Вы можете открыть актуальную версию документа прямо сейчас.
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение А
(справочное)
Обоснование разработки и положений настоящего стандарта
А.1 Область применения
В сферу действия настоящего стандарта входит оборудование, используемое для водоподготовки для приготовления концентратов и диализирующего раствора или для повторной обработки диализаторов для многократного использования, а также устройства, используемые для хранения и распределения этой воды.
Настоящий стандарт направлен на предотвращение ситуаций, которые являются опасными для пациентов, получающих лечение гемодиализом и сопутствующей терапией. Например, настоящий стандарт необходим для предотвращения неблагоприятных последствий для пациента, вызванных приготовлением диализирующего раствора из воды, содержащей высокие уровни определенных загрязняющих веществ.
Системы очистки и распределения воды включают в себя множество устройств, которые могут быть предоставлены и установлены различными поставщиками, что затрудняет возложение ответственности за соответствие настоящему стандарту на какое-либо одно физическое лицо или компанию. Чтобы решить эту проблему, основная ответственность за соответствие настоящему стандарту была возложена на физическое лицо или компанию, которые определяют систему очистки и распределения воды, установленную в данной ситуации. Ответственность может также лежать на поставщике, который собирает и устанавливает систему, и на изготовителе любого отдельного устройства системы очистки и распределения воды, если этот изготовитель указывает, что их устройство предназначено для применения в гемодиализе. Кроме того, врач, отвечающий за диализ, должен иметь достаточное представление о подготовке воды для гемодиализа, чтобы критически оценить систему. Это очень важно, так как они несут полную ответственность за уход за пациентом и за обеспечение того, чтобы диализирующий раствор был корректно приготовлен и соответствовал требованиям всех применимых стандартов.
А.2 Требования
А.2.1 Требования к качеству воды для диализа
А.2.1.1 Общие положения
Отдельные устройства для очистки воды могут не обеспечивать подачу воды, полностью соответствующей требованиям настоящего стандарта. ИСО 23500-3:2019 устанавливает требование о том, чтобы система водоснабжения поддерживалась в состоянии постоянно удовлетворять определенному качеству воды, без указания метода выполнения этих требований. Настоящий стандарт направлен на изготовителей систем водоподготовки воды для диализа и определяет требования, которые изготовитель должен выполнить до того, как пользователь возьмет на себя ответственность за систему водоподготовки. Однако изготовители отдельных устройств для водоподготовки должны знать требования к конечной воде для диализа и быть готовы рекомендовать другие устройства для водоподготовки, которые могут потребоваться совместно с их устройством для получения воды, соответствующей требованиям настоящего стандарта.
А.2.1.2 Химические загрязнители
Обоснование требований к химическим загрязнителям приведено в приложении А ИСО 23500-3:2019.
Соединения, указанные в приложении В (таблицы В.1 и В.2), следует рассматривать не как окончательный перечень вредных веществ, а как частичный перечень тех, которые, как можно разумно ожидать, присутствуют и имеют клинические последствия.
В дополнение к этим веществам, которые, как известно, вредят пациентам, находящимся на диализе, Всемирная организация здравоохранения перечисляет руководящие значения для питьевой воды для 82 известных токсичных химических загрязнителей, включая органические вещества [5]. Опасности, связанные с присутствием органических соединений, таких как пестициды, полициклические ароматические углеводороды и другие химические вещества, такие как фармацевтические продукты и эндокринные разрушители для пациентов, находящихся на диализе, трудно определить, они, вероятно, носят долгосрочный характер, кроме того, их контроль на постоянной основе является дорогостоящим. Накопление пестицидов было продемонстрировано при уремии и может быть связано с токсическими побочными эффектами [12]. Присутствие фармацевтических препаратов и эндокринных разрушающих соединений (EDC) в окружающей среде вызывает много вопросов о риске для окружающей среды и риске для здоровья человека. Исследователи связывают неблагоприятные экологические эффекты с присутствием этих соединений, особенно EDC, хотя нет единого мнения о том, какой риск, если таковой существует, эти соединения представляют для здоровья человека [13].
