Вы можете открыть актуальную версию документа прямо сейчас.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение В
(справочное)
Оборудование
В.1 Общие положения
В настоящем приложении приведено краткое описание различных компонентов, которые могут быть включены в системы для очистки и распределения воды для диализа и диализирующего раствора, а также для приготовления и распределения концентратов для применения в гемодиализе. Используются два типа систем: системы, в которых вода для диализа распределяется в аппарат для диализа на отдельной станции лечения пациента, которые готовят и контролируют диализирующий раствор для использования на этой станции; и центральные системы доставки диализирующего раствора, которые готовят диализирующий раствор централизованно и подают его на станции лечения нескольких пациентов. Поскольку качество питательной воды и требования к очищенной воде могут варьироваться от объекта к объекту, не все компоненты, описанные в следующих пунктах, будут необходимы в каждой системе очистки и распределения воды. Кроме того, не каждое отделение диализа будет готовить концентрат в отделении диализа.
Требования к оборудованию для очистки воды, используемому для гемодиализа и сопутствующей терапии, приведены в ИСО 23500-2, а требования к оборудованию, используемому для приготовления концентратов в отделении диализа, - в ИСО 23500-4.
Рутинный диализ требует хорошо функционирующей системы очистки и распределения воды, поскольку диализ не может быть выполнен без достаточного запаса воды. Кроме того, некоторые компоненты системы очистки и распределения воды имеют решающее значение для ее функционирования. Примером такого критического компонента является циркуляционный насос в системе непрямой подачи. Отделение диализа должно разработать планы действий на случай непредвиденных обстоятельств, чтобы компенсировать неисправность своей системы очистки и распределения воды или критического компонента этой системы. Такие планы действий в чрезвычайных ситуациях должны описывать, как действовать в случае событий, которые полностью препятствуют проведению диализа, таких как отказ муниципального водоснабжения или электроснабжения объекта после стихийного бедствия или прорыва водопровода. В других планах следует рассмотреть вопрос о том, как бороться с внезапными изменениями качества муниципальной воды, а также с отказом одного из важнейших компонентов системы очистки и распределения воды. Аналогичные планы действий на случай чрезвычайных ситуаций следует разрабатывать и в случае выхода из строя систем подготовки концентрата.
В.2 Системы водоподготовки
В.2.1 Общие положения
Системы водоподготовки состоят из трех основных секций: секция предварительной очистки, которая обеспечивает условия подачи воды в устройство первичной очистки, за которой могут следовать другие устройства, повышающие конечное качество воды. Секция предварительной очистки обычно включает осадочный фильтр, картриджные фильтры, способные удерживать частицы различных размеров, умягчитель и углеродные слои. Первичным процессом очистки чаще всего используется обратный осмос, за которым могут последовать деионизация и ультрафильтрация для доочистки обработанной воды из системы обратного осмоса. Будет ли то или иное устройство включено в индивидуальную систему водоподготовки, будет зависеть от местных условий.
В этом разделе приводится краткое описание основного оборудования, используемого для очистки воды, используемой в системах для гемодиализа. Устройства, используемые для очистки воды для гемодиализа, должны соответствовать требованиям ИСО 23500-2, включая определенные конструктивные и функциональные характеристики отдельных устройств для очистки воды.
Общая информация приведена в В.2.2-В.2.9. Конструкция и оснащение отдельных устройств для водоподготовки могут отличаться от этих общих описаний. Например, умягчители могут быть сконфигурированы в виде одинарного слоя смолы, который регенерируется вне обычных часов работы установки для диализа, или они могут иметь конфигурацию с двумя слоями, которая позволяет регенерировать один слой, в то время как другой используется для обеспечения водой нормальных процедур диализа.
В зависимости от качества питательной воды и требований к обработанной воде не каждый компонент в этом пункте может потребоваться на соответствующем объекте. Точно также при определенных обстоятельствах могут потребоваться дополнительные компоненты. Например, углерод может не обеспечить соответствующего удаления хлорамина, если вода содержит вещества, такие как полифосфаты, которые маскируют реактивные участки на частицах углерода. В этих условиях могут потребоваться другие процессы, такие как инфузия бисульфита натрия, для получения очищенной воды, соответствующей требованиям 4.2.2.
Пользователям рекомендуется получить подробное описание всех компонентов водоподготовки, а также инструкции по эксплуатации и техническому обслуживанию от изготовителя или поставщика системы очистки и распределения воды.
В.2.2 Осадочные фильтры
Постоянные осадочные фильтры с обратной промывкой, также известные как "фильтрующие слои" (насыпные фильтры), часто расположены в начале систем водоподготовки для гемодиализа или вблизи них и предназначены для удаления относительно крупных твердых частиц из поступающей воды. Хотя может быть использована одна фильтрующая среда, чаще всего выбираются фильтрующие слои, известные как мультимедийные фильтры. Эти блоки содержат несколько слоев, каждый из которых обеспечивает постепенную фильтрацию все более мелкие частицы. Таким образом, слой используется в полной мере: самые крупные частицы удаляются в первом слое, контактирующем с водой, а самые мелкие - в последнем слое.
По мере того как слой накапливает твердые частицы, открытые каналы начинают засоряться, и сопротивление воде, проходящей через фильтр, увеличивается. В конечном счете повышенное сопротивление потоку приведет к сокращению подачи воды к нижестоящим компонентам. Чтобы предотвратить возникновение такой ситуации, фильтрующие слои очищаются периодической обратной промывкой, которая осуществляется либо вручную, либо с помощью регулирующего клапана, активируемого таймером. Осадочные фильтры должны иметь непрозрачный корпус или другие средства, препятствующие размножению водорослей. Фильтрующие слои должны быть снабжены датчиками для измерения гидростатического давления на входе и выходе фильтров. Эти значения могут быть использованы для определения динамического перепада давления на фильтре (разность давлений или Р), который служит показателем сопротивления потоку и основой, наряду с рекомендациями изготовителя, для установки частоты обратной промывки.
В.2.3 Картриджные фильтры
Картриджные фильтры состоят из цилиндрического картриджа фильтрующей среды с центральным дренажным сердечником. Картридж помещен в корпус фильтра с уплотнениями для разделения потоков питательной и очищенной воды. В каскаде предварительной обработки прозрачные корпуса фильтров могут быть полезны, поскольку они позволяют увидеть любую утечку углерода или смолы без необходимости нарушать целостность системы. Корпус может быть очищен от любых водорослей при замене фильтрующего картриджа. По этой причине использование непрозрачных корпусов для картриджных фильтров рекомендуется, но не обязательно. Если используются прозрачные корпуса, они не должны подвергаться воздействию естественного света, чтобы свести к минимуму размножение водорослей. Картриджные фильтры должны быть снабжены датчиками для измерения гидростатического давления на входе и выходе фильтров. Хотя картриджные фильтры могут быть установлены на входе в систему водоподготовки, их обычное применение - это заключительная стадия фильтрации перед обратным осмосом. Сопротивление течению через фильтр увеличивается по мере накопления картриджем твердых частиц, о чем свидетельствует увеличение Р. При достижении максимального значения
Р, рекомендованного изготовителем фильтра, картридж следует заменить в соответствии с инструкциями изготовителя.
В.2.4 Умягчители
Вода, содержащая кальций или магний, может образовывать относительно твердые отложения и называется "жесткой водой". Вода, в которой эти элементы были заменены натрием посредством ионообмена, называется "мягкой водой", поэтому используется термин "умягчитель". Умягчители также удаляют другие поливалентные катионы, в первую очередь железо и марганец, хотя в этом они несколько ограничены. При наличии значительных концентраций железа и марганца следует применять специальные процедуры для снижения этих концентраций до уровней, которые не препятствуют процессу размягчения и не вызывают загрязнения мембран. Основное применение умягчителей в системах водоснабжения для гемодиализа заключается в предотвращении загрязнения мембран обратного осмоса отложениями жесткой воды.
Умягчитель - это цилиндр или сосуд, содержащий нерастворимые сферы или шарики, называемые "смолой", к которым присоединены ионы натрия. Во время работы обменные ионы натрия в смоле постепенно замещаются ионами кальция и магния. Когда все ионы натрия использованы, слой смолы достигает состояния, называемого "истощением". Перед истощением умягчители должны быть восстановлены, то есть новые обменные ионы натрия помещаются на смолу с помощью процесса, известного как "регенерация", который включает воздействие на слой смолы высококонцентрированным раствором хлорида натрия. Концентрированный раствор хлорида натрия готовят в отдельной емкости для солевого раствора, из которой он извлекается в процессе регенерации. Регулирующий клапан на умягчителе регулирует циклы регенерации и обслуживания.
Автоматически регенерируемые умягчители воды должны быть снабжены механизмом предотвращения попадания воды, содержащей высокую концентрацию хлорида натрия, используемого при регенерации, в линию очищенной воды во время регенерации. Для умягчителей с контролируемым по времени циклом регенерации лицевая сторона таймера должна быть видна пользователю. Органы управления должны быть расположены таким образом, чтобы свести к минимуму непреднамеренный сброс.
