Ambient air quality. Diffusive samplers for the determination of concentrations of gases and vapours. Requirements and test methods. Part 3. Guide to selection, use and maintenance
Дата введения - 1 декабря 2011 г.
Введен впервые
Предисловие
Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"
Сведения о стандарте
1 Подготовлен Автономной некоммерческой организацией "Научно-исследовательский центр контроля и диагностики технических систем" (АНО "НИЦ КД") на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4
2 Внесен Техническим комитетом по стандартизации ТК 457 "Качество воздуха"
3 Утвержден и введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 12 ноября 2010 г. N 437-ст
4 Настоящий стандарт идентичен европейскому стандарту ЕН 13528-3:2003 "Качество атмосферного воздуха. Диффузионные пробоотборники, используемые при определении содержания газов и паров. Требования и методы испытаний. Часть 3. Руководство по выбору, использованию и техническому обслуживанию" (EN 13528-3:2003 "Ambient air quality - Diffusive samplers for the determination of concentrations of gases and vapours - Requirements and test methods - Part 3: Guide to selection, use and maintenance")
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА
5 Введен впервые
Введение
В настоящем стандарте установлены требования и методы испытаний при определении характеристик диффузионных пробоотборников, используемых для определения содержания газов и паров в атмосферном воздухе.
Целями, установленными в 5-ой программе действий Европейского союза в области качества воздуха, являются эффективная защита населения от известных рисков, связанных с загрязнением воздуха, и установление уровней предельно допустимых концентраций для загрязняющих воздух веществ, которые следует учитывать при планировании действий, направленных на охрану окружающей среды. С этой целью проводится мониторинг и контроль содержания загрязняющих компонентов по отношению к нормативам.
В последующих программах действий Европейского союза по охране окружающей среды была подчеркнута необходимость нахождения баланса между стандартами на продукцию, предельно допустимыми выбросами и экологическими нормативами.
При внедрении существующих Директив были выявлены различные проблемы, установленные в Директиве Совета по управлению и оценке качества атмосферного воздуха [1]. К ним относятся:
- различные подходы к мониторингу между и внутри государств - членов ЕС в сопоставимых ситуациях;
- гармонизация методов измерений;
- качество измерений, зависящее от градуировки и процедур обеспечения качества.
Диффузионные пробоотборники, используемые при оценке качества воздуха, должны соответствовать некоторым общим требованиям, установленным в ЕН 13528-1. К этим требованиям относятся однозначность, селективность и показатели качества результатов измерений, в том числе неопределенность.
Эти общие требования могут быть применены для других процедур, используемых при оценке качества атмосферного воздуха.
Кроме того, диффузионные пробоотборники, используемые при оценке качества воздуха, должны соответствовать некоторым специальным требованиям, кроме установленных в ЕН 13528-1. Эти специальные требования приведены в ЕН 13528-2. В настоящем стандарте приведены руководящие указания по выбору, использованию и техническому обслуживанию диффузионных пробоотборников, используемых при оценке качества атмосферного воздуха.
Пользователь должен сделать правильный выбор процедур или устройств, соответствующих требованиям настоящего стандарта. Одним из способов для этого является получение информации или подтверждения от изготовителя. Типовые испытания или, в более общем случае, оценка характеристик процедур или устройств, могут быть проведены изготовителем, пользователем, испытательной станцией или научно-исследовательской лабораторией, что наиболее приемлемо.
Настоящий стандарт применим в основном для диффузионных пробоотборников, используемых при оценке качества атмосферного воздуха, однако диффузионный отбор проб также подходит и для оценки качества воздуха замкнутых помещений. Диффузионный отбор проб и отбор проб методом прокачки считают подходящими при подобных измерениях, в зависимости от условий (особенно от любых требований к продолжительности экспозиций) [2]. В ЕН 14412 приведены основные положения по выбору, использованию и техническому обслуживанию диффузионных пробоотборников, используемых при оценке качества воздуха замкнутых помещений.
