го слоя грунта, кПа, определяемое расчетом для глубины от уровня планировочных отметок с учетом взвешивающего действия воды;
- толщина i-го слоя оттаивающего грунта, м.
Примечание - Взвешивающее действие воды при определении следует учитывать для водопроницаемых грунтов, залегающих ниже расчетного уровня подземных вод, но выше водоупора.
7.3.8 Коэффициенты оттаивания и сжимаемости оттаивающего грунта следует устанавливать по результатам полевых испытаний мерзлых грунтов горячим штампом. Если значения и получены по данным лабораторных испытаний грунтов, то их расчетные значения при определении осадок оттаивающего основания следует умножать на поправочный коэффициент , где разность между суммарной льдистостью i-го слоя грунта и льдистостью испытанного образца, взятого из этого слоя. Допускается вводить поправки за неполное смыкание макропор и набухание оттаивающего грунта, если это подтверждено экспериментальными данными.
7.3.9 Составляющую осадки основания , м, при расчетной схеме в виде линейно-деформируемого слоя конечной толщины следует определять по формуле
, (7.21)
где - дополнительное вертикальное давление на основание под подошвой фундамента, кПа;
b - ширина подошвы фундамента, м;
- безразмерный коэффициент, определяемый по таблице 7.6 в зависимости от отношения z/b, где z - расстояние от подошвы фундамента до нижней границы зоны оттаивания или кровли непросадочного при оттаивании грунта, м;
- коэффициент сжимаемости i-го слоя грунта, ;
- коэффициент, определяемый по таблице 7.6 в зависимости от отношения z/b, где z - расстояние от подошвы фундамента до середины i-го слоя грунта, м;
и - коэффициенты, определяемые по таблице 7.7 в зависимости от отношений a/b, и , где и - расстояние от подошвы фундамента соответственно до подошвы и кровли i-го слоя грунта, м.
Примечание - Расчет развития осадок оттаивающего основания во времени следует производить по скорости протаивания грунтов под сооружением, определяемой теплотехническим расчетом.
Таблица 7.6
z/b |
Коэффициент для грунтов |
||||
крупнообломочных |
песчаных и супесей |
суглинков |
глин |
||
0-0,25 |
1,35 |
1,35 |
1,35 |
1,36 |
1,55 |
0,25-0,5 |
1,25 |
1,33 |
1,35 |
1,42 |
1,79 |
0,5-1,5 |
1,15 |
1,31 |
1,35 |
1,45 |
1,96 |
1,5-3,5 |
1,10 |
1,29 |
1,35 |
1,52 |
2,15 |
3,5-5,0 |
1,05 |
1,29 |
1,35 |
1,53 |
2,22 |
5,0 |
1,00 |
1,28 |
1,35 |
1,54 |
2,28 |
Таблица 7.7
z/b |
Коэффициент k при a/b |
||||||
1 |
1,4 |
1,8 |
2,4 |
3,2 |
5 |
10 |
|
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0,2 |
0,100 |
0,100 |
0,100 |
0,100 |
0,100 |
0,100 |
0,104 |
0,4 |
0,200 |
0,200 |
0,200 |
0,200 |
0,200 |
0,200 |
0,208 |
0,6 |
0,299 |
0,300 |
0,300 |
0,300 |
0,300 |
0,300 |
0,311 |
0,8 |
0,380 |
0,394 |
0,397 |
0,397 |
0,397 |
0,397 |
0,412 |
1,0 |
0,446 |
0,472 |
0,482 |
0,486 |
0,486 |
0,486 |
0,511 |
1,2 |
0,449 |
0,538 |
0,556 |
0,565 |
0,567 |
0,567 |
0,605 |
1,4 |
0,542 |
0,592 |
0,618 |
0,635 |
0,640 |
0,640 |
0,687 |
1,6 |
0,577 |
0,637 |
0,671 |
0,696 |
0,707 |
0,709 |
0,763 |
1,8 |
0,606 |
0,676 |
0,717 |
0,750 |
0,768 |
0,772 |
0,831 |
2,0 |
0,630 |
0,708 |
0,756 |
0,796 |
0,820 |
0,830 |
0,892 |
2,5 |
0,676 |
0,769 |
0,832 |
0,889 |
0,928 |
0,952 |
1,020 |
3,0 |
0,708 |
0,814 |
0,887 |
0,958 |
1,011 |
1,056 |
1,138 |
3,5 |
0,732 |
0,846 |
0,927 |
1,016 |
1,123 |
1,131 |
1,230 |
4,0 |
0,751 |
0,872 |
0,960 |
1,051 |
1,128 |
1,205 |
1,316 |
6,0 |
0,794 |
0,933 |
1,037 |
1,151 |
1,257 |
1,384 |
1,550 |
10,0 |
0,830 |
0,983 |
1,100 |
1,236 |
1,365 |
1,547 |
1,696 |
16,0 |
0,850 |
1,011 |
1,137 |
1,284 |
1,430 |
1,645 |
2,095 |
20,0 |
0,857 |
1,021 |
1,149 |
1,300 |
1,451 |
1,679 |
2,236 |
7.3.10 Осадку основания s при предварительном оттаивании или замене льдистых грунтов до глубины для уменьшения деформаций основания (6.4.2), а также в случаях, когда слой сезонного промерзания-оттаивания не сливается с многолетнемерзлым грунтом, следует определять по формуле
, (7.22)
где - осадка уплотнения предварительно оттаянного, замененного или естественного немерзлого слоя грунта толщиной под воздействием веса сооружения, определяемая в соответствии с СП 22.13330;
- дополнительная осадка основания при оттаивании многолетнемерзлых грунтов в процессе эксплуатации сооружения, определяемая по формуле (7.20) для интервала глубин , где - расчетная глубина оттаивания грунта, считая от уровня планировки под зданием, устанавливаемая теплотехническим расчетом по приложению К.
Глубину предварительного оттаивания или замены грунтов основания следует устанавливать исходя из условия
, (7.23)
где - предельно допустимая для данного сооружения осадка основания, принимаемая по 7.3.4.
7.3.11 Крен фундамента i на оттаивающем основании, вызванный внецентренными нагрузками, неравномерным оттаиванием и неоднородностью грунтов, а также влиянием близко расположенных фундаментов, следует определять по формуле
, (7.24)
где и - осадка краев фундамента;
b - размер фундамента в направлении крена.
7.3.12 Расчет гибких ленточных фундаментов на оттаивающих в процессе эксплуатации сооружения грунтах необходимо производить с учетом переменной по длине фундамента осадки основания, обусловленной неравномерным оттаиванием грунтов под сооружением. При определении реактивных давлений оттаивающего грунта на подошву фундамента допускается рассматривать оттаивающий грунт как линейно-деформируемое основание, характеризуемое переменным по длине фундамента коэффициентом постели.
7.3.13 Осадку s свайных фундаментов из висячих свай, погруженных в предварительно оттаянные грунты, в том числе при их локальном оттаивании (6.4.3), следует определять, как для условного фундамента, границы которого принимаются согласно СП 24.13330. При этом следует учитывать возможность проявления отрицательных (негативных) сил трения по периметру условного фундамента или по поверхности отдельных свай (7.3.16), а также воздействие горизонтальных усилий на фундаменты в периферийных частях зоны оттаивания.
7.3.14 Расчет свай-стоек по несущей способности при опирании их на скальные или другие малосжимаемые при оттаивании грунты следует производить исходя из условия
, (7.25)
где F - расчетная нагрузка на сваю, кН;
- несущая способность основания одиночной сваи, кН, определяемая по 7.3.15;
- коэффициент надежности, принимаемый в соответствии с СП 24.13330 в зависимости от вида сооружения, конструкции фундаментов и принятого способа определения несущей способности свай;
- коэффициент условий работы грунта по боковой поверхности свай в пределах зоны опаивания, определяемый по опытным данным с учетом способов погружения свай; в запас надежности допускается принимать: - для забивных и бурозабивных; для буронабивных и буроопускных свай с цементно-песчаным заполнителем пазухи - для буроопускных свай с пылевато-глинистым заполнителем пазух;
- отрицательная (негативная) сила трения, кН, определяемая по 7.3.16.