Способность системы водоподготовки удалять органические загрязнения в основном зависит от структуры и концентрации загрязняющего вещества. Химическое окисление, биологическое удаление/трансформация или нанофильтрация/обратный осмос - это технологии, наиболее часто используемые для удаления фармацевтических и эндокринных разрушителей [13], [14]. Гранулированный активированный уголь (GAC) очень эффективен при удалении большинства органических загрязнений в воде. Однако кривые пробоя показали, что соединения с большей гидрофильностью разрушают активированный уголь быстрее, чем гидрофобные соединения, и циклы обратной промывки играют важную роль [15]. Поскольку активированный уголь обычно используется в установке водоподготовки воды для диализа с целью удаления хлора и хлорамина, следовательно, если он также должен использоваться для удаления органических соединений, он должен быть соответствующего размера, так как углеродные валентности могут быть уже заняты и поэтому недоступны для удаления.
В настоящее время стандарты и руководящие принципы, связанные с диализом, не содержат рекомендаций или предельно допустимых уровней содержания органических соединений в воде для диализа. Отправной точкой для установления того, являются ли органические соединения причиной для беспокойства, являются национальные требования для таких соединений в питьевой воде. Если имеются доказательства того, что содержание органических соединений в питательной воде превышает допустимое содержание в питьевой воде, следует провести соответствующую оценку снижения их уровня до допустимого для питьевой воды гранулированным активированным углем (GAC).
Железо не включено, потому что оно не попадает в кровь пациента в достаточном количестве, чтобы вызвать токсичность. Однако железо может вызвать загрязнение устройств для водоподготовки или систем подачи диализирующего раствора. Хотя конкретный предел не установлен, поставщикам оборудования для водоподготовки рекомендуется учитывать содержание железа в питательной воде при рекомендации подходящего оборудования. Как правило, чтобы связать железо и марганец, чтобы избежать окрашивания приспособлений и одежды, в питьевую воду добавляют готовые фосфаты (известные как полифосфаты). Наличие таких соединений может вызвать значительные проблемы в очистке воды. Чтобы установить, может ли это быть проблемой, следует как можно скорее получить информацию от поставщика воды.
Чтобы свести к минимуму содержание бактерий в питьевой воде, которая является исходной и обрабатывается для применения в диализе, добавляют хлор или хлорамин в виде монохлорамина. Диоксид хлора также может быть использован в качестве альтернативы. Уровень этих соединений в питьевой воде был установлен таким образом, чтобы не возникало никаких неблагоприятных последствий для здоровья от нормального потребления воды (4 мг/л или 4 ppm в среднем за год для хлора и хлорамина и 0,8 мг/л или 800 ppb для диоксида хлора). Однако уровни хлора и хлорамина представляют опасность для пациента, получающего лечение диализом, и поэтому были установлены максимальные пределы для воды для диализа в отношении хлора и хлорамина. Общий хлор определяется как сумма свободного и комбинированного хлора. Общий максимально допустимый уровень хлора составляет 0,1 мг/л.