По содержанию настоящий стандарт аналогичен ЕН 838, а ЕН 13528-1 аналогичен ЕН 482. Серия стандартов по использованию диффузионных пробоотборников для отбора проб атмосферного воздуха была разработана в дополнение к аналогичным стандартам по оценке качества воздуха рабочей зоны, поскольку в основу их положены другие Европейские Директивы, определения и методы оценки неопределенности.
1 Область применения
Настоящий стандарт устанавливает руководящие указания по выбору, использованию и техническому обслуживанию диффузионных пробоотборников (далее - пробоотборников), применяемых при измерениях в области оценки качества окружающего воздуха. К ним относятся указания по целям и методам измерений, соответствующие политике Европейского союза и, в более общем смысле, относящиеся к использованию таких пробоотборников. В стандарте также приведено описание принципов действия диффузионных пробоотборников и факторов, влияющих на их характеристики, при реализации этой политики. Также приведены рекомендации по выбору способов сведения к минимуму любых неблагоприятных воздействий, например путем помещения пробоотборников в укрытия, защищающие от ветра, и по вопросам профессиональной подготовки персонала и обеспечения качества.
В приложениях приведена дополнительная информация по практическому применению диффузионных пробоотборников для конкретных загрязнителей окружающей среды, в том числе тех, которые установлены существующими и планируемыми дочерними Европейскими Директивами.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ЕН 13005:1999 Руководство по выражению неопределенности измерения (EN 13005:1999, Guide to the expression of uncertainty in measurement)
EH 13528-1:2002 Качество атмосферного воздуха. Диффузионные устройства отбора проб, используемые для определения содержания газов и паров. Требования и методы испытаний. Часть 1. Общие требования (EN 13528-1:2002 "Ambient air quality - Diffusive samplers for the determination of concentrations of gases and vapours - Part 1: General requirements)
EH 13528-2:2002 Качество атмосферного воздуха. Диффузионные устройства отбора проб, используемые для определения содержания газов и паров. Требования и методы испытаний. Часть 2. Специальные требования и методы испытаний (EN 13528-2:2002 "Ambient air quality - Diffusive samplers for the determination of concentrations of gases and vapours - Part 2: Specific requirements and test methods)
ИСО 5725:1994 Точность (правильность и прецизионность) методов и результатов измерений (все части) [ISO 5725:1994, Accuracy (trueness and precision) of measurement methods and results (all parts)]
3 Термины и определения
Примечание - Обращается внимание на то, что определения терминов, оценка, предельное значение и загрязняющее вещество приведены в Директиве 96/62/ЕС [1].
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1 атмосферный воздух (ambient air): Воздух тропосферы за исключением воздуха замкнутых помещений и рабочей зоны.
3.2 период усреднения (averaging time): Интервал времени, для которого получают один результат измерения с использованием конкретной методики измерений.
[ЕН 482].
3.3 диффузионный пробоотборник (diffusive sampler): Устройство для отбора проб газов и паров из воздуха со скоростью, определяющейся физическим процессом, например диффузией газа через неподвижный слой воздуха или пористый материал и/или проникновением через мембрану, но при котором не происходит активного движения воздуха через устройство.
Примечания
1 Под активным движением следует понимать движение воздуха при прокачке.
2 Определение отличается от приведенного в EN 838 тем, что в него добавлено "или пористый материал".
3.4 скорость диффузионного поглощения*(1) (diffusive uptake rate): Скорость, с которой в диффузионном пробоотборнике улавливается определенный газ или пар, находящийся в атмосферном воздухе, выраженная в пикограммах на миллиардную долю*(2) в минуту *(3) или кубических сантиметрах в минуту ().
Примечания
1 Значение, выраженное в единицах , эквивалентно значению, выраженному в .
2 Определение отличается от приведенного в ЕН 838, тем, что "нанограммы на миллионную долю" заменены на "пикограммы на миллиардную долю". Числовое значение будет тем же самым, но обычно объемная доля загрязнителя в окружающем воздухе находится в диапазоне миллиардных долей.
3.5 методика измерений (measuring procedure): Процедура отбора и анализа пробы на содержание одного или нескольких загрязняющих веществ в атмосферном воздухе, включающая хранение и транспортирование пробы.
3.6 селективность (selectivity): Степень независимости от мешающих веществ.