7.3.15 Несущую способность основания сваи-стойки , кН, следует определять по формулам:
для защемленных свай-стоек, заделанных в невыветрелый скальный (без слабых прослоек) грунт не менее чем на 0,5 м
; (7.26)
для незащемленных свай-стоек
, (7.27)
где - нормативное значение временного сопротивления грунта под нижним концом сваи одноосному сжатию в оттаявшем водонасыщенном состоянии, кПа;
А - площадь опирания сваи на грунт, , принимаемая для незащемленных свай-стоек сплошного сечения или полых, нижний конец которых заполнен в пределах высоты трех диаметров бетоном, равной площади поперечного сечения брутто; для защемленных свай-стоек - площади поперечного сечения нижней части (забоя) скважины;
- коэффициент надежности по грунту, принимаемый: для незащемленных свай-стоек равным 1,0, для защемленных - 1,4;
и - соответственно глубина заделки сваи в скальный грунт и наибольшее поперечное сечение заделанной части сваи, м.
Значение фактора заглубления принимается не более 3.
Для окончательных расчетов оснований сооружений, а также оснований, сложенных выветрелыми, размягчаемыми, со слабыми прослойками скальными грунтами, несущую способность сваи-стойки следует принимать по результатам испытаний свай статической нагрузкой.
7.3.16 Отрицательная (негативная) сила трения оттаивающего грунта по боковой поверхности сваи определяется по формуле
, (7.28)
где - периметр поперечного сечения сваи, м;
- отрицательное трение i-го слоя оттаивающего грунта по боковой поверхности сваи, кПа, определяемое по опытным данным; допускается принимать расчетные значения по СП 24.13330;
- толщина i-го слоя оттаивающего грунта.
7.3.17 Расчет конструкций свайных фундаментов следует выполнять в соответствии с СП 24.13330 с учетом инженерно-геокриологических условий. Расчет свай по прочности и деформациям материала может выполнятся по приложению Ж с учетом отрицательных (негативных) сил трения оттаивающего грунта по боковой поверхности сваи , определяемых по 7.3.16 и усилий в сваях от горизонтальных нагрузок и воздействий, определенных согласно 7.2.14.
7.4 Расчет оснований и фундаментов по устойчивости и прочности на воздействие сил морозного пучения
7.4.1 Расчет оснований и фундаментов по устойчивости и прочности на воздействие сил морозного пучения грунтов следует производить как для условий эксплуатации сооружения, так и для условий периода строительства, если до передачи на фундаменты проектных нагрузок возможно промерзание грунтов слоя сезонного оттаивания (промерзания), при многолетнемерзлых грунтах несливающегося типа - талого слоя со стороны многолетнемерзлых грунтов. В проекте должны быть предусмотрены мероприятия по предотвращению выпучивания фундаментов в период строительства.
Для снижения касательных сил морозного пучения боковая поверхность свай и фундаментов в слое сезонного промерзания-оттаивания должна быть покрыта противопучинистыми смазками, устойчивыми к механическому воздействию. Для буроопускных свай пазухи в слое сезонного промерзания-оттаивания заполняются непучинистым материалом (сухой песок и др.).
7.4.2 Устойчивость фундаментов на действие касательных сил морозного пучения грунтов следует проверять по условию
, (7.29)
где - расчетная удельная касательная сила пучения, кПа, принимаемая согласно 7.4.3;
- площадь боковой поверхности смерзания фундамента в пределах расчетной глубины сезонного промерзания-оттаивания грунта, ;
F - расчетная нагрузка на фундамент, кН, принимаемая с коэффициентом 0,9 по наиболее невыгодному сочетанию нагрузок и воздействий, включая выдергивающие (ветровые, крановые и т.п.);
- расчетное значение силы, удерживающей фундамент от выпучивания, кН, принимаемое по 7.4.4;
- коэффициент условий работы, принимаемый равным 1,0;
- коэффициент надежности по назначению сооружения, принимаемый равным 1,1, а для фундаментов опор мостов - 1,3.
7.4.3 Расчетную удельную касательную силу морозного пучения , кПа, следует определять опытным путем. Для сооружений нормального и пониженного уровней ответственности значения допускается принимать по таблице 7.8 в зависимости от состава, влажности и глубины сезонного промерзания и оттаивания грунтов .
Таблица 7.8
Грунты и степень водонасыщения |
Значения , кПа, при глубине сезонного промерзания-оттаивания , м |
||
1,0 |
2,0 |
3,0 |
|
Глинистые при показателе текучести , пески мелкие и пылеватые при степени влажности |
130 |
110 |
90 |
Глинистые при , пески мелкие и пылеватые при , крупнообломочные с заполнителем (глинистым, мелкопесчаным и пылеватым) свыше 30% |
100 |
90 |
70 |
Глинистые при , пески мелкие и пылеватые при , а также крупнообломочные с заполнителем (глинистым, мелкопесчаным и пылеватым) от 10% до 30% |
80 |
70 |
50 |
Примечания 1 Приведенные в настоящей таблице значения относятся к поверхности бетонного фундамента. Для фундаментов из других материалов табличные значения должны умножаться на коэффициент , значения которого даны в приложении В. 2 Для поверхностей фундаментов, покрытых специальными составами, уменьшающими силы смерзания, а также при применении других противопучинных мероприятий, значение следует принимать на основании опытных данных, полученных в полевых или лабораторных условиях. |
Касательные силы морозного пучения определяются по результатам полевых или лабораторных испытаний.
Касательные силы морозного пучения, действующие на сваю или фундамент, по результатам лабораторных испытаний определяются следующим образом:
а) в конце зимнего периода строятся графики изменения температуры грунта по глубине до границы фазовых переходов (глубины промерзания грунта ). Значения температуры грунта определяют на площадке строительства. Допускается определять температуру грунта по глубине расчетным путем, в том числе численными методами;
б) график температуры разбивается на три участка: первый участок - от глубины промерзания грунта до глубины, на которой зафиксирована температура минус 1°С; второй участок - от глубины, на которой зафиксирована температура минус 1°С, до глубины, на которой зафиксирована температура минус 2°С; третий участок - от глубины, па которой зафиксирована температура минус 2°С, до поверхности грунта (см. рисунок 1);
в) касательная сила морозного пучения , кН, равна сумме произведений удельной касательной силы морозного пучения, полученной в лабораторных условиях для разных температур (минус 1°С, минус 2°С, минус 6°С), и площади боковой поверхности фундамента, где температура грунта соответствует указанным выше значениям, и определяется по формуле
, (7.30)
где , , - удельные касательные силы пучения, кПа, определяемые для температур минус 1°С, минус 2°С и минус 6°С соответственно;
, , - площади боковой поверхности фундамента для трех участков согласно настоящему перечислению.
7.4.4 Расчетное значение силы , кН, удерживающей фундаменты от выпучивания, следует определять по формулам:
при использовании многолетнемерзлых грунтов по принципу I
; (7.31)
при использовании многолетнемерзлых грунтов по принципу II
, (7.32)
где u - периметр сечения поверхности сдвига, м, принимаемый равным: для свайных и столбчатых фундаментов без анкерной плиты - периметру сечения фундамента; для столбчатых фундаментов с анкерной плитой - периметру анкерной плиты;
- расчетное сопротивление i-го слоя многолетнемерзлого грунта сдвигу по поверхности смерзания, кПа, принимаемое по испытаниям и таблицам приложения В;
- толщина i-го слоя мерзлого или талого грунта, расположенного ниже подошвы слоя сезонного промерзания-оттаивания, м;
- расчетное сопротивление i-го слоя талого грунта сдвигу по поверхности фундамента, кПа, принимаемое в соответствии с требованиями СП 24.13330, с учетом примечания к 7.3.1.
7.4.5 Заанкеренный столбчатый фундамент должен быть проверен на отрыв силами морозного пучения стойки фундамента от анкерной плиты. Усилие , кН, разрывающее заанкеренный фундамент, определяется по формуле
, (7.33)
где - площадь боковой поверхности стойки фундамента, находящейся в пределах слоя сезонного промерзания-оттаивания грунта, .
7.4.6 Поверхностные, малозаглубленные фундаменты и свайные ростверки, закладываемые в слое сезонного промерзания-оттаивания грунтов, следует рассчитывать по устойчивости на действие нормальных сил морозного пучения и по деформациям.
Устойчивость фундаментов на действие нормальных сил морозного пучения проверяется по формуле
, (7.34)
где - удельное нормальное давление пучения грунта на подошву фундамента и ростверка, кПа, устанавливаемое по опытным данным;
- площадь подошвы фундамента и ростверка, .
Остальные обозначения те же, что в формуле (7.29).
Расчет по деформациям следует производить с учетом совместной работы сооружения и неравномерно выпучиваемого основания. При этом, возникающие в результате неравномерных поднятий и опусканий фундаментов дополнительные усилия в конструкциях сооружения не должны превышать предельно допустимых значений, а крены и прогибы не препятствовать нормальной эксплуатации сооружения.