В то время как максимальные пределы содержания хлора и хлорамина в воде для диализа были установлены в соответствии с клиническим опытом, максимальный предел содержания диоксида хлора, который расщепляется в воде с образованием хлорита, хлората и хлорид-ионов, не был установлен. В настоящее время имеется мало информации о потенциальных опасностях для здоровья, связанных с воздействием диоксида хлора. Опубликованное исследование, проведенное среди 17 пациентов, неосознанно подвергнутых воздействию воды, приготовленной с применением углерода и обратного осмоса из воды, дезинфицированной диоксидом хлора, не выявило никаких побочных эффектов, когда вода, используемая для приготовления диализирующего раствора, содержала от 0,02 мг/л до 0,08 мг/л хлорит-ионов и не обнаруживала хлорат-ионов [16]. Однако в этом исследовании популяция пациентов была невелика, и потенциально важные гематологические параметры не измерялись. Кроме того, были включены лишь скудные данные об удалении диоксида хлора, хлорит-ионов и хлорат-ионов с помощью углерода и обратного осмоса, и было неясно, имеются ли достаточно чувствительные методы для анализа. Ввиду этой ограниченной и неполной информации рабочая группа не установила предельно допустимые уровни содержания диоксида хлора, хлорит-ионов или хлорат-ионов в воде, используемой для проведения диализа, и не представила рекомендаций по методам их удаления. Однако при определении систем водоподготовки изготовители таких систем должны учитывать возможность того, что диоксид хлора может в какой-то момент использоваться для контроля микробного загрязнения воды.
Вода, подаваемая в нефрологическое отделение, может подаваться непосредственно на устройство водоподготовки из муниципального источника (прямое питание), или она может быть частью сети снабжения и распределения здания, такого как больница или клиника (косвенное питание). Когда вода не поступает через прямую подачу, следует помнить, что антимикробные агенты, такие как стабилизированная серебром перекись водорода или диоксид хлора, могут добавляться локально для подавления роста легионелл в распределительной сети здания. Гемолиз может быть результатом остаточной перекиси водорода, оставшейся в системах хранения и распределения воды для диализа после дезинфекции перекисью водорода и некорректного промывания, приводящего к клиническим осложнениям [17], [18].
А.2.1.3 Микробиологические загрязнители
Поставщик оборудования для водоподготовки несет ответственность за рекомендацию метода очистки оборудования таким образом, чтобы вода для диализа, отвечающая микробиологическим требованиям ИСО 23500-3, могла регулярно производиться при наличии типичной питательной воды. После пользователь системы несет ответственность за соблюдение текущего соответствия системы ИСО 23500-5:2019. Обоснование такого контроля является частью ИСО 23500-3:2019.
А.2.2 Требования к оборудованию для водоподготовки
А.2.2.1 Общие положения
А.2.2.1.1 Система водоподготовки
Поставщик полной системы водоподготовки несет ответственность за обеспечение того, чтобы вода, производимая системой, регулярно соответствовала максимально допустимым уровням химического загрязнения, указанным в ИСО 23500-3 и сведенным в таблицы В.1 и В.2, или предписанию врача при установке. После врач, отвечающий за диализ, несет ответственность за соблюдение состояния системы для обеспечения того, чтобы устройство или устройства водоподготовки поддерживали приемлемый уровень чистоты воды. Изменения в качестве воды или наличие пока еще не идентифицированных токсичных веществ, очевидно, поставят под угрозу безопасность системы. Такие изменения, как правило, происходят, и хотя поставщик не может нести ответственность за работу системы очистки воды во время таких изменений, выбор оборудования для очистки воды должен включать тщательное рассмотрение методов борьбы с такими изменениями, многие из которых можно предвидеть путем консультаций с поставщиком воды.
Ответственность за выбор и использование водоочистных устройств на основании рекомендаций поставщика может лежать на отдельном лице или ряде лиц, работающих коллективно. Врач, отвечающий за диализ, несет полную ответственность за клинический уход за пациентом, а также за обеспечение того, чтобы диализирующий раствор, полученный с использованием обработанной воды, соответствовал требованиям всех применимых стандартов качества. Следовательно, врач, отвечающий за диализ, должен быть частью процесса выбора или принятия решения. Этот человек должен достаточно хорошо разбираться в водоподготовке, чтобы критически оценить рассматриваемую систему. Если выбранная система не обеспечивает достаточный запас прочности из-за изменчивости качества воды, используемой для питания системы водоподготовки, то поставщик должен рекомендовать дополнения к системе или альтернативные системы, которые могли бы решить эту проблему. Постоянный контроль за водоснабжением необходим для поддержания методов очистки в соответствии с требованиями безопасности.