В.2.5 Углеродные среды
Углеродные системы, часто называемые угольными фильтрами, являются основным средством удаления как свободного хлора, так и хлорамина. Удаление хлорамина до максимального уровня 0,1 мг/л и удаление свободного хлора до максимального уровня 0,5 мг/л необходимы для защиты пациентов, находящихся на диализе, от гемолиза эритроцитов. Кроме того, свободный хлор может также разрушать некоторые мембраны обратного осмоса в зависимости от материала мембраны. Определение уровня хлорамина обычно включает в себя измерение как общего хлора, так и свободного хлора и присвоение разности концентраций хлорамину. Для проведения одного испытания максимально допустимый уровень общего хлора был установлен на уровне максимально допустимого уровня хлорамина (0,1 мг/л).
Помимо удаления свободного хлора и хлорамина, углерод также адсорбирует широкий спектр других веществ, включая как природные, так и синтетические органические соединения. Способность углерода удалять свободный хлор и хлорамин может быть снижена, когда другие вещества "маскируют" реактивные участки на углеродных средах. Кроме того, скорость удаления свободного хлора и хлорамина уменьшается по мере увеличения рН или снижения температуры. Совокупный эффект этих переменных заключается в том, что конечная способность углеродных слоев удалять свободный хлор и хлорамин не может быть предсказана с какой-либо определенностью. Поэтому их эффективность следует часто контролировать.
Углеродные системы должны быть специально адаптированы к максимальному ожидаемому расходу воды в системе. Когда углерод используется для удаления хлорамина на уровне 1 мг/л или более, два слоя углерода должны быть установлены в последовательной конфигурации. Следует предусмотреть средство для отбора проб очищенной воды с первого слоя. Пробоотборное отверстие также должно быть установлено после второго слоя для использования в случае полного прорыва хлора через первый слой. В ситуациях, когда хлорамин не используется для обеззараживания воды, а уровень аммония в воде низок, может быть достаточно одного угольного слоя или угольных картриджных фильтров. Отработанные углеродные носители должны быть удалены и заменены новыми носителями в соответствии с графиком замены, определяемым регулярным контролем. Например, когда испытание между слоями показывает, что первый слой истощен, второй слой должен быть перемещен в первое положение, второй слой заменен новым слоем, а отработанный слой удален. Если пробы из первого пробоотборного отверстия положительны по общему хлору, то работа может быть продолжена в течение короткого времени (до 72 ч) до установки сменного слоя при условии, что пробы из второго пробоотборного отверстия остаются отрицательными. Было признано, что, возможно, нецелесообразно менять положения слоя в установках, использующих большие, поддающиеся обратной промывке угольные слои. Однако была выражена озабоченность по поводу того, что пропускная способность второго слоя может непредсказуемо уменьшиться и больше не обеспечивать соответствующую очистку в случае прорыва первого слоя. По этой причине было рекомендовано заменить оба слоя, если изменение положения слоя было невозможно.
Гранулированный активированный уголь с йодным числом более 900 считается оптимальным для удаления хлора/хлорамина. При использовании гранулированного активированного угля в качестве среды для удаления хлорамина из воды, содержащей более 1 мг/л хлорамина, каждый слой должен иметь время контакта частиц с водой (ЕВСТ) не менее 5 мин при максимальном расходе обработанной воды (общий ЕВСТ не менее 10 мин). Некоторые исходные воды, такие как вода с высоким содержанием органических веществ, могут потребовать альтернативных видов углерода, которые более устойчивы к органическому загрязнению. Эти типы углерода могут иметь йодное число менее 900. При использовании других форм углерода или гранулированного активированного угля с йодным числом менее 900 изготовитель должен предоставить эксплуатационные данные, свидетельствующие о том, что каждый слой обладает способностью снижать общую концентрацию хлора в питательной воде до менее 0,1 мг/л при работе с максимальным ожидаемым расходом в течение максимального временного интервала между плановыми испытаниями обработанной воды на содержание общего хлора. Регенерированный углерод не должен использоваться. Некоторые гранулированные активированные угли содержат алюминий, который может элюировать из углерода и добавлять к нагрузке алюминий, удаляемый обратным осмосом или ионным обменом. Использование промытого кислотой углерода сводит к минимуму этот источник алюминия в воде.
Там, где это целесообразно, портативные диализные системы, снабжаемые водой, которая, как известно, содержит хлорамин, должны включать последовательно два углеродных слоя, которые вместе обеспечивают 10-минутный ЕВСТ. В тех случаях, когда это нецелесообразно, можно использовать альтернативные технологии при условии наличия избыточных средств удаления хлорамина и проверки, что концентрация общего хлора менее 0,1 мг/л в образце, собранном после первичного устройства перед каждой обработкой. Возможные альтернативы включают в себя: слой гранулированного активированного угля, за которым следует плотный блок углерода, и два последовательно установленных углеродных блок-фильтра.
Углеродные слои, используемые для удаления свободного хлора и хлорамина, иногда располагаются в виде последовательно соединенных пар слоев, так что они не должны быть чрезмерно большими. Слои внутри каждой пары имеют одинаковый размер, и вода, которая течет через них, течет параллельно. Для удаления хлорамина из воды, содержащей более 1 мг/л, каждая пара слоев должна иметь минимальное время контакта частиц с водой 5 мин при максимальной скорости потока через слой. При использовании последовательно соединенных пар слоев трубопровод должен быть спроектирован таким образом, чтобы свести к минимуму различия в сопротивлении потоку от входа и выхода между каждой параллельной серией слоев, чтобы обеспечить равный объем воды, протекающей через все слои.
Хотя обработка воды углеродом является методом, обычно используемым для обеспечения соответствия требованиям 4.2.2 в отношении общего хлора, было признано, что в некоторых ситуациях углерод может недостаточно эффективно удалять хлорамин. Несоответствующее удаление хлорамина может происходить при наличии хлораминов в форме природных N-хлораминов или при использовании таких методов, как использование высокого рН или включение ортофосфата или полифосфатов. Если рН поступающей воды выходит за пределы диапазона, указанного изготовителем, углерод может не функционировать должным образом и быстро истощаться. В других ситуациях, таких как острый диализ с портативными системами водоподготовки, может оказаться нецелесообразным использовать объем углерода, необходимый для обеспечения соответствующего удаления хлорамина. В таких условиях могут потребоваться другие методы удаления хлорамина в дополнение к углероду. Инъекция кислоты может быть использована для снижения рН (см. В.2.6), анионообменники (также известные как органические поглотители) могут быть установлены перед углеродными слоями для удаления органических веществ и других веществ, которые могут загрязнять углеродные слои, а деалкализаторы могут быть использованы для снижения щелочности. Известно, что добавление бисульфита натрия перед системой обратного осмоса успешно устраняет хлорамин в системах для гемодиализа. Аскорбиновая кислота также была добавлена к кислотному концентрату, используемому для удаления хлорамина из конечного диализирующего раствора. Следует отметить, что для нейтрализации хлорамина в воде аскорбиновой кислотой требуется минимальное время контакта. Если аскорбиновая кислота используется для нейтрализации хлорамина и если происходит необъяснимое разрушение эритроцитов или анемия, следует исследовать эффективность нейтрализации хлорамина аскорбиновой кислотой. Другие способы удаления хлорамина, такие как окислительно-восстановительные реакции и ультрафиолетовое облучение, используются в фармацевтической и электронной промышленности. В настоящее время эти процессы оцениваются для применения в гемодиализе. Окончательный выбор системы удаления хлорамина в условиях гемодиализа будет зависеть от местных условий, и, возможно, потребуется включить более одного из описанных выше процессов.
В.2.6 Системы впрыска химических веществ
Системы впрыска химических веществ могут быть использованы в секции предварительной обработки системы очистки воды в дополнение к физическим процессам очистки, описанным в предыдущих пунктах. Применение химических инъекций включает добавление бисульфита натрия для удаления хлорамина и добавление кислоты для регулировки рН.
Системы впрыска химических веществ состоят из резервуара, содержащего впрыскиваемое химическое вещество, дозирующего насоса и смесительной камеры, расположенной в магистральном водопроводе. Системы впрыска химических веществ также включают в себя некоторые средства регулирования дозирующего насоса для контроля добавления химического вещества. Эта система должна быть разработана таким образом, чтобы жестко контролировать добавление химического вещества. Система управления должна гарантировать, что химическое вещество добавляется только тогда, когда вода проходит через каскад предварительной обработки, и что оно добавляется в фиксированной пропорции к потоку воды или на основе какого-либо постоянно контролируемого параметра, такого как рН, с использованием автоматизированной системы управления. Если для введения химического вещества используется автоматизированная система управления, то контрольный параметр следует контролировать независимо. Кроме того, должны быть предусмотрены средства проверки того, что концентрации любых остатков, образующихся в результате добавления химического вещества в воду, снижаются до безопасного уровня до того, как вода достигнет точки своего использования.