8 Особенности проектирования оснований и фундаментов на сильнольдистых многолетнемерзлых грунтах и подземных льдах
8.1 При проектировании оснований и фундаментов на сильнольдистых многолетнемерзлых грунтах и подземных льдах следует предусматривать использование таких грунтов в качестве основания по принципу I. В случаях необходимости использования сильнольдистых грунтов по принципу II должны обязательно предусматриваться мероприятия по их предварительному оттаиванию или замене льдистых грунтов на непросадочные на расчетную глубину согласно 6.4.3 и 7.3.10.
8.2 Для предотвращения деформаций поверхности планировки у сооружений и развития термокарста вследствие оттаивания подземных льдов или сильнольдистых грунтов, залегающих на небольшой глубине от поверхности, необходимо предусматривать устройство теплоизоляционной подсыпки и (или) теплозащитных экранов в пределах всей застраиваемой площадки. Толщина подсыпки , а также параметры теплозащитных экранов определяются прогнозным теплотехническим расчетом из условия сохранения природного температурного состояния грунтов и положения верхней поверхности многолетнемерзлого грунта или ее повышения. Для сплошных подсыпок значение , м, допускается определять по формуле
, (8.1)
где и - нормативные глубины сезонного оттаивания соответственно природного грунта и грунта подсыпки, м, определяемые согласно приложению Г;
- допустимая глубина сезонного оттаивания природного грунта под подсыпкой, м.
Требования к материалу подсыпок, способам их укладки и уплотнения устанавливаются в проекте с учетом местных условий и 6.3.11.
8.3 Основания фундаментов, закладываемых в пределах толщины подсыпки, следует рассчитывать по несущей способности и деформациям в соответствии с требованиями СП 22.13330. При отсутствии мероприятий по укреплению откоса подсыпки, расстояние от цоколя сооружения до бровки подсыпки должно быть не менее 3 м, а крутизна откосов подсыпки не более 1:1,5 для крупнообломочных грунтов, 1:1,75 - для песков и 1:2 - для прочих материалов.
Если столбчатые или ленточные фундаменты устанавливаются на многолетнемерзлые грунты, содержащие подземные льды, между их подошвой и слоем подземного льда должна быть прослойка природного грунта, искусственно уложенная с уплотнением грунтовая подушка и (или) несущий теплозащитный экран. Толщину прослойки (подушки) следует принимать исходя из расчета основания по деформации, но не менее четверти ширины подошвы фундамента. Параметры теплозащитного экрана определяются теплотехническим расчетом с учетом теплопередачи от здания к грунту основания по фундаменту.
8.4 При устройстве свайных фундаментов на участках с сильнольдистыми грунтами и подземными льдами следует применять буроопускные сваи с заливкой известково-песчаных или цементно-песчаных растворов с расстоянием в осях не менее двух диаметров скважины. Сваи не должны опираться на прослои льда, а под их торцом следует устраивать уплотненную грунтовую подушку толщиной не менее диаметра сваи. Оттаивание грунта вокруг сваи и под ее нижним торцом не допускается.
8.5 Расчет оснований по несущей способности следует проводить с учетом изменения температур в течение эксплуатации:
для столбчатых фундаментов на сильнольдистых грунтах и подземных льдах - по 8.7;
для свайных фундаментов в сильнольдистых грунтах по 8.9, а в подземных льдах - по данным полевых испытаний свай статической вдавливающей нагрузкой.
8.6 Расчет оснований по деформациям следует производить:
для столбчатых фундаментов на сильнольдистых грунтах и подземных льдах - по 8.8;
для свайных фундаментов в сильнольдистых грунтах и подземных льдах - по данным полевых испытаний свай статической вдавливающей нагрузкой.
8.7 Силу предельного сопротивления (несущую способность) основания столбчатого фундамента на сильнольдистых грунтах и подземных льдах следует определять по 7.2.2, при этом значения R и допускается принимать по таблицам В.2 и В.3.
8.8 Осадку основания столбчатого фундамента на сильнольдистых грунтах и подземных льдах s следует определять по формуле
, (8.2)
где - осадка, обусловленная уплотнением основания под нагрузкой, определяемая по И.1;
- осадка, обусловленная пластично-вязким течением грунта за заданный срок эксплуатации сооружения, определяемая по формуле
, (8.3)
здесь - заданный срок эксплуатации здания (сооружения), лет;
v - скорость осадки, м/год, определяемая исходя из модели линейно- или нелинейновязкого полупространства; допускается определять по приложению И.
8.9 Несущую способность основания свайного фундамента в сильнольдистых грунтах следует определять по данным полевых испытаний свай. Допускается определять несущую способность сваи расчетом в соответствии с 7.2.2 и 7.2.3 по наименьшему значению , полученному по условиям ее сопротивления сдвигу по грунтовому раствору и сдвигу грунтового раствора по контакту с льдистым грунтом. В последнем случае значение , кН, следует рассчитывать по формуле
, (8.4)
где и - обозначения те же, что и в формуле (7.2);
R - расчетное сопротивление сильнольдистого грунта или льда под нижним концом сваи, кПа, определяемое для сильнольдистых грунтов интерполяцией между значениями R по таблицам В.1 и В.7, а для льдов - по таблице В.7;
- площадь поперечного сечения скважины, ;
- льдистость за счет ледяных включений j-го слоя грунта;
; - расчетные сопротивления сдвигу грунтового раствора по многолетнемерзлому грунту и грунтового раствора по льду для середины j-го слоя, кПа, принимаемые соответственно по таблицам В.4 и В.7;
- площадь поверхности сдвига в j-м слое, определяемая в зависимости от диаметра скважины, .
Если прочность смерзания грунтового раствора с поверхностью сваи , то расчет несущей способности сваи по формуле (8.4) следует производить при значениях , принимая площадь поверхности сдвига в j-м слое грунта равной площади поверхности сваи в этом слое.
Примечание - В случаях, когда под торцом сваи предусматривается устройство грунтовой подушки, значение R в формуле (8.4) принимается для грунта подушки. При этом предельная нагрузка на торец сваи определяется по формуле (8.4), как для сваи, диаметр которой равен диаметру скважины, а длина - толщине подушки.
9 Особенности проектирования оснований и фундаментов на засоленных многолетнемерзлых грунтах
9.1 Для проектирования фундаментов на засоленных многолетнемерзлых грунтах материалы изысканий должны содержать данные об условиях залегания засоленных грунтов, степени их засоленности, а также о химическом составе водно-растворимых солей.
Засоленные многолетнемерзлые грунты могут использоваться в качестве основания сооружений как по принципу I, так и по принципу II. При этом должно учитываться повышенное коррозийное воздействие засоленных грунтов на материал фундаментов.
Примечание - Пылеватые грунты северного морского побережья с преобладанием солей натрий-калиевого состава относятся к засоленным.
9.2 Основания и фундаменты на засоленных многолетнемерзлых грунтах при использовании таких грунтов в качестве основания по принципу I следует проектировать согласно 6.3.1-6.3.11 с учетом следующих особенностей:
а) температура начала замерзания засоленных грунтов ниже температуры замерзания аналогичных видов незаселенных грунтов и ее следует устанавливать опытным путем с учетом приложения Б;
б) переход засоленных грунтов из пластичномерзлого в твердомерзлое состояние происходит при более низких температурах, чем аналогичных незаселенных грунтов, и должен приниматься по данным опытного определения коэффициента их сжимаемости с учетом 5.3;
в) засоленные мерзлые грунты отличаются пониженной прочностью и малыми значениями сопротивлений сдвигу по поверхности смерзания с фундаментом;
г) на участках с засоленными грунтами может быть несколько засоленных горизонтов с разной степенью засоленности, а также могут встречаться отдельные слои или линзы насыщенных сильноминерализованными водами грунтов, находящихся в немерзлом состоянии при отрицательной температуре (криопеги), вскрытие которых скважинами при погружении свай приводит к повышенному засолению грунтов по всей длине сваи.
9.3 При строительстве на засоленных грунтах следует применять фундаменты, обеспечивающие наиболее полное использование сопротивление мерзлых грунтов нормальному давлению (плитные, столбчатые и ленточные фундаменты, сваи с уширенной пятой и др.). При буроопускном способе погружения свай скважины должны быть диаметром не менее чем на 10 см большим поперечного сечения сваи и заполняться, как правило, известково-песчаным или цементно-песчаным раствором. Под нижним концом сваи следует устраивать уплотненную подушку из щебня.