3.7 неопределенность (измерения) (uncertainty (of measurement)): Параметр, связанный с результатами измерений и характеризующий (дисперсию) разброс значений, которые могут быть обоснованно приписаны измеряемой величине.
Примечания
1 Параметром может быть, например, стандартное отклонение (или число, кратное ему) или половина интервала, имеющего указанный уровень доверительной вероятности.
2 Неопределенность состоит, в основном, из многих составляющих. Некоторые из этих составляющих могут быть оценены экспериментальными стандартными отклонениями статистически распределенной серии результатов измерений. Другие составляющие, которые также могут быть оценены стандартными отклонениями, базируются на данных эксперимента или другой информации.
3 Понятно, что результат измерения является наилучшей оценкой значения измеряемой величины и все составляющие неопределенности, включая составляющие, обусловленные систематическими влияниями, такие как составляющие, связанные с введением поправок и использованием образцов сравнения, вносят вклад в разброс значений.
[ЕН 13005]
3.8 валидация (validation): Процесс оценивания характеристик методики измерений и проверки того, что они соответствуют конкретным предварительно установленным критериям.
4 Обозначения и сокращения
А - площадь поперечного сечения диффузионной зоны пробоотборника или эквивалентной сорбирующей поверхности, в квадратных сантиметрах;
С - массовая концентрация аналита, полученная с помощью диффузионного пробоотборника, в микрограммах на кубический метр;
D - коэффициент диффузии аналита, в квадратных сантиметрах в минуту;
- коэффициент диффузии аналита 1, в квадратных сантиметрах в минуту;
- коэффициент диффузии аналита 2, в квадратных сантиметрах в минуту;
d - эффективность десорбции;
k - поправочный коэффициент на неидеальность поведения газов и паров (см. 7.1);
l - часть длины трубки пробоотборника с неподвижным слоем воздуха (или эквивалентная величина для пробоотборников мембранного типа), в сантиметрах;
М - молярная масса аналита, в граммах на моль;
- масса аналита, извлеченного из холостого пробоотборника, в пикограммах;
- масса аналита, извлеченного из экспонированных пробоотборников, в пикограммах;
- масса аналита, поглощенного в результате диффузии, в пикограммах;
Р - давление отбираемого воздуха во время отбора проб, в килопаскалях;
t - время экспозиции, в минутах;
Т - температура отбираемого воздуха, в Кельвинах;
U - скорость диффузионного поглощения, в кубических сантиметрах в минуту;
- скорость диффузионного поглощения аналита 1, в кубических сантиметрах в минуту;
- скорость диффузионного поглощения аналита 2, в кубических сантиметрах в минуту;
U' - скорость диффузионного поглощения, в пикограммах на миллиардную долю в минуту = (;
V - объемный расход воздуха, в кубических метрах в минуту;
- смещение;
- объемная доля аналита в градуировочной газовой смеси, в миллиардных долях ( = );
- массовая концентрация аналита в градуировочной газовой смеси, в микрограммах на кубический метр;
- массовая концентрация заданного аналита в паровоздушной смеси в начале диффузионного слоя (l = 0), в микрограммах на кубический метр;
- массовая концентрация заданного аналита в конце диффузионного слоя, в микрограммах на кубический метр;
- постоянная времени диффузионного пробоотборника, в секундах.
5 Цели и стратегия измерений
5.1 Измерения в соответствии с директивами Европейского союза
Примечание - При пользовании настоящим стандартом целесообразно проверить последние изменения в законодательных актах Евросоюза, опубликованные в текущем году.
5.1.1 Директивы по качеству воздуха
Возможны различные методы оценки качества воздуха при реализации Директивы Совета по оценке качества атмосферного воздуха [1] и последующих дочерних Директив, в которых требования к измерениям становятся менее строгими по мере уменьшения риска превышения предельно допустимых значений.