При добавлении кислоты для регулирования рН следует использовать минеральную кислоту; органические кислоты могут действовать как питательное вещество и способствовать размножению бактерий.
Были сделаны оговорки в отношении добавления химических веществ в воду. Однако было признано, что добавление химических веществ может быть необходимым в некоторых обстоятельствах, если объект должен соответствовать максимально допустимым уровням загрязняющих веществ, указанным в 4.2.2. Например, если муниципальная вода содержит высокие уровни N-хлораминов или хлорамина при наличии ортофосфата или полифосфата, инъекция бисульфита натрия может быть одним из немногих доступных вариантов удаления хлорамина.
Если химическая инъекция используется в каскаде предварительной обработки, пользователи должны убедиться, что добавление химического вещества не мешает работе последующих процессов очистки, включая процесс первичной очистки. Например, производительность тонкопленочных композитных мембран обратного осмоса может зависеть от рН питательной воды. При уровнях рН ниже 7 способность задерживать фторид может быть существенно снижена по сравнению с этой способностью при рН = 8.
В.2.7 Обратный осмос
Системы обратного осмоса (RO) стали широко использоваться в системах водоподготовки для гемодиализа, главным образом потому, что эти устройства удаляют неорганические и органические растворенные вещества, а также бактерии и бактериальные эндотоксины.
К системам обратного осмоса предъявляют следующие требования:
a) при использовании для подготовки воды для гемодиализа либо отдельно, либо в качестве последней стадии химической очистки в системе водоподготовки системы обратного осмоса при установке должны соответствовать требованиям ИСО 23500-3 при испытании с типичной питательной водой пользователя;
b) системы обратного осмоса должны быть оснащены устройствами контроля в режиме реального времени, позволяющими определять скорость отбраковки и проводимость очищенной воды. Устройство контроля проводимости очищенной воды должно активировать звуковые и визуальные сигналы тревоги, когда проводимость обработанной воды превышает заданный предел тревоги. Сигнализация должна обеспечивать уведомление персонала в зоне ухода за пациентами, если обратный осмос является последним процессом химической очистки в системе водоподготовки. Устройства контроля, измеряющие удельное сопротивление, могут использоваться вместо устройств контроля проводимости.
Компоненты процесса разделения мембран RO представляют собой полупроницаемую мембрану, обычно в спирально-навитой конфигурации, насос и различные регуляторы расхода и давления для направления потока воды через систему. В процессе работы питательная вода нагнетается насосом RO под давлением и затем направляется вдоль поверхности полупроницаемой мембраны. Часть воды вытесняется через мембрану (процесс, который удаляет неорганические и органические растворенные вещества, бактерии и бактериальные эндотоксины). Остальная вода проходит по поверхности мембраны и направляется в дренаж. Вода, проходящая через мембрану, называется "обработанной (очищенной) водой" или "пермеатом". Вода, которая течет вдоль поверхности мембраны и к дренажу, известна как "отбракованная вода" или "концентрат". Такая конфигурация потока, известная как "фильтрация поперечного потока", предотвращает постепенное накопление материалов на поверхности мембраны, что в конечном итоге приведет к загрязнению и разрушению мембраны. В некоторых системах обратного осмоса часть потока отбракованной воды возвращается в поток питательной воды. Эта рециркуляция обеспечивает более высокие скорости движения по поверхности мембраны, что может помочь уменьшить загрязнение мембраны, а также обеспечить более эффективное использование воды. Системы RO могут работать в одноступенчатой или двухступенчатой (двухпроходной) конфигурации в зависимости от качества питательной воды и/или местных требований и предпочтений. В двухступенчатом RO обработанная вода с первой ступени действует как питательная вода для второй ступени.
Примечание - Скорость отбраковки второй ступени в двухступенчатой системе обратного осмоса может быть значительно ниже, чем скорость отбраковки первой ступени. Одна из причин разницы в скорости отбраковки связана с растворенным СO 2.
Системы RO также могут быть оснащены расходомерами, обычно в очищенной воде и отбракованных потоках воды, для контроля выхода системы RO и манометрами для контроля давления в различных точках системы. Хотя это и не свидетельствует о качестве обработанной воды, контроль расхода и давления может помочь гарантировать, что система работает в соответствии со спецификациями изготовителя, и, таким образом, обеспечить надежность RO.
Кроме того, когда система обратного осмоса является последним процессом химической очистки в системе водоподготовки, рекомендуется, чтобы были предусмотрены средства для предотвращения воздействия на пациента небезопасной обработанной воды в случае срабатывания сигнала тревоги по проводимости обработанной воды. Такие средства могут включать отвод обработанной воды в дренаж, а также активацию звуковых и/или визуальных сигналов тревоги, которые должны быть расположены таким образом, чтобы было обеспечено быстрое реагирование персонала в зоне ухода за пациентом.
В зависимости от конфигурации мембраны и материалов конструкции системы RO чувствительны к различным характеристикам питательной воды, которые могут привести к снижению производительности или преждевременному отказу. Чтобы избежать таких проблем, пользователи должны тщательно следовать инструкциям изготовителя по очистке питательной воды и надзору за тем, чтобы RO работал в пределах своих конструктивных параметров.
В.2.8 Деионизация
Деионизация (DI) - это процесс ионного обмена, который удаляет из воды как анионы (отрицательно заряженные ионы), так и катионы (положительно заряженные ионы). В процессе обмена гидроксильные ионы заменяют другие анионы питательной воды, а ионы водорода заменяют другие катионы питательной воды; гидроксильные ионы и ионы водорода затем объединяются, образуя чистую воду. Системы DI, содержащие анионную и катионную смолы в отдельных емкостях, известны как "системы с двойным слоем", а имеющие оба типа смол, смешанных вместе в одной емкости, известны как "смешанные слои" или "системы с универсальным слоем".
Деионизаторы являются эффективным средством удаления ионных загрязнений из воды. Однако они не удаляют неионогенные загрязнения и могут вносить бактериальные загрязнения в воду, а не удалять их. Неспособность деионизаторов удалять неионные загрязняющие вещества может ограничить удаление алюминия деионизацией, поскольку алюминий является амфотерным веществом, которое изменяется от катионного к анионному при изменении рН от кислого к щелочному [87]. При нейтральном рН алюминий присутствует в основном в виде коллоидного алюминия, который не несет заряда и не удаляется с помощью деионизации [17]. Кроме того, деионизаторы обладают ограниченной способностью к удалению загрязняющих веществ. Как только деионизатор будет истощен ионами водорода и гидроксильными ионами, следующие наименее прочно связанные ионы будут вытеснены более прочно связанными ионами. Например, как только гидроксильные ионы истощаются, анионные загрязняющие вещества в воде вытесняют фторид-ионы из анионообменной смолы [35]. Это явление привело к высокому содержанию фтора в обработанной воде с последующими травмированием и смертью пациента [33], [36]. Деионизация, даже в сочетании с эндотоксиновым фильтром, не удаляет некоторые низкомолекулярные токсичные бактериальные продукты, такие как микроцистины. По вышеуказанным причинам использование деионизации в качестве основного средства очистки воды, питающей несколько аппаратов для диализа, категорически не рекомендуется. Деионизация может быть использована для доочистки обработанной воды из системы обратного осмоса или может быть использована в качестве резервного варианта, если система обратного осмоса выходит из строя. Многие считают, что двухступенчатая система обратного осмоса, работающая в резервной конфигурации, предпочтительнее комбинации обратного осмоса и деионизации.
Наиболее распространенная конфигурация для DI состоит из двух последовательных смешанных слоев, с устройствами контроля сопротивления, размещенными ниже по потоку от каждого слоя. При истощении первого слоя нагрузка воды с достаточно высоким удельным сопротивлением смещается на второй слой, и процедуры диализа могут быть продолжены в течение короткого времени, пока не будет установлен сменный слой, при условии, что обработанная вода из второго накопителя имеет сопротивление 1 или больше.
DI имеет конечную производительность, превышение которой приведет к опасно высокому уровню загрязняющих веществ в обработанной воде. Поэтому системы DI, используемые для подготовки воды для гемодиализа, следует постоянно контролировать с целью получения воды с удельным сопротивлением 1 или более (или проводимостью 1 мкс/см или менее) при температуре 25 °С. Звуковая и визуальная сигнализации должны быть активированы, когда удельное сопротивление обработанной воды падает ниже этого уровня, и поток обработанной воды должен быть отведен до достижения любой точки использования, например путем отвода в дренаж. Сигнализация должна обеспечивать оповещение персонала в зоне ухода за пациентом. Ни при каких обстоятельствах не следует использовать DI, когда обработанная вода из конечного слоя имеет удельное сопротивление ниже 1
.
Питательная вода для систем деионизации должна быть предварительно обработана активированным углем или альтернативой, чтобы предотвратить образование нитрозамина.