9.4 Несущую способность оснований столбчатых и свайных фундаментов на засоленных многолетнемерзлых грунтах при использовании их по принципу I следует определять согласно 7.2.2-7.2.3. При этом расчетные значения сопротивления грунтов нормальному давлению и сдвигу по поверхности смерзания R и следует принимать по опытным данным. Для сооружений пониженного уровня ответственности, а также при привязке типовых проектов к местным условиям, значения R и допускается принимать по таблицам В.5 и В.6.
9.5 При расчетах несущей способности оснований буроопускных свай засоленность грунтового раствора и сопротивления сдвигу по поверхности сваи следует принимать по засоленности и значениям прилегающего природного грунта. Если несущая способность буроопускных свай определена по результатам полевых испытаний, то расчетную несущую способность таких свай следует принимать с понижающим коэффициентом, учитывающим изменение температурного состояния и степени засоленности грунтового раствора в процессе эксплуатации сооружения, устанавливаемым по опыту местного строительства или по данным специальных исследований.
Примечание - Для опускных и буроопускных свай расчетные значения допускается принимать при средневзвешенном значении засоленности грунтов по длине сваи.
9.6 Расчет оснований и фундаментов на засоленных многолетнемерзлых грунтах по деформациям следует производить согласно 7.2.16, 7.2.17, как на пластичномерзлых грунтах.
9.7 При расчетных деформациях оснований, сложенных мерзлыми засоленными грунтами, больше предельных или недостаточной несущей способности основания следует предусматривать частичную или полную замену засоленных грунтов на незасоленные, дополнительное понижение температуры грунтов, прорезку засоленных слоев грунта глубокими фундаментами, устройство фундаментов на подсыпках, распределяющих нагрузки на мерзлые грунты оснований, и другие мероприятия, а в необходимых случаях осуществлять строительство с использованием засоленных многолетнемерзлых грунтов в качестве оснований по принципу II.
9.8 Основания и фундаменты на засоленных много летнемерзлых грунтах при использовании их в качестве оснований сооружений по принципу II следует проектировать в соответствии с 6.4.1-6.4.7 и требованиями СП 22.13330, СП 24.13330 и СП 28.13330.
10 Особенности проектирования оснований и фундаментов на заторфованных многолетнемерзлых грунтах
10.1 Основания и фундаменты на заторфованных многолетнемерзлых грунтах и торфах, а также на грунтах с примесью органических остатков следует проектировать в соответствии с разделом 7 и требованиями СП 22.13330 с учетом их большой сжимаемости под нагрузкой, проявлением пластических деформаций в широком диапазоне отрицательных температур, пониженной прочностью смерзания с фундаментами, низкой теплопроводностью и замедленной стабилизацией осадок при оттаивании, а также с учетом требований СП 28.13330.
10.2 При использовании заторфованных грунтов в качестве оснований по принципу I следует применять плитные, столбчатые и свайные фундаменты, а также малозаглубленные и поверхностные фундаменты на подсыпках. Сваи следует погружать буроопускным способом в скважины диаметром на 10 см большим поперечного сечения сваи с заполнением пазух цементно-песчаным раствором или другим раствором по проекту; опирание свай на прослои торфа не допускается. Под подошвой плитных и столбчатых фундаментов следует устраивать песчаную подушку толщиной не менее: для плитных фундаментов - 0,3 м, для столбчатых - половины ширины подошвы фундамента. При небольшой толщине покровного торфяного слоя следует предусматривать его удаление.
10.3. Расчет несущей способности оснований столбчатых и свайных фундаментов на заторфованных грунтах при их использовании по принципу I производится согласно 7.2.2-7.2.3. При этом расчетные значения сопротивления этих грунтов нормальному давлению и сдвигу по поверхности смерзания с фундаментом R и следует принимать по опытным данным. Для сооружений пониженного уровня ответственности, а также для предварительных расчетов оснований значения R и допускается принимать по таблице В.8.
Основания фундаментов, возводимых на подсыпках, следует рассчитывать по несущей способности грунтов подсыпки с проверкой силы предельного сопротивления основания на уровне поверхности природных заторфованных грунтов с учетом расчетной глубины сезонного оттаивания. Если расчетная глубина оттаивания больше толщины подсыпки, то основание должно быть также рассчитано по деформациям.
10.4 Расчет оснований, сложенных биогенными грунтами, по деформациям следует производить: столбчатых - по 7.2.16, 7.2.17; свайных - по результатам полевых испытаний свай статической вдавливающей нагрузкой.
10.5 Основания и фундаменты на заторфованных грунтах при использовании таких грунтов в качестве оснований по принципу II необходимо проектировать в соответствии с 6.4.1-6.4.5 и требованиями СП 22.13330 и СП 24.13330.
11 Особенности проектирования оснований и фундаментов на многолетнемерзлых грунтах в сейсмических районах
11.1 Основания и фундаменты сооружений, возводимых на многолетнемерзлых грунтах на площадках с расчетной сейсмичностью 7, 8 и 9 баллов следует проектировать с учетом требований СП 14.13330, СП 22.13330, СП 24.13330, СП 35.13330 и настоящего свода правил.
11.2 Для сейсмических районов с расчетной сейсмичностью 7, 8 и 9 баллов следует предусматривать использование многолетнемерзлых грунтов в качестве основания по принципу I. При невозможности использования грунтов в качестве основания по принципу I допускается использование их по принципу II при условии опирания фундаментов на скальные или другие малосжимаемые при оттаивании грунты или на предварительно оттаянные и уплотненные грунты.
11.3 В сейсмических районах следует применять те же виды свай, что и в несейсмических районах, кроме свай без поперечного армирования. Глубина погружения свай в грунт (исключая сваи-стойки) должна быть не менее 4 м.
11.4 Расчет оснований и фундаментов по несущей способности на вертикальную нагрузку с учетом сейсмических воздействий следует производить согласно 7.2.1, при этом силу предельного сопротивления основания необходимо определять с учетом 11.5, 11.6, а коэффициент надежности принимать:
при использовании многолетнемерзлых грунтов в качестве основания по принципу I - по 7.2.1;
при использовании многолетнемерзлых грунтов в качестве основания по принципу II - для фундаментов на естественном основании - , а для свайных - по СП 24.13330.
11.5 Несущую способность вертикально нагруженной висячей сваи , а также столбчатого фундамента при использовании многолетнемерзлых грунтов в качестве основания по принципу I, с учетом сейсмических воздействий следует определять согласно 7.2.2 и приложению Л; при этом расчетное сопротивление грунта или грунтового раствора сдвигу по поверхности смерзания с фундаментом и расчетное давление мерзлого грунта под нижним концом сваи или подошвой столбчатого фундамента R, а также сопротивления мерзлого грунта под нижним концом и по боковой поверхности смерзания , рассчитанные по данным полевых методов испытаний, необходимо умножать на коэффициент условий работы основания , принимаемый по таблице 11.1.
Таблица 11.1
Расчетная сейсмичность в баллах |
Коэффициент условий работы для грунтов |
||
твердомерзлых |
пластичномерзлых |
сыпучемерзлых |
|
7 |
1,0 |
0,9 |
0,95 |
8 |
1,0 |
0,8 |
0,9 |
9 |
1,0 |
0,7 |
0,8 |
Примечание - При опирании свай-стоек на скальные или несжимаемые крупноблочные грунты значение коэффициента принимается равным 1,0. |
Для свай в пластичномерзлых грунтах значение следует принимать равным нулю в пределах от верхней границы многолетнемерзлых грунтов до расчетной глубины , м, определяемой по формуле
, (11.1)
где - коэффициент деформации системы "свая-грунт", определяемый по результатам испытаний в соответствии с 11.6.
11.6 Расчет свай по прочности материала на совместное действие расчетных усилий (продольной силы, изгибающего момента и поперечной силы) при использовании многолетнемерзлых оснований по принципу I следует производить в зависимости от расчетных значений сейсмических нагрузок в соответствии с требованиями СП 24.13330 с учетом 7.2.14. При этом для свай в пластичномерзлых грунтах коэффициент деформации системы "свая-грунт" , следует определять по результатам испытаний свай статической горизонтальной нагрузкой по формуле
, (11.2)
где - горизонтальная нагрузка, кН, принимаемая равной ;
здесь - горизонтальная предельная нагрузка, кН, в уровне поверхности грунта, при которой перемещение испытуемой сваи начинает возрастать без увеличения нагрузки;
- горизонтальное перемещение сваи в уровне поверхности грунта, м, определяемое по графику зависимости горизонтальных перемещений от нагрузки при условной стабилизации перемещений, если расчет ведется на статические нагрузки, и без условной стабилизации перемещений, если расчет ведется на сейсмические воздействия;
- модуль упругости материала свай, кПа;
I - момент инерции сечения сваи, .