Измерения на стационарных постах наблюдения, оценочные методы измерений, ведение реестра выбросов и создание моделей качества воздуха или сочетание этих подходов могут быть использованы в зависимости от того, лежат ли уровни содержания загрязняющих веществ за репрезентативный период выше или ниже одного или нескольких процентов от соответствующего предельно допустимого значения. Обычно чем ближе содержание загрязняющего вещества к предельно допустимому значению, тем более строгие требования предъявляют к показателям качества результатов измерений (см. ниже). Значения верхнего и нижнего порогов оценки в процентах, как установлено в Директиве ЕС 96/62/ЕС [1], приведены в соответствующих дочерних Директивах, например в Директиве ЕС 99/30/ЕС [3], в приложении V по диоксиду серы, диоксиду азота и другим оксидам азота, и Директиве 2000/69/ЕС [4], приложении III по бензолу и монооксиду углерода.
Показатели качества результатов измерений установлены для каждого типа измерений для управления программами по обеспечению качества. К этим показателям качества результатов измерений относятся требуемая точность (неопределенность), минимальное время наблюдения и процент собранных данных оценки применяемым методом. Значения показателей приведены в соответствующих дочерних Директивах, например Директиве ЕС 99/30/ЕС [3], в приложении VIII по диоксиду серы, диоксиду азота и другим оксидам азота; Директиве 2000/69/ЕС [4], в приложении VI по бензолу и монооксиду углерода; и Директиве 2002/3/ЕС [5], в приложении VII по озону.
Неопределенность (при уровне доверительной вероятности 95%) методов оценки определяют в соответствии с Руководством по выражению неопределенности измерения (ENV 13005) и/или ИСО 5725 или эквивалентным документом.
Методика диффузионного отбора проб может быть внедрена на основании директив по качеству воздуха для:
- классификации зон (статьи 8 и 9, [1]);
- предварительной оценки качества атмосферного воздуха (статья 5, [1]);
- проектирования/оптимизации сети постов наблюдения (статья 4.3, [1]);
- мониторинга качества воздуха на территориях, где не существует риска превышения предельно допустимых значений (статья 6.3, [1]);
- определения территорий с однородным качеством воздуха;
- оценки загрязнения вблизи точечных источников (дорожное движение, промышленность);
- оценки загрязнения экосистем.
Более подробная информация о возможностях диффузионного отбора проб при предварительной оценке в соответствии с Директивами ЕС по качеству воздуха приведена в отчете [6].
Подробное описание требований по оценке содержания веществ, загрязняющих атмосферный воздух, со специальной ссылкой на возможность проведения диффузионного отбора проб приведено в VDI [7].
5.1.2 Оценка, относящаяся к источнику загрязнения
В промышленности диффузионный отбор проб уже установлен в качестве метода отбора проб для мониторинга качества воздуха рабочей зоны [EN 482], однако методики все еще недостаточно широко внедрены для мониторинга атмосферного воздуха в промышленных зонах.
В дополнение к задачам, установленным в 5.1.1, диффузионный отбор проб может быть использован при:
- изучении оценки воздействия на окружающую среду, необходимой для получения разрешений на эксплуатацию;
- проведении широкомасштабных измерений для идентификации источников;
- содействии проведению непрерывного контроля воздействия производственных процессов на окружающую среду на внутризаводской территории;
- влиянии зоны предприятия на качество воздуха в приземном слое при использовании ограждений;
- проведении мероприятий по мониторингу качества воздуха в сотрудничестве с органами местного самоуправления в населенных пунктах и сельскохозяйственных районах, находящихся вблизи крупных промышленных комплексов, для подтверждения соответствия и в поддержку целей в области качества воздуха, установленных в Директивах ЕС и национальных стандартах по качеству воздуха.
В настоящее время существуют или могут быть разработаны диффузионные пробоотборники, применимые для количественного определения различных веществ: практически всех газов, выбрасываемых в ходе производственных и других процессов, в т.ч. оксидов азота и серы, аммиака и аминов, хлорированных углеводородов, кислородсодержащих веществ, включая растворители и альдегиды, галоидных и кислых газов, сероводорода и многих других (приложение А).
5.1.3 Директивы по охране лесов
Применение диффузионного отбора проб актуально в контексте Регламента Совета (EEC *(4)) N 3528/86 (модернизированного Регламентом N 2157/92 (EEC)) по охране лесов Европейского союза от загрязнения атмосферного воздуха и организации сети постов постоянного наблюдения для обеспечения интенсивного и непрерывного надзора за лесными экосистемами [8].