А.2.2.1.2 Совместимость материалов
Большое значение имеет нетоксичность материалов, используемых для оборудования для водоподготовки воды для диализа. Некоторые хорошо известные нетоксичные материалы включают некоторые составы из нержавеющей стали, силиконовый каучук, боросиликатное стекло, полипропилен, поливинилхлорид [PVC (ПВХ)], хлорированный поливинилхлорид [CPVC (ХПВХ)], поливинилиденфторид [PVDF (ПВДФ)], полиэтилен, сшитый полиэтилен (РЕХ) и политетрафторэтилен [PTFE (ПТФЭ)]. В настоящее время имеются данные, свидетельствующие о том, что материалы, когда-то считавшиеся инертными, на самом деле могут быть токсичными в этом применении (например, выщелачивание меди из медных трубопроводов, особенно в присутствии низкого рН, которое может произойти при исчерпании деионизатора). Другие материалы были задокументированы как опасные для пациента (например, латунь, цинк, железо и алюминий), и этих материалов также следует избегать. Скрытая опасность в отношении используемых материалов проистекает из долговременной кумулятивной токсичности. Гемодиализ является длительным хроническим методом лечения, и этот факт следует учитывать при выборе материалов. Для определения пригодности материалов на основе существующих данных следует использовать анализ рисков в соответствии с ИСО 14971:2007. Если этот анализ предполагает необходимость дополнительного испытания, то это испытание должно основываться на подходах, изложенных в стандартах серии ИСО 10993. Пользователи настоящего стандарта должны быть осведомлены о требованиях этих стандартов.
Повторное воздействие озона или горячей воды может оказать пагубное воздействие на некоторые пластмассовые или металлические материалы. Поэтому изготовители обязаны включать предупреждения о том, что в трубопроводных системах, предназначенных для использования с устройствами дезинфекции озоном или горячей водой, соответственно должны использоваться только озоно- или теплосовместимые материалы [см. 6.3 s) и 6.3 t)].
А.2.2.1.3 Регенерированные или восстановленные устройства
Регенерированные или восстановленные устройства подвержены бактериальному загрязнению, которое может привести к чрезмерному количеству бактерий в обработанной воде (см. 4.1.4). Для минимизации этого риска необходимы дезинфекционные процедуры. Когда устройства регенерируются в центральном отделении, существует риск перекрестного загрязнения и некорректной дезинфекции и промывки [19]. Некоторые обменные деионизаторы используются как для диализа, так и для промышленного извлечения гальванических металлов, таких как хром и серебро, из сточных технологических вод. В некоторых регенерационных отделениях смолы как от технологических процессов или потребителей непитьевой воды, так и от медицинских процессов или потребителей питьевой воды регенерируются вместе в виде партии. Следы указанных токсичных металлов останутся связанными со смолами и могут быть элюированы в воду во время последующего использования. По этой причине такое смешанное использование запрещено в настоящем стандарте.
А.2.2.1.4 Защита при дезинфекции
Дезинфекционные процедуры могут сделать обработанную воду небезопасной из-за токсичных химических веществ или чрезмерных температур. Поэтому было предусмотрено восстановление системы водоподготовки до безопасного состояния после дезинфекции. Хотя пользователь несет ответственность за проведение ручных процедур дезинфекции, изготовитель должен продемонстрировать, что рекомендуемые процедуры дезинфекции соответствуют требованиям пункта 4.2.1.4.
А.2.2.2 Устройство для предотвращения обратного потока
Устройство предотвращения обратного потока изолирует систему водоподготовки от подачи питьевой воды, тем самым защищая систему питьевой воды от возможного загрязнения в случае внезапного снижения давления в системе подачи питьевой воды.