11.7 Проверку основания столбчатого фундамента на горизонтальную и внецентренно сжимающую нагрузки с учетом сейсмических воздействий при использовании многолетнемерзлых грунтов в качестве основания по принципу I следует производить на опрокидывание и сдвиг по подошве фундамента с учетом 7.2.13.
При действии сейсмических нагрузок, создающих моменты сил в обоих направлениях подошвы фундамента, расчет основания следует производить раздельно на действие сил и моментов в каждом направлении независимо друг от друга.
11.8 Расчет оснований и фундаментов с учетом сейсмических воздействий при использовании многолетнемерзлых грунтов по принципу II необходимо производить в соответствии с СП 22.13330, СП 24.13330 и 7.3.1-7.3.15 как расчет оттаивающих оснований. При этом отрицательные (негативные) силы трения, вызванные осадкой оттаивающих грунтов, в расчетах оснований на сейсмические воздействия не учитываются, если оттаивающее основание сложено песчаными и крупнообломочными грунтами, осадки которых завершаются в процессе их оттаивания.
12 Особенности проектирования оснований и фундаментов мостов и груб под насыпями
12.1 Основания и фундаменты мостов и труб под насыпями (далее - труб), возводимых на территориях распространения многолетнемерзлых грунтов, следует проектировать с учетом дополнительных требований, содержащихся в настоящем разделе. Требования по проектированию приведены в [3].
12.2 В проектах фундаментов мостов и труб необходимо дополнительно (по сравнению с фундаментами зданий) учитывать влияние следующих факторов:
воздействие на сооружения, кроме вертикальных, значительных горизонтальных сил от временных подвижных нагрузок, давлений грунта и льда;
уменьшение несущей способности оснований вследствие размывов дна водотока или отепляющего воздействия воды на многолетнемерзлые грунты;
возрастание сил морозного пучения грунтов из-за повышенной их влажности вблизи водотоков и уменьшение этих сил при увеличении толщины снегового покрова;
нарушение устойчивости береговых склонов вследствие проявления оползневых процессов;
появление наледи в пределах сооружений.
12.3 Нагрузки и воздействия на фундаменты мостов и труб следует принимать в соответствии с требованиями СП 35.13330.
12.4 В основаниях фундаментов мостов многолетнемерзлые грунты следует использовать по принципу I, если на уровне низа свайных элементов (свай-столбов, свай-оболочек) в течение всего периода эксплуатации сооружений грунты находятся в твердомерзлом состоянии. Допускается использовать по принципу I пластичномерзлые грунты, включая засоленные, при условии, что в течение всего периода эксплуатации сооружений обеспечена их отрицательная температура, требуемая по расчету несущей способности оснований.
Возможность использования многолетнемерзлых грунтов в качестве оснований по принципу II для фундаментов мелкого заложения и свайных должна определяться исходя из требований 6.1.3, 6.1.4 и 6.1.6.
12.5 При проектировании следует выполнять прогноз, в том числе численными методами, изменений температурного режима многолетнемерзлых грунтов, используемых в качестве оснований по принципу I, в случае необходимости предусматривается осуществление мероприятий по обеспечению мерзлого состояния грунтов и контроль их температуры в течение всего периода эксплуатации сооружений.
12.6 СОУ и теплозащитные экраны необходимо применять в случаях практической невозможности или недостаточной эффективности других решений для поддержания на весь период эксплуатации сооружений температуры грунтов, требуемой по расчету несущей способности оснований. Число СОУ следует принимать по расчету с повышающим коэффициентом 1,4. При использовании СОУ следует осуществлять контроль температуры грунтов основания в зоне действия СОУ.
12.7 Фундаменты мостов при использовании многолетнемерзлых грунтов в качестве оснований по принципам I и II следует проектировать свайными с ростверком, расположенным над поверхностью грунта или воды. При этом необходимо предусматривать меры, исключающие возможность повреждения свай ледоходом, карчеходом или другими неблагоприятными воздействиями.
Фундаменты мелкого заложения (на естественном основании) допускается проектировать для мостов, возводимых, как правило, на используемых по принципу II многолетнемерзлых грунтах, если после полного оттаивания таких грунтов осадки и крены опор не превышают предельно допустимых значений по условиям нормальной эксплуатации сооружений.
Для труб следует предусматривать фундаменты мелкого заложения независимо от вида грунтов и принципа их использования в качестве основания при условии, что суммарное значение осадки используемых по принципу II грунтов может быть компенсировано строительным подъемом лотка труб.
12.8 Многолетнемерзлые грунты в основании фундаментов малого моста или трубы и прилегающих участков насыпи следует использовать по одному принципу, не допуская опирания их частично на мерзлые и частично на немерзлые или оттаивающие грунты.
12.9 В грунтах, подверженных морозному пучению, независимо от принятого принципа их использования в качестве основания подошву фундаментов мелкого заложения для мостов и труб следует заглублять не менее чем на величину, указанную в таблице 5.3 СП 22.13330.2016 при расположении уровня подземных вод на глубине м, а подошву расположенного в грунте ростверка свайных фундаментов - не менее чем на 0,25 м ниже расчетной глубины сезонного промерзания-оттаивания грунтов.
Если глубина заложения фундаментов должна быть не менее расчетной глубины промерзания грунта, все фундаменты, за исключением фундаментов или грунтовых подушек для средних звеньев одноочковых труб диаметром до 2 м следует заглублять не менее чем на 0,25 м ниже расчетной глубины промерзания грунта. При этом за расчетную глубину промерзания принимается ее нормативное значение.
Фундаменты или грунтовые подушки средних звеньев одноочковых труб диаметром до 2 м допускается закладывать без учета глубины промерзания грунта.
В случаях, когда глубина заложения фундаментов не зависит от расчетной глубины промерзания грунта, соответствующие грунты, указанные в таблице 5.3 СП 22.13330.2016, должны залегать не менее чем на 1 м ниже нормативной глубины промерзания грунта.
Подошву высокого ростверка свайных фундаментов мостов следует располагать с зазором от поверхности грунта не менее 0,5 м в устоях и 1 м - в промежуточных опорах.
Примечание - Глубину заложения фундаментов и грунтовых подушек под средние звенья труб диаметром 2 м и более следует назначать с учетом уменьшения глубины промерзания грунта в направлении к оси насыпи.
12.10 В неподверженных морозному пучению грунтах подошву ростверка свайных фундаментов или фундаментов мелкого заложения мостов и труб допускается располагать в пределах слоя сезонного промерзания-оттаивания при условии, что нижняя граница толщи таких грунтов залегает не менее чем на 1 м ниже расчетной глубины промерзания и, кроме того, в пределах зоны промерзания отсутствует вероятность образования линзы льда, в том числе и от напорных подземных вод.
12.11 Подошву фундаментов мелкого заложения и нижние концы свай не допускается опирать непосредственно на подземные льды, сильнольдистые грунты, а также на заторфованные многолетнемерзлые грунты.
12.12 Расчеты оснований фундаментов мостов и труб следует производить:
а) при использовании твердомерзлых грунтов по принципу I - по несущей способности;
б) при использовании многолетнемерзлых грунтов по принципу II, а глинистых пластичномерзлых и по принципу I - по несущей способности и по деформациям.
Допускается не определять осадки оснований фундаментов мостов:
а) всех систем и пролетов при опирании фундаментов на многолетнемерзлые грунты, используемые по принципу I, за исключением пластичномерзлых глинистых грунтов;
б) внешне статически определимых систем железнодорожных мостов с пролетами до 55 м и автодорожных с пролетами до 105 м при опирании фундаментов на используемые по принципу II скальные и другие малосжимаемые при оттаивании грунты.
Расчеты оснований труб следует производить по несущей способности. На сильносжимаемых при оттаивании грунтах, используемых по принципу II, основания труб следует рассчитывать по несущей способности и по деформациям, включая определение их осадки.
12.13 Расчет основания свай для фундаментов опор мостов по несущей способности многолетнемерзлых грунтов, используемых по принципу I, следует производить согласно 7.2.1 и 7.2.2. При этом значение в формуле (7.1) следует принимать равным 1,4 независимо от числа свай в фундаменте и от положения подошвы ростверка по отношению к поверхности грунта. Значение коэффициента в формуле (7.2) допускается принимать равным 1,0.