Если система деионизации является последним процессом в системе очистки воды, за ней должен следовать эндотоксиновый фильтр или другое бактериально- и эндотоксинредуцирующее устройство. Для деионизаторов тенденция внесения бактериальных загрязняющих веществ в воду больше, когда деионизаторы содержатся в качестве резервного устройства для системы обратного осмоса, особенно если поток через деионизаторы отсутствует. Некоторые установки исключают эту тенденцию посредством подключения деионизаторов параллельно магистральному водопроводу и поддержания низкого потока через них. Альтернативный подход состоит в заключении контракта с местным поставщиком на предоставление резервных деионизаторов по требованию.
Примечание - Приведенные выше требования к деионизации могут не применяться к технологии электродеионизации (EDI), которая может быть использована в качестве альтернативы деионизации, следующей за обратным осмосом в системах для гемодиализа.
В.2.9 Эндотоксиновые фильтры
Эндотоксиновые фильтры представляют собой мембранные разделители, которые могут быть использованы для удаления как бактерий, так и эндотоксинов. Эндотоксиновые фильтры следует размещать в системах воды для диализа в местах, расположенных ниже по течению от деионизаторов. Они также могут быть использованы в конце очистного каскада и в системе распределения воды для диализа или центральной системе распределения диализирующего раствора. Эндотоксиновые фильтры могут быть также использованы в линии диализирующего раствора отдельных аппаратов для диализа в качестве конечного барьера против бактерий и эндотоксинов. Эти фильтры считаются частью аппарата для диализа и могут не соответствовать всем последующим рекомендациям.
Примечание - Эндотоксиновые фильтры не удаляют низкомолекулярные микробные метаболиты.
Эндотоксиновые мембраны, используемые для гемодиализа, обычно имеют спирально-навитую конфигурацию или конфигурацию полых волокон. Спирально-навитые ультрафильтры обычно работают в режиме поперечного потока, причем часть питательной воды выталкивается через мембрану, а остальная часть направляется вдоль поверхности мембраны для отвода в дренаж. Как и при обратном осмосе, поперечная фильтрация предназначена для минимизации загрязнения мембран. Эндотоксиновые фильтры с полыми волокнами обычно размещаются в емкостях, аналогичных тем, которые используются для картриджных осадочных фильтров, и могут работать в режиме поперечного потока или в тупиковом режиме (без поперечного потока). При использовании в системе очистки воды для гемодиализа следует продемонстрировать, что эндотоксиновый фильтр снижает концентрацию бактерий и эндотоксинов, поступающих в фильтр, по меньшей мере на величину, указанную в маркировке изготовителя.
Эндотоксиновые фильтры должны быть оснащены средствами оценки целостности и загрязнения фильтра во время использования. Одним из подходящих средств является контроль перепада давления (Р) на фильтре при заданном расходе обработанной воды с помощью манометров на входной (питательная) и выходной (обработанная) водопроводных линиях. В качестве альтернативы расход обработанной воды может быть измерен при заданном перепаде давления. Такое наблюдение покажет, когда загрязнение мембраны прогрессирует до такой степени, что требуется замена мембраны или ее очистка. Наблюдение также гарантирует, что устройство эксплуатируется в соответствии с инструкциями изготовителя. Эндотоксиновые фильтры должны быть включены в рутинные процедуры дезинфекции, чтобы предотвратить неконтролируемое размножение бактерий в фильтре. Если бактериальная пролиферация не контролируется, бактерии могут "прорасти" через мембрану и загрязнить отсек обработанной воды. Эндотоксиновые фильтры, работающие в режиме поперечного потока, также должны быть оснащены расходомером для контроля расхода воды, отводимой в дренаж.
В.3 Хранение и распределение воды для диализа
В.3.1 Общие положения
Функция системы хранения и распределения воды заключается в распределении воды для диализа из очистного каскада в пункты ее использования, включая индивидуальные аппараты для диализа, дозирующие системы, используемые для централизованного приготовления диализирующего раствора, оборудование для повторной обработки диализатора и системы подготовки концентрата. Система хранения и распределения воды обычно содержит большой объем воды, подверженной воздействию большой площади поверхности труб и стенок накопителей для хранения. Поскольку хлор и хлорамин удаляются в процессе очистки, вода не содержит бактериостатического агента. Такое сочетание условий предрасполагает увлажненные поверхности к размножению бактерий и образованию биопленок. Поэтому любая система хранения и распределения воды для диализа должна быть разработана специально для облегчения борьбы с бактериями, включая меры по предотвращению бактериальной колонизации и обеспечению легкой и частой дезинфекции.
В.3.2 Хранение воды
Накопители для хранения (в случае их использования) должны иметь коническое или чашеобразное основание и сливаться из самой нижней точки основания. Накопители для хранения должны иметь плотно прилегающую крышку и вентилироваться через гидрофобный воздушный фильтр от 0,22 до 0,45 мкм. Фильтр следует менять регулярно в соответствии с инструкциями изготовителя или в случае его намокания. Необходимо предусмотреть средства для эффективной дезинфекции любого накопителя для хранения, установленного в системе распределения воды. Внутренние механизмы распыления могут способствовать эффективной дезинфекции и промывке накопителя для хранения.
В.3.3 Распределение воды
Используются два типа систем распределения воды: системы прямого питания и системы косвенного питания. В системе прямой подачи вода для диализа поступает непосредственно из последней ступени очистного каскада в пункты использования. В системе косвенного питания вода для диализа течет из конца очистного каскада в накопитель для хранения. Оттуда она распределяется по точкам использования. Система хранения и распределения воды, выбранная для конкретной ситуации, должна обеспечивать простейший из возможных путей потока и содержать наименьший объем воды, соответствующий эксплуатационным потребностям установки для диализа. Самая простая система - это, как правило, система прямого питания. Однако системы прямой подачи могут оказаться непрактичными. Например, давление в конце очистного каскада может быть недостаточным для обеспечения соответствующего потока и давления в точках использования без дожимного (бустерного) насоса. Если используется система прямой подачи, то необходимо также определить размер каскада очистки воды, чтобы обеспечить достаточное количество воды для удовлетворения пикового спроса. По этим причинам может быть использована система косвенной подачи с накопителем для хранения. Поскольку накопители для хранения обеспечивают большую площадь поверхности для потенциального образования биопленки, их объем должен быть сведен к минимуму, чтобы максимизировать оборот воды в накопителе. Независимо от того, какой тип системы используется, системы распределения воды должны быть сконфигурированы как непрерывный контур и предназначены для минимизации размножения бактерий и образования биопленок (см. раздел 8). Центробежный насос, изготовленный из инертных материалов, необходим для распределения воды для диализа и оказания содействия в эффективной дезинфекции. Для этой цели предпочтителен многоступенчатый центробежный насос.
Системы распределения с прямой подачей обычно возвращают неиспользованную воду для диализа на сторону подачи блока обратного осмоса. Если давление в конце распределительного контура снижается до значения ниже давления воды на входе в насос обратного осмоса, то может произойти ретроградное поступление неочищенной воды в распределительный контур. Чтобы свести к минимуму этот риск, рекомендуется использовать двойные обратные клапаны или предохранительный накопитель на входе в систему обратного осмоса с воздушным зазором на линиях от каскада предварительной обработки и распределительного контура для предотвращения ретроградного потока и контроля давления в конце распределительного контура.
Распределительные системы для воды для диализа должны быть выполнены из материалов, которые не вносят в воду для диализа химических веществ, таких как алюминий, медь, свинец и цинк, или бактериальных загрязнителей. Выбор материалов, используемых для системы распределения воды, также будет зависеть от предлагаемого способа дезинфекции. Таблица В.1 содержит рекомендации по совместимости различных материалов и дезинфицирующих средств. Какой бы материал ни использовался, следует позаботиться о том, чтобы выбрать продукт со свойствами, обеспечивающими наименее благоприятную среду для размножения бактерий, например гладкие внутренние поверхности.
Таблица В.1 - Руководство по материалам для труб, используемым в системах распределения воды для диализа, и их совместимости с обычными дезинфицирующими средствами
Материал |
Гипохлорит натрия (отбеливатель) |
Перуксусная кислота |
Формальдегид |
Горячая вода |
Озон а |
PVC (ПВХ) |
X |
X |
X |
|
X |
CPVC (ХПВХ) |
X |
X |
X |
|
X |
PVDF (ПВДФ) |
X |
X |
X |
X |
X |
РЕХ |
X |
X |
X |
X |
X |
SS |
|
X |
X |
X |
X |
РР (ПП) |
X |
X |
X |
X |
|
РЕ (ПЭ) |
X |
X |
X |
|
X |
ABS (АБС) |
|
X |
|
|
|
PTFE (ПТФЭ) |
X |
X |
X |
X |
X |
Стекло |
X |
X |
X |
X |
X |
Примечание 1 - X обозначает вероятную совместимость. Примечание 2 - PVC (ПВХ) - поливинилхлорид, CPVC (ХПВХ) - хлорированный поливинилхлорид, PVDF (ПВДФ) - поливинилиденфторид, РЕХ - сшитый полиэтилен, SS - нержавеющая сталь, РР (ПП) - полипропилен, РЕ (ПЭ) - полиэтилен, ABS (АБС) - акрилонитрилбутадиенстирол, PTFE (ПТФЭ) - политетрафторэтилен.