А.2.2.3 Темперирующие клапаны
Функциональные характеристики многих устройств для водоподготовки чувствительны к температуре. В менее умеренном климате сезонные колебания температуры холодной воды могут повлиять на функциональные характеристики этих устройств. Темперирующий клапан может использоваться для смешивания горячей и холодной воды, чтобы обеспечить постоянную температуру питательной воды, независимую от любых сезонных изменений температуры питательной воды. Чрезмерная температура воды, возникающая в результате неисправности темперирующего клапана, может привести к повреждению нижестоящих устройств, включая мембраны обратного осмоса и пластиковые трубки и фитинги. По этой причине было рассмотрено требование о том, чтобы темперирующие клапаны были оснащены датчиком температуры воды, который активирует звуковую сигнализацию в случае обнаружения высокой температуры. Признавая возможность повреждения оборудования горячей водой, не удалось прийти к единому мнению относительно необходимости такого требования.
А.2.2.4 Осадочные фильтры
Накопление органических веществ, бактерий и водорослей в фильтрах может привести к размножению бактерий до точки перегрузки нижестоящих устройств или производства опасных уровней эндотоксинов. Использование непрозрачных корпусов для уменьшения света, способствующего росту водорослей, и контроль за перепадом давления могут снизить этот риск.
А.2.2.5 Картриджные фильтры
Накопление органических веществ, бактерий и водорослей в фильтрах может привести к размножению бактерий до точки перегрузки нижестоящих элементов или производства опасных уровней эндотоксинов. Использование непрозрачных корпусов для уменьшения света, способствующего росту водорослей, и контроль за перепадом давления могут снизить этот риск. В каскаде предварительной обработки прозрачные корпуса фильтров могут быть полезны, поскольку они позволяют увидеть любую утечку углерода или смолы без необходимости нарушать целостность системы. Корпус можно очистить, чтобы удалить любой рост при замене фильтрующих картриджей. По этой причине использование непрозрачных корпусов для картриджных фильтров рекомендуется, но не обязательно. Если используются прозрачные корпуса, они не должны подвергаться воздействию естественного света, чтобы свести к минимуму размножение водорослей.
А.2.2.6 Умягчители
Процесс, посредством которого "жесткая" вода (содержащая высокие уровни кальция и магния) становится "мягкой", включает в себя обмен ионов натрия на кальций и магний в системе водоснабжения. Смола должна быть регенерирована с помощью солевого раствора, чтобы поддерживать способность к обмену. Регенерация может быть как ручной, так и автоматической с таймером. Во время регенерации избыток натрия может попасть в поток обработанной воды, если происходит временное отключение питания, неисправность в управлении регенерацией или недостаточное давление воды. На умягчителе нет контролирующих устройств для обнаружения избытка натрия в потоке обработанной воды, и физиологические эффекты избытка натрия у пациента являются тяжелыми [20]. Поэтому необходима защита от таких избыточных уровней натрия, которые могут возникнуть при регенерации умягчителя воды. Автоматический обходной клапан наиболее легко обеспечивает эту защиту во время цикла регенерации.
А.2.2.7 Накопители для анионообменной смолы
Высокое содержание органического вещества в исходной воде может привести к загрязнению углеродных сред. Органические молекулы (обычно очень крупные) притягиваются к углероду и прикрепляются к участкам пор, эффективно блокируя пору и герметизируя поверхностную область внутри этой поры. Поскольку органические молекулы накапливаются на поверхности углерода, площадь поверхности, доступной для удаления хлора, уменьшается. Органические поглотители действуют подобно умягчителю воды, обменивая анионы и органические вещества на хлорид-ионы. Испытание исходной воды на наличие органических веществ (ТОС или дубильных веществ) может показать, поможет ли органический поглотитель защитить углеродные среды.
А.2.2.8 Углеродные среды
Углеродные слои особенно подвержены бактериальному росту из-за их пористости и сродства с органическими веществами. Более строгие требования к установке углеродных слоев и их контролю включены из-за продолжающихся сообщений о кластерах гемолиза, связанных с недостаточным удалением хлорамина из муниципальных источников водоснабжения [22], [23]. Меры общественного здравоохранения, направленные на устранение свинца и меди из водопроводной воды, усилили необходимость тщательного контроля за углеродными слоями, поскольку повышение рН воды, которое может сопровождать эти изменения, может привести к снижению способности углерода удалять хлорамин [23], [24].