Для кратковременной части нагрузок расчетные значения R и исходя из 7.2.3 допускается принимать с повышающим коэффициентом , равным: для свайных фундаментов железнодорожных мостов 1,35 - при одновременном действии постоянных и временных вертикальных нагрузок; 1,5 - при действии постоянных и временных совместно с временными горизонтальными нагрузками (включая сейсмические нагрузки); для свайных фундаментов автодорожных мостов - соответственно 1,5 и 1,75.
Для железнодорожных мостов на станционных и подъездных путях, городских, а также других мостов, на которых возможны систематические остановки на неопределенное время поездов или автотранспорта, значение коэффициента в формуле (7.2) следует принимать равным 1,0.
12.14 Расчет оснований свайных фундаментов по несущей способности многолетнемерзлых грунтов, используемых по принципу II, следует производить в соответствии с требованиями СП 24.13330. При этом расчетное сопротивление оттаивающих грунтов под торцом свай следует принимать по СП 24.13330, как для буровых свай.
Расчет по несущей способности оснований фундаментов мелкого заложения на многолетнемерзлых грунтах, используемых по принципу II, следует производить по СП 35.13330.
12.15 Фундаменты береговых, переходных и промежуточных опор мостов на крутых склонах, а также фундаменты устоев при высоких насыпях в случаях расположения под несущим слоем пласта немерзлого или оттаивающего (в период эксплуатации моста) глинистого грунта или прослойки насыщенного водой песка, подстилаемого глинистым грунтом, необходимо рассчитывать по устойчивости против глубокого сдвига (смещения фундамента совместно с грунтом) по круглоцилиндрической или другой более опасной поверхности скольжения. Для указанных условий следует также проверять возможность появления местных оползневых сдвигов на ранее устойчивых склонах вследствие дополнительного их нагружения весом насыпи и опоры, нарушения устойчивости пластов грунта в процессе производства работ или изменения режима (уровня и скорости течения) подземных и поверхностных вод.
12.16 Фундаменты мостов, возводимых на многолетнемерзлых грунтах, используемых в качестве оснований по принципу II, следует рассчитывать для условий полного оттаивания грунтов основания независимо от их состояния (мерзлое или талое) в период строительства. Расчет по прочности и трещиностойкости свайных элементов следует производить на усилия в расчетных сечениях, возникающие как для мерзлого, так и оттаявшего состояния грунтов основания.
12.17 Свайные фундаменты следует рассчитывать на совместное действие вертикальных и горизонтальных сил и моментов, принимая перемещения фундаментов пропорциональными действующим усилиям. Независимо от принципа использования грунтов в качестве основания, не следует учитывать сопротивление грунтов перемещениям заглубленного в грунт ростверка фундаментов. В расчетах, включающих определение свободной длины свай, оттаявшие и пластичномерзлые грунты допускается рассматривать как линейно-деформируемую среду, характеризуемую коэффициентом постели, принимаемым как для немерзлых грунтов.
При использовании грунтов в качестве основания по принципу I в расчете допускается принимать, что каждый свайный элемент жестко заделан в твердомерзлом грунте на глубине d, считая от уровня, соответствующего расчетной (максимальной) температуре, при которой данный грунт переходит в твердомерзлое состояние; здесь d - диаметр или больший размер поперечного сечения элемента в направлении действия внешних нагрузок.
12.18 В сейсмических районах фундаменты мостов допускается проектировать на любых грунтах, используемых в качестве основания по принципу I. Если грунты используются по принципу II, то следует предусматривать опирание подошвы фундаментов или нижних концов свай преимущественно на скальные или другие малосжимаемые при оттаивании грунты. При учете сейсмических нагрузок расчет свайных фундаментов следует производить согласно 11.4-11.8.
13 Особенности проектирования оснований и фундаментов нефтегазопроводов на многолетнемерзлых грунтах
13.1 Основания и фундаменты магистральных газо- и нефтепроводов (далее магистральные трубопроводы) следует проектировать в соответствии с разделом 7 с учетом дополнительных требований, содержащихся в настоящем разделе, а также в СП 36.13330.
13.2 В техническом задании на проектирование оснований и фундаментов магистральных трубопроводов дополнительно должны содержаться сведения о пределах изменения температуры транспортируемого по трубопроводу продукта.
13.3 При проектировании оснований и фундаментов магистральных трубопроводов следует учитывать:
магистральные трубопроводы имеют повышенный уровень ответственности;
транспортируемый по трубопроводу продукт может иметь как положительную, так и отрицательную температуру, что существенно влияет на тепловое и механическое взаимодействие трубопровода и мерзлых грунтов;
в качестве оснований магистральных трубопроводов не рекомендуется рассматривать участки с подземными льдами, наледями и буграми пучения, проявлениями термокарста, термоэрозии, солифлюкции, морозобойного растрескивания;
опасность прямого теплового и гидравлического воздействий транспортируемых нефти и нефтепродуктов на мерзлые грунты при авариях на магистральных трубопроводах.
Примечание - Трубопроводы делят на: горячие участки (температура продукта в течение всего года положительная), теплые участки (температура продукта в течение года может быть и положительной и отрицательной, но среднегодовая температура выше 0°С) и холодные участки (среднегодовая температура продукта ниже 0°С). К первым относятся нефтепроводы на всем протяжении и газопроводы на небольшом протяжении после компрессорных станций, ко вторым и третьим - только газопроводы.
13.4 Прокладка трубопроводов в районах многолетнемерзлых грунтов может выполняться подземным (в траншеях), наземным (по поверхности земли с обвалованием или без него) или надземным (на опорах) способами в соответствии с приложением С. Следует избегать частого чередования различных способов прокладки на сравнительно коротких расстояниях.
13.5 Для уменьшения зоны оттаивания мерзлого грунта следует применять автоматически действующие охлаждающие установки (с жидкостным или парожидкостным хладоносителем) и теплоизолирующие экраны. Теплоизоляционные экраны для наземной прокладки следует выполнять плоскими, для подземной - цилиндрическими.
13.6 При проектировании оснований и фундаментов трубопроводов в районах распространения многолетнемерзлых грунтов следует выполнять следующие расчеты:
расчет остывания транспортируемого по трубопроводу продукта с целью установления температуры по длине трубопровода, а также выявления его горячих, теплых и холодных участков (см. примечание к 13.3);
расчет глубины оттаивания и промерзания грунта в основании подземных и наземных трубопроводов;
расчеты по I и II группам предельных состояний с учетом процессов, происходящих в окружающем массиве грунта в результате устройства трубопровода (просадка и термокарст при опаивании, пучение при промораживании).
13.7 Глубину оттаивания (промораживания) грунта следует определять численными методами, с учетом проектного срока эксплуатации трубопровода. Глубину оттаивания многолетнемерзлых грунтов под центром горячих и теплых подземных трубопроводов, а также глубину промерзания грунта под центром холодных трубопроводов, расположенных на участках с многолетнемерзлыми грунтами не сливающегося типа, допускается рассчитывать согласно приложению Н.
13.8 Расчетные нагрузки, воздействия и их сочетания при проектировании оснований и фундаментов магистральных трубопроводов в районах многолетнемерзлых грунтов следует принимать в соответствии с требованиями СП 20.13330 и СП 36.13330.
13.9 Для совместного расчета системы "основание (вмещающий массив) - трубопровод" могут использоваться аналитические или численные (метод конечных элементов, метод конечных разностей и др.) методы. При использовании численных методов расчетная модель "основание-трубопровод" должна адекватно отражать конструктивные особенности трубопровода, характеристики многолетнемерзлых грунтов и схемы их взаимодействия.
14 Особенности проектирования оснований и фундаментов на склонах
14.1 Проектирование оснований и фундаментов на склонах (откосах) в районах распространения многолетнемерзлых грунтов следует выполнять по первой группе предельных состояний в соответствии с СП 22.13330, с учетом снижения прочности мерзлых грунтов при повышении температуры и длительности воздействия нагрузки, а также влияния геокриологических условий.
14.2 При проектировании оснований и фундаментов в районах распространения многолетнемерзлых грунтов на склонах и присклоновой территории следует рассматривать термодинамическое равновесие системы "сооружение-основание-склон" с учетом СП 47.13330 и других нормативных документов по инженерно-геологическим изысканиям для строительства, а также следующих факторов:
- крутизны, высоты, протяженности, ширины и экспозиции склона;
- проявления глубинных и солифлюкционных оползаний и нарушения растительного покрова, наледеобразования, бугров пучения, термокарста, термоэрозии;
- мощности слоя и характера распространения многолетнемерзлых грунтов (сплошное, прерывистое, островное), наличия жильного и пластового льда, таликов, криопэгов;
- температуры мерзлого грунта во времени по глубине и простиранию склона (изотермы) на стадии строительства, эксплуатации и ликвидации объектов;
- особенностей природных криогенных форм рельефа (каменные глетчеры, курумы и др.), а также формирования техногенных форм (отвалы, карьеры, котлованы, выемки, насыпи и др.);
- геокриологических условий (текстура, влажность, льдистость физико-механические свойства мерзлых и оттаивающих грунтов), а также характера напластования пород;
- наличия сооружений на склонах, имеющихся деформаций сооружений, а также мероприятий по противооползневой защите;
- интенсивности и характера техногенной нагрузки, особенностей теплового и силового воздействий на склон проектируемых сооружений по продолжительности, охвату территории, количественным значениям температуры, конструктивным особенностям сооружений.