а Озон относится к озону, растворенному в воде, а не к газообразному озону. |
Таблица В.1 не предназначена для исчерпывающей компиляции всех возможных совместимых комбинаций материала труб и дезинфицирующего средства. Рассмотрение совместимости должно включать любые соединительные материалы и фитинги для труб, а также фактический материал труб. Следует также учитывать концентрацию бактерицида и продолжительность, частоту и условия (расход, давление, температура) воздействия.
Пользователи должны проверить совместимость между данным бактерицидом и материалами трубопроводной системы с поставщиком этой трубопроводной системы и/или поставщиком дезинфицирующего средства перед использованием бактерицида.
В.3.4 Устройства бактериального контроля
В.3.4.1 Общие положения
Традиционно химическая дезинфекция использовалась для предотвращения размножения бактерий в системах хранения и распределения воды для диализа. Одним из следствий повышенного внимания, уделяемого бактериологическому контролю в системе хранения и распределения воды для диализа, является интерес к альтернативам традиционной химической дезинфекции, включая ультрафиолетовые излучатели, генераторы озона и системы дезинфекции горячей водой. Как озон, так и горячая вода могут обеспечить более частую дезинфекцию системы хранения и распределения воды для диализа, поскольку не требуется длительная промывка для удаления остатков дезинфицирующего средства из системы до возобновления диализа. Использование озона или горячей воды возможно только в том случае, если системы выполнены из соответствующих устойчивых материалов. Это ограничение распространяется не только на трубопроводы и любые накопители для хранения, которые могут находиться в системе, но и на все насосы, клапаны и другие фитинги, включая любые уплотнительные кольца и уплотнители, которые они могут содержать. Ультрафиолетовое излучение может быть использовано для уничтожения планктонных клеток, но оно не оказывает никакого воздействия на бактерии, находящиеся в биопленке. Для достижения эффективной и превентивной дезинфекции с помощью соответствующей системы пользователь должен обратиться к рекомендациям изготовителя устройства или системы.
В.3.4.2 Ультрафиолетовые излучатели
При использовании для контроля бактериальной пролиферации в системах хранения и распределения воды для диализа устройства ультрафиолетового (УФ) излучения должны быть оснащены ртутной лампой низкого давления, излучающей свет с длиной волны 254 нм и обеспечивающей дозу излучаемой энергии 30 /см 2. Если излучатель включает калиброванный измеритель интенсивности УФ-излучения, то минимальная доза излучаемой энергии должна составлять не менее 16
/см 2. Устройство должно быть рассчитано на максимальный ожидаемый расход в соответствии с инструкциями изготовителя. Рекомендуется, чтобы за УФ-излучателями следовал эндотоксиновый фильтр для удаления пирогенов.
Рекомендации, приведенные в этом пункте, относятся к УФ-излучателю, используемому специально для борьбы с бактериями. УФ-излучатели могут также использоваться для других применений в системах очистки и распределения воды.
УФ-излучение также может быть использовано для борьбы с бактериями в секции предварительной обработки системы водоподготовки, например, после углеродных слоев, чтобы уменьшить бактериальную нагрузку на блок обратного осмоса.
УФ-излучатели должны быть оснащены калиброванным измерителем интенсивности УФ-излучения, как описано выше, или контролирующим устройством выхода излучаемой энергии в режиме реального времени, которое активирует видимый сигнал тревоги, указывающий на то, что лампа должна быть заменена. В качестве альтернативы лампу следует заменять по заранее установленному графику в соответствии с инструкциями изготовителя для поддержания рекомендуемой мощности излучения.
Если УФ-излучатели погружаются в накопитель для хранения, чтобы контролировать бактерии, они должны быть сконструированы таким образом, чтобы поддерживать необходимую энергию в самом дальнем положении в накопителе с учетом потока во время работы.
В.3.4.3 Системы дезинфекции озоном
При использовании для контроля размножения бактерий в системах хранения и распределения воды для диализа система дезинфекции озоном должна обеспечивать доставку озона в концентрации и в течение времени воздействия, указанных изготовителем. При использовании систем дезинфекции озоном рекомендуется установить в зоне генератора озона устройство контроля озона окружающего воздуха.
Генераторы озона преобразуют кислород в озон с помощью коронного разряда или УФ-излучения. Затем озон впрыскивается в поток воды. Концентрация озона от 0,2 до 0,5 мг/л в сочетании с временем контакта 10 мин, измеренным в конце распределительного контура, способна убивать бактерии, бактериальные споры, вирусы, плесень и дрожжи в воде. Разрушение установившейся биопленки может потребовать более длительного времени воздействия и/или более высоких концентраций озона. Озон также может разрушать эндотоксины.
Озон может разрушать многие пластики, включая ПВХ и эластомерные уплотнительные кольца и уплотнители. Поэтому озон может использоваться для борьбы с бактериями только в системах, изготовленных из озоностойких материалов (см. В.3.3).
В.3.4.4 Системы дезинфекции горячей водой
Горячая вода может быть использована для контроля размножения бактерий в системах хранения и распределения воды для диализа. Время воздействия должно соответствовать инструкциям изготовителя. Водонагреватель системы дезинфекции горячей водой должен обеспечивать подачу горячей воды при температуре и в течение времени воздействия, указанных изготовителем, на любой участок системы хранения и распределения воды для диализа. Следует соблюдать инструкции изготовителя по использованию систем дезинфекции горячей водой. Если инструкции изготовителя отсутствуют, эффективность системы может быть продемонстрирована путем проверки того, что система поддерживает заданную температуру во всей системе в течение заданного времени, а также путем проведения постоянного контроля с использованием бактериальных культур и испытания на эндотоксины.
Примечание 1 - Способность горячей воды дезинфицировать систему распределения зависит от температуры воды и времени воздействия. Например, минимальное время воздействия для дезинфекции горячей водой при температуре 80 °С составляет 10 мин.
Примечание 2 - Параметр А 0 может быть использован для количественной оценки тепловой дезинфекции в диапазоне от 65 °С до 100 °С (см. ИСО 15883-1:2006). Температура и время могут быть объединены, чтобы получить число, представляющее дозу, способную достичь необходимого снижения числа жизнеспособных организмов.
,
где Т - температура, °С;
z - значение, равное 10 °С;
- выбранный период времени, с.
Значение А 0, равное 1, определяется как воздействие температурой 80 °С в течение 1 с. Таким образом, А 0 = 600 представляет собой 10 мин при температуре 80 °С, 1 мин при 90 °С или 100 мин при 70 °С.
Системы дезинфекции горячей водой могут использоваться только в системах, изготовленных из термостойких материалов, таких как PVDF (поливинилиденфторид), РЕХ (сшитый полиэтилен), SS (нержавеющая сталь), РР (полипропилен) и PTFE (политетрафторэтилен) (см. В.3.3).
В.4 Приготовление концентрата
В.4.1 Общие положения
Диализирующий раствор обычно готовят из двух концентратов: бикарбонатного концентрата, содержащего бикарбонат натрия (а иногда и дополнительный хлорид натрия), и кислотного концентрата, содержащего все остаточные ионы, уксусную кислоту или лимонную кислоту, а иногда и глюкозу. Были также разработаны системы, которые готовят кислотный концентрат из отдельных компонентов, таких как картридж с хлоридом натрия и концентрированный раствор электролитов.
Кислотный концентрат может поставляться изготовителем крупной тарой или в одноразовых контейнерах. В некоторых случаях изготовитель перекачивает кислотный концентрат из крупной тары в накопитель для хранения в отделении диализа. Недавно были внедрены системы, позволяющие пользователю в отделении диализа готовить кислотный концентрат из упакованного порошка и воды для диализа с помощью смесителя. Если кислотный концентрат перекачивается в накопитель для хранения в отделении диализа, пользователь несет ответственность за поддержание концентрата в его первоначальном состоянии и за обеспечение использования правильной формулы в соответствии с назначением пациента. Кислотный концентрат, приготовленный на установке для диализа из порошка и воды для диализа, также является ответственностью пользователя.
Бикарбонатный концентрат может поставляться изготовителем одним из следующих трех способов:
a) в порошковых картриджах, которые используются для приготовления концентрата в режиме реального времени во время диализа;
b) в виде упакованного порошка, который смешивается с водой для диализа в отделении диализа;
c) в одноразовых емкостях с жидким концентратом.
Диализирующий раствор также может быть приготовлен из одного концентрата, содержащего ацетат, который метаболизируется пациентом с образованием бикарбоната. Ацетатный диализирующий раствор редко используется в повседневной клинической практике. В целом концентрат на основе ацетата обрабатывается аналогично кислотному концентрату, за исключением того, что в системах концентрата на основе ацетата используется только один концентрат, который смешивается с водой для диализа. Этикетки концентрата на ацетатной основе имеют белую цветовую маркировку.