Активированный уголь может быть регенерирован с помощью ряда методов, включая окисление при высоких температурах и очистку паром низкого давления или растворителями. Регенерация активированного угля, также известная как реактивация, используется в промышленности, где активированный уголь может быть использован для удаления органических и неорганических веществ, таких как загрязняющие вещества из технологических потоков. Не было найдено никаких доказательств того, что регенерированный углерод использовался для гемодиализа. Однако было сочтено разумным запретить использование регенерированного углерода в системах гемодиализа, чтобы избежать любой потенциальной опасности, связанной с остаточными токсинами, которые могут остаться в углероде после регенерации.
В зависимости от исходного материала, используемого для его изготовления, и технологического процесса гранулированный активированный уголь может содержать угольную крошку и другие загрязняющие вещества, такие как алюминий. Если они присутствуют, то эти вещества будут выщелачиваться из углеродного слоя на начальных стадиях эксплуатации. Мелкие частицы углерода могут способствовать загрязнению мембран обратного осмоса, расположенных ниже углеродных слоев, а любые ионы металлов могут увеличить нагрузку загрязнений, которые должны быть удалены из воды. Кислотная промывка углерода сводит к минимуму количество мелких частиц и других загрязнений, и было рассмотрено требование к использованию углерода, промытого кислотой. Консенсуса по этому вопросу достичь не удалось, поскольку промывка углеродных слоев перед их размещением в режиме реального времени в каскаде очистки воды также эффективно удалит мелкие частицы и другие загрязняющие вещества.
Требование о двух последовательных слоях и 10-минутном времени контакта частиц с водой было отменено для портативных систем диализа при условии наличия резервных средств удаления хлорамина из-за непрактичности обеспечения этих функций при сохранении портативности системы. Возможные альтернативы включают гранулированный слой активированного угля, за которым следует плотный угольный блок и два угольных блочных фильтра последовательно. Однако, когда используется один углеродный слой, важно обеспечить, чтобы слой имел достаточную емкость для удаления хлорамина в течение всей обработки, учитывая типичную концентрацию хлорамина в питательной воде в условиях, где используется слой.
Хотя обработка воды углеродом является обычным методом удовлетворения требования пункта 4.1.2, когда питательная вода содержит хлорамин, в некоторых ситуациях, таких как острый или домашний диализ с переносными системами очистки воды, может оказаться непрактичным использовать объем углерода, необходимый для этой цели. В таких условиях для удаления хлорамина из конечного диализирующего раствора было использовано сочетание ограниченного углерода с добавлением аскорбиновой кислоты в кислотный концентрат [23]. Для нейтрализации хлорамина в воде аскорбиновой кислотой требуется минимальное время контакта. Если аскорбиновая кислота используется для нейтрализации хлорамина и происходит необъяснимое разрушение эритроцитов или анемия, следует исследовать эффективность нейтрализации хлорамина аскорбиновой кислотой.