Требования к инженерно-геологическим изысканиям приведены в [1].
14.3 Расчеты устойчивости склонов (откосов) и сооружений на них в районах распространения многолетнемерзлых грунтов, в отличие от талых грунтов, следует осуществлять с учетом температурного состояния грунтового массива. В зависимости от температурного состояния грунтового массива следует рассматривать два основных типа криогенных оползней: 1 - мерзлые; 2 - оттаивающие. Кроме того, существуют различные типы смешанных криогенных оползней.
14.4 Прогноз устойчивости склонов и сооружений на них необходимо осуществлять на основании выполнения прогнозных теплотехнических расчетов, схематизации природных условий и определения поверхностей скольжения в мерзлых породах, а также возможности возникновения и развития солифлюкции.
14.5 Расчет местной и общей устойчивости системы "сооружение-основание-склон", должен производиться методами, удовлетворяющими условиям равновесия в предельном состоянии, с использованием программ, разработанных на основе общепринятых методов расчета устойчивости. Допускается применять другие методы расчета, результаты которых проверены опытом проектирования, строительства и эксплуатации. Расчеты выполняются на основное и особое сочетание нагрузок.
14.6 Поверхность скольжения в массиве мерзлых однородных грунтов определяется положением изотермы наиболее высокой отрицательной температуры грунта, а в массиве неоднородных грунтов - наименьшими предельно-длительными значениями сопротивления сдвигу мерзлого грунта. Поверхность скольжения оттаивающего грунта (на солифлюкционных склонах и откосах) следует за границей оттаивания, которая практически параллельна поверхности склона, мощность оползающего слоя равна глубине оттаивания, определяется при геокриологических изысканиях и уточняется теплотехническим расчетом.
В теплое время года в некоторых случаях одновременно могут развиваться солифлюкция и глубинный оползень мерзлого грунта, что следует учитывать в расчетах по несущей способности оснований и при назначении противооползневых мероприятий.
14.7 Сила предельного сопротивления основания, сложенного дисперсными грунтами должна определяться, исходя из условия, что соотношение между нормальными и касательными напряжениями по всем поверхностям скольжения, соответствующее предельному состоянию основания, подчиняется зависимости
, (14.1)
где и с - расчетные значения угла внутреннего трения и удельного сцепления. Для мерзлых грунтов определяются предельно-длительные значения угла внутреннего трения и удельного сцепления при проведении испытаний на срез мерзлого грунта, для оттаивающих грунтов и при проведении испытаний на неконсолидированный быстрый срез оттаивающего грунта по мерзлому слою.
14.8 Расчетные значения и с определяются по опытным данным. Для сооружений пониженного уровня ответственности и предварительных расчетов устойчивости оснований допускается расчетные значения , , и принимать по таблицам В.13 и В.14.
Коэффициент надежности по ответственности сооружений принимается равным 1,2; 0,95 и 0,9 соответственно для сооружений повышенного, нормального и пониженного уровней ответственности (ГОСТ 27751).
Коэффициент условий работы принимается равным:
для мерзлых дисперсных грунтов |
1,0; |
для оттаивающих |
0,85. |
14.9 При строительстве на склонах, сложенных многолетнемерзлыми грунтами, следует применять преимущественно принцип I использования многолетнемерзлых грунтов, при условии, что в течение всего периода эксплуатации будет обеспечена отрицательная температура, требуемая по расчету устойчивости склона и несущей способности оснований. Принцип II использования многолетнемерзлых грунтов допускается при строительстве на склонах, с учетом 6.1.3, 6.1.4 и 6.1.6.
14.10 При использовании многолетнемерзлых грунтов по принципу I следует выполнять прогноз температурного режима и, в случае необходимости, специальные мероприятия по обеспечению проектной температуры мерзлого грунта и обеспечивать контроль температуры в течение всего периода эксплуатации. Для сохранения и понижения температуры мерзлых грунтов следует применять следующие мероприятия: агролесомелиорация, устройство теплозащитных экранов, водоотвод и др.
14.11 Многолетнемерзлые грунты на склонах и присклоновой территории следует использовать по одному принципу. При строительстве на склонах необходимо максимальное сохранение и даже улучшение экологической обстановки за счет применения проектных, организационно-технологических решений и мероприятий по предотвращению оползания и нарушения экологического равновесия, обусловленного опасными криогенными процессами (термокарст, пучение, наледеобразование).
14.12 На склонах скальных и полускальных пород расчеты устойчивости и проектирования фундаментов допускается выполнять в соответствии с требованиями СП 22.13330. Инженерная подготовка территории должна осуществляться согласно 6.5.
14.13 В качестве фундаментов сооружений на склонах в районах распространения многолетнемерзлых грунтов рекомендуется применять отдельно стоящие столбчатые фундаменты, сваи и ряды свай, прорезающие поверхность скольжения. Места расположения свай на склоне, количество, конструкция, размеры и расстояние между ними определяются на основании расчетов местной и общей устойчивости склонов и с учетом оползневого давления мерзлого грунта на сваи и нагрузок от сооружения.
14.14 В качестве инженерных сооружений, противодействующих оползанию мерзлых и оттаивающих грунтов, следует применять традиционные сооружения: контрфорсы, контрбанкеты, подпорные стены, ряды свай (СП 116.13330), расположение которых на склоне и между собой обосновывается расчетами из условия недопущения течения мерзлого и оттаивающего грунта между ними и не препятствующие фильтрации воды по склону. Места расположения и количество удерживающих сооружений на склоне обосновываются расчетами местной и общей устойчивости склона.
14.15 На склонах СОУ применяются в случаях практической невозможности или недостаточной эффективности других мероприятий для стабилизации склона и обеспечения на весь период эксплуатации температуры грунта, необходимой по расчету несущей способности основания.
14.16 Для солифлюкционных склонов в качестве оснований линейных сооружений (линий электропередачи, трубопроводов, эстакад) следует применять обтекаемые фундаменты в виде отдельных свай, рядов свай, работающих в условиях обтекания их оттаивающим грунтом при соблюдении принципа оптимального сохранения природных условий на склонах (обеспечение фильтрации воды, сохранение растительности). Количество, размеры, глубина заделки свай в мерзлый грунт определяются расчетом с учетом оползневого давления оттаивающего грунта, горизонтальных нагрузок от сооружения, температуры и прочностных свойств мерзлого грунта.
14.17 Работы на склонах должны выполняться в зимний период. Выполнение работ в теплое время года допускается только после выполнения работ по стабилизации склона и обязательного проведения теплотехнического прогноза и расчетов общей и местной устойчивости склонов и сооружений на них.
14.18 Мероприятия по инженерной защите и охране окружающей среды следует проектировать комплексно с учетом геокриологических условий и прогноза их изменения в процессе строительства (с учетом поэтапности) и эксплуатации объектов. Осуществление мероприятий инженерной защиты не должно приводить к активизации опасных криогенных процессов на склонах и примыкающих территориях. Техническая эффективность и надежность сооружений и мероприятий инженерной защиты должны подтверждаться расчетами, а в обоснованных случаях - моделированием (натурным, физическим, математическим).
14.19 Для стабилизации склонов наряду с инженерными сооружениями следует применять мероприятия по снижению температуры мерзлых грунтов и уменьшению глубины сезонного оттаивания (агролесомелиорация, устройство теплозащитных экранов, водоотвод), упрочнение грунта (замена и армирование) с учетом настоящего документа. На склонах должен быть организован беспрепятственный сток поверхностных вод, исключено застаивание вод на бессточных участках, и попадание на склон вод с присклоновой территории.
14.20 В процессе строительства, эксплуатации и ликвидации сооружений на склонах и присклоновой территории выполняется мониторинг устойчивости склонов и сооружений по проекту, разработанному с учетом раздела 15, позволяющему контролировать поверхностные и глубинные перемещения грунта. На объектах повышенного и нормального уровней ответственности необходимо организовать стационарные наблюдения за оползневыми процессами с установкой контрольно-измерительной аппаратуры в скважинах в нескольких створах по простиранию склона и выполнением наблюдений за осадками и смещениями по глубине.