В.4.2 Совместимость материалов
Все компоненты, используемые в системах приготовления концентрата (включая смесительные и накопительные резервуары, насосы, клапаны и трубопроводы), должны быть изготовлены из материалов (например, пластика или соответствующей нержавеющей стали), которые не взаимодействуют химически или физически с концентратом, чтобы повлиять на его чистоту, или с бактерицидами или бактерицидной процедурой, используемыми для дезинфекции оборудования. Использование материалов, которые, как известно, вызывают токсичность при гемодиализе, таких как медь, латунь, цинк, оцинкованный материал, свинец и алюминий, строго запрещено.
В.4.3 Маркировка
В.4.3.1 Общие положения
Способы маркировки должны позволять любому лицу, использующему содержимое накопителей для смешивания концентрата, накопителей для хранения/дозирования сыпучих материалов и небольших контейнеров, предназначенных для использования с одним аппаратом для гемодиализа, проводить четкую идентификацию. Требования к такой идентификации будут варьироваться в различных отделениях, в зависимости от различий между используемыми составами концентратов и от того, используются ли одна или несколько пропорций дозирования диализирующего раствора. Использование нескольких пропорций дозирования диализирующего раствора в одном учреждении настоятельно не рекомендуется.
В дополнение к маркировке контейнеров, описанной ниже, следует вести постоянный учет всех партий концентрата, произведенных в отделении диализа. Эти записи должны включать: формулу полученного концентрата, объем партии, номера партий упаковок порошкообразного концентрата, изготовителя порошкообразного концентрата, дату и время смешивания, любые результаты испытаний, лицо, осуществляющее смешивание, лицо, проверяющее результаты смешивания и испытаний, а также дату истечения срока годности, если это применимо.
Хотя отделения диализа несут ответственность за разработку и использование маркировки для четкой идентификации содержимого смесительных резервуаров, накопителей для хранения/дозирования сыпучих материалов и контейнеров для концентрата, предлагаются руководящие принципы, изложенные в следующих подразделах.
В.4.3.2 Смесительные резервуары
Перед приготовлением партии на смесительный резервуар следует нанести маркировку, содержащую дату приготовления и химический состав или рецептуру готовящегося концентрата. Эта маркировка должна оставаться на смесительном резервуаре до тех пор, пока резервуар не будет опорожнен. Использование ксерокопии этикетки на упаковке изготовителя концентрата обеспечивает удобное и всестороннее средство идентификации химического состава или рецептуры концентрата; однако номер партии и срок годности должны быть также отмечены, поскольку они применяются только к сухому порошку.
В.4.3.3 Накопители для хранения/дозирования сыпучих материалов
Эти емкости всегда должны быть маркированы для определения химического состава или рецептуры их содержимого. Как и в случае смесительных резервуаров, маркировка накопителей для хранения/дозирования сыпучих материалов может быть удобно выполнена путем прикрепления копии этикетки упаковки изготовителя концентрата.
В.4.3.4 Контейнеры для концентрата
Контейнеры для концентрата могут быть одноразовыми сосудами, предоставляемыми изготовителями аппаратов для гемодиализа и имеющими емкость, достаточную для одного или двух сеансов гемодиализа. Маркировка этих контейнеров зависит от разнообразия используемых рецептур концентратов и от того, использует ли отделение аппараты для диализа с различными пропорциями дозирования; последняя практика настоятельно не рекомендуется.
Как минимум, контейнеры с концентратом должны быть маркированы достаточной информацией, чтобы отличать их содержимое от концентратов с другими составами, используемых в отделении. Если в отдельный контейнер добавляется химическая присадка для увеличения концентрации электролита, на этикетке должны быть указаны добавленный электролит, дата и время добавления с указанием лица, производившего добавление (см. В.4.5). Дополнительная информация может быть краткой или обширной, но во всех случаях она должна позволять пользователям однозначно идентифицировать содержимое контейнера.
В.4.4 Системы смешивания концентратов
В.4.4.1 Общие положения
Системы смешивания концентратов требуют наличия источника воды для диализа, подходящего дренажа и электрической розетки с защитой от замыкания на землю. Для обеспечения безопасной рабочей среды следует применять защитные меры. Например, вентиляцию и средства индивидуальной защиты следует использовать для устранения любой остаточной пыли, которая попадает в атмосферу по мере добавления порошкообразных концентратов в систему, а также для устранения любого дополнительного тепла, производимого устройством. Если системы устанавливают выше уровня земли, то следует решить конструкционные проблемы, такие как несущая способность объекта. Операторы должны всегда использовать соответствующие средства индивидуальной защиты, такие как лицевые щитки, маски, перчатки, халаты и защитные средства для обуви, как это рекомендовано изготовителем.
Если используется система смешивания концентрата, то готовящее лицо должно следовать инструкциям изготовителя по смешиванию порошка с правильным количеством воды для диализа. Количество мешков или вес добавленного порошка должны быть определены и записаны.
Рекомендации изготовителя должны быть соблюдены в отношении любых процедур профилактического обслуживания и дезинфекции. Следует вести записи с указанием даты, времени, лица, выполняющего процедуру, и результатов (если применимо).
В.4.4.2 Системы смешивания кислотных концентратов
Резервуары для смешивания кислотных концентратов должны быть сконструированы таким образом, чтобы при изменении формулы концентрата внутренняя часть резервуара полностью опорожнялась и промывалась в соответствии с инструкциями изготовителя. Использование резервуара с наклонным дном, который сливается из самой нижней точки, является одним из средств облегчения указанного процесса. Поскольку концентрированные растворы обладают высокой коррозионной активностью, системы смешивания следует проектировать и обслуживать для предотвращения коррозии. Резервуары для смешивания кислотных концентратов должны быть полностью опорожнены и промыты водой для диализа перед смешиванием другой партии концентрата. Если другая партия концентрата не должна быть смешана немедленно, смесительный резервуар должен быть снова промыт водой для диализа перед смешиванием следующей партии.
В.4.4.3 Системы смешивания бикарбонатных концентратов
Резервуары для смешивания бикарбонатного концентрата должны быть сконструированы таким образом, чтобы полностью сливать воду; например, они должны иметь наклонное дно и слив в самой нижней точке. Сигналы тревоги высокого и низкого уровня могут предотвращать переполнение и повреждение насоса воздухом. Поскольку концентрированные растворы обладают высокой коррозионной активностью, системы смешивания следует проектировать и обслуживать для предотвращения коррозии. Смесительные резервуары должны иметь плотно прилегающую крышку и должны быть сконструированы таким образом, чтобы все внутренние поверхности можно было дезинфицировать и промывать. Полупрозрачный резервуар позволяет пользователям видеть уровень жидкости; использование смотровых трубок не рекомендуется из-за потенциального роста микробов, таких как бактерии, водоросли и грибы.
После смешивания бикарбонатный концентрат следует использовать в течение времени, указанного изготовителем концентрата. Следует продемонстрировать, что из концентрата регулярно производится диализирующий раствор, соответствующий рекомендациям 4.4.2. Следует избегать чрезмерного перемешивания бикарбонатного концентрата, так как это может привести к потере СO 2 и повышению рН. (Системы, предназначенные для смешивания сухих кислотных концентратов, могут использовать методы, которые слишком интенсивны для растворения сухого бикарбоната.)
Смесительный резервуар должен быть:
- полностью опорожнен и продезинфицирован в соответствии с инструкциями изготовителя либо
- продезинфицирован с использованием процедуры, продемонстрированной отделением диализа в качестве эффективной при регулярном производстве диализирующего раствора и позволяющей выполнять рекомендации 4.4.2.
В.4.5 Добавки (присадки)
Изготовители выпускают кислотные концентраты с широким спектром составов электролитов для различных пропорций дозирования. Большинство типичных рецептов диализирующего раствора можно получить, используя один или несколько из этих коммерчески доступных концентратов. Если конкретные рецептуры отсутствуют, изготовители предоставляют добавки, которые могут быть использованы для регулирования уровня калия или кальция в диализирующем растворе. Эти добавки обычно называют "присадками".
Примечание - Использование добавок не одобрено в некоторых странах.
Концентрированные добавки следует смешивать с жидкими кислотными концентратами в соответствии с инструкциями изготовителя, заботясь о том, чтобы добавка была разработана для использования в концентратах с соответствующим соотношением разбавления. При использовании жидких добавок объем, вносимый добавкой, следует учитывать при расчете влияния разбавления на концентрацию других компонентов в полученном концентрате. При использовании порошковых добавок следует позаботиться о том, чтобы добавка была полностью растворена и смешана перед использованием концентрата.
В.5 Хранение и распределение концентрата
В.5.1 Совместимость материалов
Все компоненты, используемые в системах распределения концентрата (включая контейнеры для концентрата, накопители для хранения и трубопроводы), которые контактируют с жидкостью, должны быть изготовлены из нереактивных материалов (например, пластика или соответствующей нержавеющей стали), которые не взаимодействуют химически или физически с концентратом, чтобы повлиять на его чистоту. Использование материалов, которые, как известно, вызывают токсичность при гемодиализе, таких как медь, латунь, цинк, оцинкованный материал, свинец и алюминий, строго запрещено.