В большинстве случаев обычные углеродные системы обеспечивают месяцы эффективного удаления хлора/хлорамина. Иногда обычные углеродные системы испытывают преждевременный прорыв, требующий замены/обмена углеродного слоя в рамках нескольких дней, а не месяцев. Эти случаи могут носить эпизодический или постоянный характер. Эпизодический прорыв угольных фильтров часто связан с периодическими методами очистки муниципальной воды, такими как краткосрочная замена свободного хлора хлорамином. Постоянные трудности с преждевременным прорывом углеродных систем могут быть связаны с самой исходной водой (например, рН, уровень ТОС) или постоянной практикой очистки муниципальных вод, такой как добавление ингибиторов коррозии. Возникновение этих проблем, по-видимому, увеличивалось. Поэтому были добавлены положения о дополнительных устройствах системы очистки воды, которые могли бы помочь решить проблему повторного преждевременного истощения углеродных сред или повысить эффективность углеродных сред. Были включены два подхода: анионообменные смолы, которые очищают большие органические молекулы, которые могут покрывать поверхность углерода, и системы, которые вводят бисульфит натрия, который уменьшает хлорамин до хлора, или кислоту, чтобы отрегулировать рН до оптимального диапазона для удаления хлорамина углеродом. В том числе было рассмотрено использование окислительно-восстановительного потенциала сплавов сред (RAM), также называемых кинетически разлагаемым потоком (KDF). Этот материал может быть эффективной предварительной обработкой для обычных угольных фильтров, испытывающих преждевременный прорыв из-за кратковременной замены свободного хлора хлорамином или для питательных вод с высокой органической нагрузкой. Недостатком среды KDF является то, что как медь, так и цинк элюируются из среды, хотя и на очень низких уровнях. Опасения по поводу того, как элюированная медь и цинк могут повлиять на нижестоящие устройства, а также вопросы об эффективности носителей KDF привели к отсутствию этой альтернативы.
А.2.2.9 Системы впрыска химических веществ
Были высказаны оговорки относительно добавления химических веществ в воду. Однако было признано, что добавление химических веществ может быть необходимым в некоторых обстоятельствах, если отделение соответствует максимальным уровням загрязнения, указанным в пункте 4.1.2. Например, если муниципальная вода содержит высокие уровни N-хлораминов или хлорамина в присутствии ортофосфата или полифосфата, инъекция бисульфита натрия может быть одним из немногих доступных вариантов удаления хлорамина. Если химическая инъекция используется в каскаде предварительной обработки, пользователи должны убедиться, что добавление химического вещества не мешает работе последующих процессов очистки, включая процесс первичной очистки. Например, на функциональные характеристики тонкопленочных композитных мембран обратного осмоса может влиять рН питательной воды. При уровнях рН ниже 7 отторжение фторида может быть существенно снижено по сравнению с его отторжением при рН 8.
А.2.2.10 Обратный осмос
Система обратного осмоса должна обеспечивать подачу воды, отвечающей требованиям пунктов 4.1.2 и 4.1.4; в противном случае пользователю следует рекомендовать дополнительные очистные устройства. Требования к контролю за системами обратного осмоса рекомендуются на основе совершенно различных характеристик деградации этих систем по сравнению с системами деионизатора. При первоначальной настройке устройство обратного осмоса должно иметь коэффициент отбраковки, обеспечивающий соответствие обработанной воды системы водоподготовки требованиям пункта 4.1.2. Поскольку эта скорость отбраковки варьируется в зависимости от различных установок, абсолютный уровень не требуется. Контроль определяется с точки зрения скорости прохождения соли или процента отбраковки и порогового уровня сопротивления или проводимости обработанной воды. Соответствие обоим контроллируемым параметрам необходимо, поскольку увеличение содержания загрязняющих веществ в питательной воде может привести к тому, что обработанная вода будет непригодна для применения в гемодиализе, даже если процент отбраковки мембранных модулей остается высоким.
Не удалось достичь консенсуса относительно того, как установить аварийные пределы для отклонения и сопротивления или проводимости обработанной воды. Как отмечалось выше, изменение качества питательной воды приведет к изменению качества обработанной воды, даже если отклонение остается постоянным. Кроме того, значительное изменение в питательной воде концентрации одного следового неорганического загрязняющего вещества не может существенно изменить сопротивление обработанной воды, даже если концентрация этого загрязняющего вещества в обработанной воде превышает допустимый предел. По этой причине некоторые считали, что следует уделять особое внимание регулярному анализу качества питательной воды. Другие полагали, что предел аварийного отбраковывания может быть установлен на основе коэффициента снижения для каждого загрязняющего вещества, который может быть достигнут обратным осмосом, и предположения о том, что питательная вода соответствует национальным требованиям к питьевой воде, или, в случае стран, не имеющих законодательной базы для такого требования, руководящих принципов Всемирной организации здравоохранения (ВОЗ) по питьевой воде [25]. Любой из этих подходов может быть эффективным при включении в общую программу эпиднадзора, направленную на защиту пациента от воздействия уровней загрязняющих веществ, превышающих те, которые перечислены в приложении В (таблицы В.1 и В.2).