15 Геотехнический мониторинг при строительстве сооружений на многолетнемерзлых грунтах
15.1 Геотехнический мониторинг (далее - мониторинг) на многолетнемерзлых грунтах - комплекс работ, основанный на натурных наблюдениях за состоянием грунтов основания (температурный режим), гидрогеологическим режимом, перемещением конструкций фундаментов вновь возводимого и реконструируемого здания или сооружения.
15.2 Целью мониторинга является контроль несущей способности и состояния грунтов основания и фундаментов и деформаций сооружений, а также геокриологических условий.
15.3 В районах распространения многолетнемерзлых грунтов мониторинг необходимо проводить для всех видов зданий и сооружений, в том числе подземных инженерных коммуникаций.
15.4 Мониторинг на стадии строительства или реконструкции здания или сооружения выполняется на основании проекта.
При разработке проекта определяются состав, объемы, периодичность, сроки и методы работ, схемы установки наблюдательных скважин, геодезических марок и реперов, датчиков и приборов, которые назначаются применительно к рассматриваемому объекту строительства (реконструкции) с учетом его специфики, включающей: результаты инженерно-геологических изысканий на площадке строительства, принцип использования многолетнемерзлых грунтов в качестве оснований фундаментов, конструкции охлаждающих устройств, методы предпостроечного оттаивания, особенности конструкций проектируемого сооружения; техническое состояние и конструктивные особенности реконструированного сооружения, а также сооружений окружающей застройки и т.п.
15.5 В проекте следует учитывать факторы, оказывающие влияние на вновь возводимое (реконструируемое) сооружение, его основание, окружающий грунтовый массив и окружающую застройку в процессе строительства, в том числе возможность проявления опасных геокриологических процессов (криогенное пучение, термокарст, наледеобразование, оползневые процессы, оседание поверхности при опаивании и др.), а также тепловые воздействия от строительных работ.
15.6 Для осуществления мониторинга в период строительства сооружений оборудуются контрольные термометрические и гидрогеологические скважины, на фундаментах сооружений устанавливаются постоянные геодезические марки, по которым выполняются измерения температуры грунта, уровня подземных вод, их состава и температуры, нивелирования фундаментов, в том числе погруженных свай, измеряются отметки подкрановых путей мостовых кранов, водоотводных лотков в технических этажах и подпольях зданий, а также тротуаров у сооружений. Места установки термометрических и гидрогеологических скважин, геодезических марок указаны в таблице М.1, периодичность проведения замеров приведена в таблице М.2. Кроме того, контролируются температура воздуха в проветриваемом подполье, высота снежного покрова и его плотность, работоспособность искусственной вентиляции, сезонно или круглогодично действующих охлаждающих устройств, плотность грунтов, уложенных в насыпях, при замене грунтов в выемках и при намыве территории.
15.7 Геотехнический мониторинг выполняется на протяжении всего периода строительства. После окончания строительства мониторинг ведется в соответствии с требованиями к эксплуатации оснований и фундаментов зданий и сооружений на многолетнемерзлых грунтах.
15.8 Анализ результатов мониторинга осуществляется специализированной организацией. Выполняется контроль отклонений контролируемых параметров (несущей способности, деформаций, уровня подземных вод, в том числе тенденции их изменений, превышающие ожидаемые) от проектных значений, нормативных значений по СП.22.13330 и результатов тепло- и геотехнического прогноза. При изменении значений контролируемых параметров в сторону снижения устойчивости сооружения разрабатываются и выполняются мероприятия по снижения влияния этих изменений на устойчивость сооружения.
16 Экологические требования при проектировании и устройстве оснований и фундаментов на многолетнемерзлых грунтах
16.1 В проекте оснований и фундаментов на многолетнемерзлых грунтах должны быть предусмотрены мероприятия, обеспечивающие предотвращение, минимизацию или ликвидацию вредных и нежелательных экологических и связанных с ними социальных, экономических и других последствий.
16.2 Экологические требования, учитываемые при проектировании и строительстве, основываются на результатах инженерно-экологических изысканий, в которых дается оценка состояния окружающей среды и прогноз воздействия на нее объекта строительства. Правила инженерно-экологических и инженерно-геодезических изысканий для строительства приведены в [4] и [5].
16.3 Прогноз воздействия на природные условия осуществляется на весь период строительства и эксплуатации зданий и сооружений и должен устанавливать:
возможность изменения теплового режима многолетнемерзлых грунтов района строительства и прилегающих территорий вследствие нарушений условий теплообмена в результате строительства и температурного воздействия в процессе эксплуатации;
изменения гидрогеологических условий строительной площадки в результате производства земляных работ, включая пути разгрузки поверхностных и надмерзлотных вод по водоотводным каналам;
степень активизации опасных криогенных процессов, в том числе: осадки и пучение грунтов, термокарст, солифлюкция, термоэрозия и др.;
возможность возникновения склоновых процессов и заболачивания территории;
возможность изменения теплового режима многолетнемерзлых грунтов района строительства и прилегающих территорий вследствие изменения климата.
16.4 С учетом результатов инженерно-геологических изысканий выбираются проектные решения и разрабатываются мероприятия по рекультивации и восстановлению почвенно-растительного слоя, засыпке выемок, траншей и карьеров, выполаживанию и одернованию склонов и откосов, а также по предупреждению эрозии, термокарста и процессов размыва грунта.
16.5 Основные мероприятия по охране окружающей среды при возведении оснований и фундаментов на многолетнемерзлых грунтах разрабатываются на стадии технико-экономического обоснования.
16.6 Проектная документация на устройство оснований и фундаментов на многолетнемерзлых грунтах на стадии проекта должна включать раздел "Охрана окружающей среды".
16.7 Приступать к производству работ по устройству оснований и фундаментов допускается только при наличии ПОС и проектов инженерной подготовки и защиты от опасных криогенных процессов и подтопления территории (4.4), конкретно отражающих все особенности мерзлотно-грунтовых условий площадки строительства. Проект организации строительства должен обязательно предусматривать сроки и особенности производства работ, а также мероприятия по восстановлению поврежденных участков поверхности территории строительства.
______________________________
* В том числе подземные сооружения.
Библиография
[1] СП 11-105-97 Инженерно-геологические изыскания для строительства (ч. I-VI)
[2] СП 52-101-2003 Бетонные и железобетонные конструкции без предварительного напряжения арматуры
[3] СП 32-101-95 Проектирование и устройство фундаментов опор мостов в районах распространения вечномерзлых грунтов
[4] СП 11-102-97 Инженерно-экологические изыскания для строительства
[5] СП 11-104-97 Инженерно-геодезические изыскания для строительства
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Свод правил СП 25.13330.2020 "СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах" (утв. приказом Министерства строительства и жилищно-коммунального хозяйства РФ от 30 декабря 2020 г. N 915/пр)
Текст Свода правил опубликован на сайте Минстроя России (http://www.minstroyrf.ru), на сайте Росстандарта (http://protect.gost.ru)
Дата введения - 1 июля 2021 г.
В соответствии с распоряжением Правительства РФ от 6 апреля 2021 г. N 887-р датой вступления в силу настоящего свода правил является 8 апреля 2021 г.
Отдельные части настоящего документа включены в Перечень документов в области стандартизации, в результате применения которых на обязательной основе обеспечивается соблюдение требований Технического регламента о безопасности зданий и сооружений (утв. постановлением Правительства РФ от 28 мая 2021 г. N 815), до 1 сентября 2022 г.
Настоящий документ включен в Перечень документов в области стандартизации, в результате применения которых на добровольной основе обеспечивается соблюдение требований Технического регламента о безопасности зданий и сооружений
1 Исполнитель - АО "НИЦ "Строительство" - Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им. Н.М. Герсеванова (НИИОСП им. Н.М. Герсеванова)
2 Внесен Техническим комитетом по стандартизации ТК 465 "Строительство"
3 Подготовлен к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)
4 Утвержден приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 30 декабря 2020 г. N 915/пр и введен в действие с 1 июля 2021 г.
5 Зарегистрирован Федеральным агентством по техническому регулированию и метрологии (Росстандарт). Пересмотр СП 25.13330.2012 "СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах"
В настоящий документ внесены изменения следующими документами:
Изменение N 1, утвержденное приказом Минстроя России от 31 мая 2022 г. N 434/пр
Изменения вступают в силу с 30 июня 2022 г.