В.5.2 Накопитель для хранения (кислотный концентрат)
Должны быть предусмотрены процедуры контроля за перемещением кислотного концентрата из контейнера для доставки в накопитель для хранения, чтобы предотвратить непреднамеренное смешивание различных составов концентрата. Если это возможно, накопитель и связанный с ним водопровод должны образовывать единую систему для предотвращения загрязнения кислотного концентрата. Накопители для хранения и впускные и выпускные патрубки, если они удалены от накопителя, должны быть надежно закреплены и четко маркированы.
В.5.3 Распределительные системы
Концентрат может быть распределен из центрального пункта подготовки с использованием многоразовых контейнеров для концентрата, содержащих достаточное количество концентрата для одной-двух процедур, или он может быть распределен через трубопроводную систему, обеспечивающую соединение с каждым аппаратом. Можно также использовать комбинацию этих двух систем: одни концентраты распределяются по контейнерам для концентратов, а другие - по трубопроводам. Две распространенные конфигурации, используемые для распределения концентрата по трубопроводной системе, - это гравитационная подача и подача под давлением. Системы гравитационной подачи требуют поднятого накопителя; системы подачи под давлением доставляют концентрат с помощью насоса и двигателя и не требуют поднятого накопителя. Максимально допустимое давление подачи концентрата определяется изготовителем аппарата для подачи диализирующего раствора и не должно быть превышено.
Поднятые накопители обычно меньше, чем те, которые используются для приготовления концентратов. Поднятые накопители для распределения бикарбонатного концентрата должны быть оборудованы коническими или чашеобразными днищами, плотно прилегающими крышками, распылительным механизмом и сигналами тревоги высокого и низкого уровня. Любые вентиляционные отверстия должны иметь гидрофобный вентиляционный фильтр 0,45 мкм.
В.5.3.1 Системы распределения кислотных концентратов
Трубопровод для подачи кислотного концентрата должен быть маркирован и окрашен в красный цвет в месте использования (на заправочной станции контейнера или в месте подключения аппарата для диализа). Может быть поставлено более одного типа кислотного концентрата, и каждая линия должна четко указывать на тип содержащегося в ней кислотного концентрата. Несмотря на то, что нет опубликованных сообщений о том, что кислотный концентрат поддерживает рост бактерий, следует приложить все усилия, чтобы держать систему закрытой, с целью предотвратить загрязнение и испарение. Если система остается неповрежденной, промывка или дезинфекция не требуется.
В.5.3.2 Системы распределения бикарбонатных концентратов
Трубопровод для подачи бикарбонатного концентрата должен быть окрашен в синий цвет в месте использования (на заправочной станции контейнера для концентрата или в месте подключения аппарата для диализа). Все стыки должны быть герметизированы, чтобы предотвратить утечку концентрата.
Поскольку бикарбонатные концентраты обеспечивают отличную среду для размножения бактерий, системы доставки бикарбонатного концентрата следует регулярно дезинфицировать, чтобы обеспечить стабильное достижение диализирующим раствором уровня бактериологической чистоты, рекомендованного в 4.4.2. Инструкции изготовителя могут обеспечить начальный график дезинфекции. Однако этот график, возможно, потребуется скорректировать на основе бактериологического наблюдения пользователя. Для трубопроводных распределительных систем вся система, включая порты станции пациента, должна быть очищена от бикарбонатного концентрата перед дезинфекцией. Каждый порт станции пациента должен быть открыт и промыт дезинфицирующим средством, а затем ополоснут; в противном случае это будет "тупик трубопровода" в системе. Кроме того, настоятельно рекомендуется оперативное использование бикарбонатных концентратов, приготовленных в установках для диализа из порошка и воды для диализа.
Когда многоразовые контейнеры для концентрата используются для распределения бикарбонатного концентрата, они должны быть очищены от остатков концентрата перед дезинфекцией.
Все химические дезинфицирующие средства (например, гипохлорит натрия и продукты на основе надуксусной кислоты), совместимые с аппаратами для диализа, могут быть использованы для дезинфекции систем распределения бикарбонатных концентратов. Однако некоторые дезинфицирующие средства лучше других воздействуют на биопленку. Соответствующие сроки выдержки и концентрации должны использоваться в соответствии с рекомендациями изготовителя системы. Если эта информация отсутствует, то можно использовать растворы гипохлорита натрия, такие как отбеливатель, в разведении 1:100 и запатентованные дезинфицирующие средства в концентрации, рекомендованной изготовителем для дезинфекции трубопроводных систем. В случае, если осаждение или накопление соли затрудняет прохождение через трубопроводную систему, рекомендуется очистка раствором 5 %-ной уксусной кислоты (например, дистиллированным белым уксусом) в соотношении 1:34. Некоторые изготовители поставляют системы распределения бикарбонатных концентратов с УФ-излучателями или озоновыми системами для борьбы с бактериями.
УФ-излучатели, используемые для контроля размножения бактерий в трубах систем распределения бикарбонатных концентратов, должны быть оснащены ртутной лампой низкого давления, излучающей свет с длиной волны 254 нм и обеспечивающей дозу излучаемой энергии 30 /см 2. Устройство должно быть рассчитано на максимальный ожидаемый расход в соответствии с инструкциями изготовителя и оснащено контролирующим устройством выхода излучаемой энергии в режиме реального времени, которое активирует видимый сигнал тревоги, указывающий на то, что лампа должна быть заменена. В качестве альтернативы лампу следует заменять по заранее установленному графику в соответствии с инструкциями изготовителя для поддержания рекомендуемой мощности излучения. Рекомендуется, чтобы за УФ-излучателями следовал эндотоксиновый фильтр. Дезинфекцию системы распределения бикарбонатного концентрата следует проводить регулярно.
При использовании генератора озона для дезинфекции труб системы распределения бикарбонатного концентрата он должен обеспечивать подачу озона в концентрации и в течение времени воздействия, указанного изготовителем. При использовании систем дезинфекции озоном необходимо контролировать содержание озона в окружающем воздухе в соответствии с национальными стандартами и правилами.
Когда для дезинфекции системы распределения бикарбоната используется нагрев, время и температура должны быть валидированы изготовителем.
Чрезмерное перемешивание бикарбонатного концентрата может привести к потере СO 2 из раствора. Потеря СO 2 приводит к увеличению рН и способствует образованию карбоната, который может привести к осаждению карбоната кальция в жидкостных путях аппарата для диализа после дозирования диализирующего раствора.
В.5.3.3 Выход концентрата
Для трубопроводных систем распределения концентрата каждый аппарат оснащен выходом концентрата для бикарбоната, одним или несколькими выходами для кислотного концентрата и выходом воды для диализа для подключения к входной линии аппарата для диализа (опция). Для предотвращения путаницы с поставкой двух или более видов кислотного концентрата каждый концентрат должен иметь свой собственный выход. Выходы концентрата должны быть совместимы с аппаратом для диализа и иметь средства минимизации риска того, что неправильный концентрат будет подключен к выходу. Дозирующие патрубки должны быть маркированы соответствующим символом (см. таблицу В.2), указывающим пропорции дозирования для аппарата для диализа, если это необходимо, и иметь цветовую маркировку синего цвета для бикарбоната и красного цвета для кислоты.
В.6 Дозирование диализирующего раствора
Исторически в диализирующем растворе в качестве буферного средства использовался ацетат. Для ацетатного буферного диализирующего раствора вода для диализа смешивается с ацетатсодержащим концентратом для получения диализирующего раствора. В такой системе рН может изменяться в зависимости от подаваемой воды. Хотя для приготовления ацетатного диализирующего раствора используется один концентрат, следует обратить внимание на проверку как проводимости, так и рН, поскольку смешивание кислотного концентрата и других химических веществ может привести к приемлемой проводимости при неправильном рН.
Одной из функций диализирующего раствора является коррекция метаболического ацидоза, присутствующего у пациентов, проходящих лечение диализом. Из ацетатного буферного диализирующего раствора ацетат преобразуется организмом в бикарбонат, может иметь место непереносимость ацетата, которая характеризуется вазодилатацией и расслаблением гладкой мускулатуры, что приводит к гипотензии. Современные методы лечения посредством гемодиализа используют пропорциональную или смешанную технологию, которая использует два отдельных концентрата, смешанных с водой для диализа: кислотный концентрат и бикарбонатный концентрат.
Важно, чтобы кислотные и бикарбонатные концентраты соответствовали пропорции дозирования, а также модели и конфигурации аппарата для диализа.
Существует несколько типов трехпоточных концентратов с различным соотношением кислотного концентрата к бикарбонатному концентрату и воде для диализа (см. таблицу В.2). Различные типы пропорций несовместимы друг с другом. Как правило, бикарбонат выпускается в одной или двух формах для каждого типа дозирования (в жидком, картриджном или сухом порошке и в различных объемах). Каждый тип дозирования имеет многочисленные составы кислотных концентратов ("кодов") с различным количеством ионов калия, кальция и магния, а также глюкозы. Чтобы помочь дифференцировать концентраты различных типов дозирования, ИСО 23500-4 рекомендует изготовителю включать геометрический символ на этикетках вместе с кислотно-щелочной цветовой кодировкой.