В отношении включения требования о том, чтобы системы обратного осмоса включались в качестве средства отвода обработанной воды для слива в случае тревоги о проводимости обработанной воды или скорости отведения продукта, консенсус не мог быть достигнут, за исключением ситуации, когда обратный осмос является заключительной стадией очистки воды.
Система прямого распределения питательной воды, включающая отвод в дренаж, вызвала бы немедленную тревогу у большинства аппаратов для диализа, имеющих один путь, возникающую в результате прерывания подачи воды. Хотя мембраны обратного осмоса имеют тенденцию постепенно выходить из строя, для пациента по-прежнему существует риск невыполнения требований, изложенных в приложении В (таблицы В.1 и В.2). Эти риски отличаются от рисков, связанных с исчерпанием деионизатора, когда очень высокие уровни загрязняющих веществ, таких как фтор, могут внезапно возникать в обработанной воде. Однако, несмотря на то, что не удалось достичь консенсуса относительно того, как установить пределы тревоги для отклонения и сопротивления или проводимости обработанной воды, продолжение диализа после тревоги требует определения причины тревоги, которая должна быть идентифицирована, и оценки риска продолжения лечения. Поэтому в качестве требования был включен отвод воды в дренаж.
Поскольку системы обратного осмоса часто удаляются от зоны лечения пациента, считалось необходимым установить визуальную и/или звуковую сигнализацию в зоне лечения пациента. Была признана целесообразной звуковая сигнализация, которая может быть отключена на срок до 3 мин (180 с) после включения.
А.2.2.11 Деионизация
Деионизирующие системы при истощении обладают способностью выделять в воду потенциально вредные загрязняющие вещества на уровнях, значительно превышающих те, которые присутствуют в необработанной питательной воде [26]. Контрольный уровень сопротивления 1 был выбран в качестве точки, в которой расходуется большая часть полезной мощности деионизаторов, используемых при водоподготовке воды для диализа, и ниже которой происходит быстрое снижение эффективности удаления ионов. Сопротивление 1
не является минимальным безопасным значением для воды для диализа, но системы деионизаторов, производящие воду, с сопротивлением ниже этого значения во время последующей обработки подвергаются опасности получения воды с высоким содержанием токсичных загрязнений, поскольку окончательный износ смолы ускоряется. Требование отвода обработанной воды в дренаж было включено из-за острой опасности, которую истощенный деионизатор может представлять для пациентов [27], [28]. Требование по установке активированного угля перед деионизатором предотвращает образование возможных канцерогенных нитрозаминов [29]. Деионизаторы подвержены бактериальному загрязнению из-за пористой структуры смол. Хотя уровень бактериального загрязнения в обработанной воде от деионизаторов варьируется в широких пределах, он обычно является самым высоким после того, как деионизатор простаивает в течение некоторого времени, и самым низким после непрерывного использования. Поскольку деионизаторы обычно помещаются последними в каскаде очистки, за ними должны следовать эндотоксиновый фильтр или другое устройство для удаления бактерий и эндотоксинов, чтобы предотвратить бактериальное загрязнение системы хранения и распределения воды.
По причинам, изложенным в пункте А.2.2.10 для обратного осмоса, было решено сохранить требования к визуальной и звуковой сигнализации.
А.2.2.12 Эндотоксиновый фильтр
Эндотоксиновые фильтры все чаще используются для обеспечения высокого микробиологического качества в
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.