Таблица В.2 - Символы и цветовое кодирование для различных пропорций дозирования концентрата
Тип концентрата |
Пропорция дозирования кислот a (красная цветовая кодировка) |
Геометрический символ |
Бикарбонатный концентрат (синяя цветовая кодировка) |
Примечание |
35Х |
1 + 34 а |
Квадрат |
Сухой, жидкий или картридж |
|
36,83Х |
1 + 35,83 а |
Круг |
Сухой или жидкий |
Бикарбонатный концентрат содержит некоторое количество NaCl |
45Х |
1 + 44 а |
Треугольник |
Сухой, жидкий или картридж |
|
36,1Х |
1 + 35,1 а |
Ромб |
Картридж |
Порошковые картриджи могут использоваться для других пропорций дозирования, за исключением 36,83 X, в которых бикарбонатный концентрат также содержит NaCl |
Примечание - Ацетатсодержащий концентрат имеет белую цветовую маркировку.
а Кислота + бикарбонат + вода. |
Различные изготовители аппаратов для диализа используют различные методы контроля пропорций концентратов. В качестве управления может быть "фиксированное дозирование" или "автоматическое управление". С помощью обоих методов оператор может выбрать желаемый уровень натрия и бикарбоната или проводимость, соответствующую определенным уровням натрия и бикарбоната, и аппарат произведет необходимые регулировки для достижения выбранных уровней. Оба типа используют резервную систему контроля и наблюдения. С помощью фиксированных систем дозирования насосы настраиваются на установленные объемы, и конечная проводимость проверяется. В аппаратах с автоматическим управлением отдельные концентраты добавляются до тех пор, пока проводимость не достигнет ожидаемого значения. Конечное резервное контролирующее устройство контролирует проводимость. Некоторые аппараты также контролируют рН диализирующего раствора в качестве дополнительной защиты от грубых ошибок в составе диализирующего раствора. Также имеется другой тип аппарата с дозировочным резервуаром и специальными концентратами.
В зависимости от типа используемого подкисленного концентрата кислотный компонент может быть в виде ацетата натрия, диацетата натрия или лимонной кислоты. Ацетат метаболизируется до бикарбоната в соотношении 1:1, в то время как лимонная кислота образует бикарбонат в молярном соотношении 3:1.
При выборе бикарбоната диализирующего раствора врач должен учитывать все источники буфера, поставляемые пациенту во время лечения диализом, включая бикарбонат в бикарбонатном концентрате, ацетат, цитрат или лактат в кислотном концентрате, который при метаболизме образует бикарбонат. При выборе назначения бикарбоната врач должен учитывать пищевой статус пациента, оцениваемый по анамнезу, физикальному обследованию, антропометрии, содержанию сывороточного альбумина и белкового азота, поскольку лица, чей метаболизм приводит к небольшой кислотной нагрузке, подвергаются более высокому риску развития метаболического алкалоза после лечения. Решения о назначении бикарбоната должны также учитывать изменения концентрации калия, магния и кальция в сыворотке крови во время диализа, а также наличие и тяжесть заболеваний сердца.
Некоторые модели аппаратов для диализа используют фиксированную пропорцию дозирования, в то время как другие могут быть настроены или откалиброваны для использования с концентратами с более чем одной пропорцией дозирования. (Следует обратить внимание, что переход от одной пропорции к другой требует повторной калибровки для некоторых моделей аппаратов для диализа.) Таким образом, для таких аппаратов тип концентрата должен быть маркирован на аппарате или четко обозначен на дисплее аппарата. Настоятельно рекомендуется, чтобы отделение диализа настраивало каждый аппарат на использование только одного типа концентрата.
Травмы, связанные с неправильным составом диализирующего раствора, встречаются редко, но они могут быть и случаются, когда не соблюдаются все процедуры. Часто, когда происходит ошибка, несколько пациентов подвергаются воздействию до того, как отделение диализа распознает ошибку. Например, поскольку один из концентратов является кислотным, а другой - основным, подключение неправильных концентратов к аппарату может привести к образованию диализирующего раствора, который может нанести вред пациенту. Таким образом, оператору необходимо следовать инструкциям изготовителя относительно проводимости диализирующего раствора, включая измерение ориентировочного рН независимым методом перед началом лечения следующего пациента, если это рекомендовано изготовителем аппарата для диализа. В последнее время были разработаны системы, использующие три концентрата (бикарбонат, хлорид натрия и кислотный концентрат, содержащий остаточные электролиты) для обеспечения более сложного изменения состава диализирующего раствора во время диализа.
В.7 Центральные системы хранения и доставки диализирующего раствора
В.7.1 Общие положения
Диализирующий раствор может быть приготовлен централизованно и распределен по отдельным консолям для диализа с использованием центральной системы доставки диализирующего раствора (CDDS). Центральные системы доставки диализирующего раствора включают в себя многие функции, имеющиеся в системах хранения и распределения воды для диализа (см. В.3) и системах приготовления концентрата (см. В.4), и большинство рекомендаций в этих пунктах применимы к центральным системам доставки диализирующего раствора; однако необходимо учитывать и дополнительные факторы.
В.7.2 Проектирование и техническое обслуживание
Центральные системы доставки диализирующего раствора обычно проектируются как однопроходные системы, хотя также может использоваться распределительный контур.
Если используется распределительный контур, то необходимо обратить внимание на предотвращение осаждения карбоната кальция и повышения рН в результате потери СO 2 и повышения температуры при циркуляции диализирующего раствора.
Центральные системы доставки диализирующего раствора должны ежедневно дезинфицироваться с помощью химического дезинфицирующего средства или горячей воды, чтобы ограничить образование биопленки. Такая дезинфекция должна включать в себя подключение трубки к индивидуальной консоли для диализа.
Методы микробиологического контроля для центральных систем доставки диализирующего раствора должны быть аналогичны методам, описанным в 8.3. Наблюдение должно включать в себя индивидуальные консоли для диализа, а также систему распределения диализирующего раствора. Отбор проб должен включать в себя пробы, взятые с входа в систему дозирования диализирующего раствора и входа в отдельные консоли для диализа. Периодичность контроля должна соответствовать применимым местным рекомендациям; если таких рекомендаций не существует, то рекомендуется следующее:
a) система водоснабжения: количество проб и места отбора проб должны основываться на сложности и размерах системы водоснабжения. Периодичность будет зависеть от анализа данных, собранных в ходе валидации и повторной валидации. Наиболее часто применяется ежемесячный контроль, но менее частый контроль может быть возможным на основе данных, собранных в ходе валидации и повторной валидации;
b) аппараты для диализирующего раствора/гемодиализа без валидированных бактериального и эндотоксинового фильтров: аппараты должны регулярно подвергаться испытанию для подтверждения эффективности процесса дезинфекции. График контроля будет зависеть от типа используемого процесса дезинфекции. Каждый аппарат должен подвергаться испытанию по крайней мере один раз в год, в каждом случае необходимо отбирать различные аппараты. Чаще всего применяется ежемесячный контроль;
c) нет необходимости отбирать пробы ультрачистого диализирующего раствора или замещающей жидкости, если их производственные пути оснащены бактериальными и эндотоксиновыми фильтрами, валидированными изготовителем и эксплуатируемыми и контролируемыми в соответствии с инструкциями изготовителя. Может возникнуть необходимость отбора проб диализирующего раствора, поступающего в такие бактериальные и эндотоксиновые фильтры, в зависимости от инструкций изготовителя по использованию фильтров, например когда в инструкции по применению указано качество раствора, поступающего в фильтр (см. также приложения D и Е настоящего стандарта).
Результаты испытания должны быть подвергнуты трендовому анализу. Когда результаты превышают уровни действия или в случае пирогенной реакции пациента или подозрения на бактериемию/фунгемию следует начать исследование и последующий контроль. Это исследование может включать дополнительный отбор проб и дополнительные процедуры дезинфекции, проводимые в соответствии с рекомендациями изготовителя.
В.7.3 Хранение диализирующего раствора
Центральные системы доставки диализирующего раствора обычно включают накопитель для хранения диализирующего раствора. Накопитель должен быть сконструирован таким образом, чтобы полностью сливаться; например, он должен иметь наклонное дно и слив в самой нижней точке, а также вентилироваться через гидрофобный воздушный фильтр 0,45 мкм.
В.7.4 Совместимость материалов
Все компоненты, используемые в системах хранения и доставки диализирующего раствора (включая накопители для хранения, насосы, клапаны и трубопроводы), должны быть изготовлены из материалов (например, пластика или соответствующей нержавеющей стали), которые не взаимодействуют химически или физически с диализирующим раствором, чтобы повлиять на его чистоту, или с бактерицидами или бактерицидными процедурами, используемыми для дезинфекции системы. Использование материалов, которые, как известно, вызывают токсичность при гемодиализе, таких как медь, латунь, цинк, оцинкованный материал, свинец и алюминий, строго запрещено.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.