5.1.4 Охрана экосистем
Диффузионный отбор проб также имеет отношение к Предложению (Proposal COM(99)125 final) в Приложении II (раздел III) директивы Европейского союза [5], которое устанавливает опорные уровни воздействия, относящиеся к разрушению материалов и лесов озоном и видимому повреждению зерновых посевов.
5.1.5 Информированность населения
Право населения знать о наличии воздействия загрязнителей воздуха и о состоянии окружающей среды стало одним из приоритетов политики в области качества воздуха. Экономичность и простота обслуживания диффузионных пробоотборников делает их идеальным средством для организации мероприятий по информированию населения. В частности, сама методика измерений может быть эффективно внедрена при организации мероприятий по повышению информированности населения и в дидактических целях.
5.2 Измерения в поддержку политики в других сферах
5.2.1 Измерения в поддержку национальной, региональной и локальной политики
Ограниченное число местных властей в государствах - участниках соглашения уже приняли активные меры по оценке качества атмосферного воздуха в городской и сельской местности. Однако используемые методы измерений были применены на фиксированных точечных постах мониторинга, являющихся только частично представительными по отношению к изменениям свойств атмосферного воздуха в пространстве. Определение территориального размещения таких постов может быть затруднительным. Кроме того, такие средства контроля являются дорогостоящими. Диффузионный отбор проб дает превосходное средство для проведения скрининга, позволяющее оценивать качество воздуха в большом количестве мест одновременно. Примеры такого использования диффузионных пробоотборников приведены в [9, 10], другие примеры также можно найти в литературе. Такие мероприятия дополняют результаты измерений, полученные с фиксированных постов наблюдения, таким образом, что местные власти могут достоверно оценить местные условия по качеству атмосферного воздуха и принять решения по проектированию сети постов для будущих действий.
5.2.2 Охрана специальных экосистем
Особо чувствительные к состоянию окружающей среды экосистемы, такие как природные заповедники и горные районы, не учтены отдельно при установлении Европейским союзом предельных значений или в национальных нормативных документах по качеству воздуха, но они могут быть защищены путем внедрения отдельных более строгих нормативных документов. Простота принципа, положенного в основу диффузионного отбора проб, и отсутствие необходимости в источнике электроэнергии делает эту методику хорошо адаптированной для этой области применения, особенно для оценки суммарных уровней загрязнения за длительные периоды времени.
Аналогично диффузионный отбор проб может быть применен в рамках обеспечения защиты культурного наследия человечества (исторических памятников, скульптур, фресок и т.д.).
5.2.3 Особые аспекты исследований
Диффузионные пробоотборники могут быть использованы для особых исследовательских целей, таких как:
- анализ тенденций изменений качества воздуха;
- изучение взаимосвязи источник - приемник;
- валидация моделей разброса загрязняющих веществ в атмосфере;
- оценка мер, предпринимаемых по снижению выбросов;
- сбор данных о воздействии вредных веществ для эпидемиологии или оценки рисков.
5.3 Планирование измерений
Методология измерений зависит от целей мониторинга и определяемых загрязняющих веществ. Необходимо определить, где, каким образом и как часто должны проводиться измерения. Объем работ по проведению измерений будет зависеть от:
- изменения содержания загрязняющего вещества в пространстве и времени;
- доступности дополнительной информации;
- требуемой точности оценки.
Практический пример разработки методики измерений для предварительной оценки в рамках Директив ЕС по качеству воздуха приведен в отчете [6].
6 Выбор устройства
6.1 Источники информации
Важная информация о характеристиках диффузионного пробоотборника может быть получена из различных источников. К ним относятся:
- руководство по эксплуатации (ЕН 13528-2, 5.10);
- опубликованная рекламная техническая информация;
- научные и технические публикации;
- национальные и международные стандарты [11] - [15];
- информационный бюллетень "Диффузионный датчик*(5), выпускаемый с 1988 г. рабочими группами, например HSE/CAR/WG 5 (Управление по вопросам охраны здоровья, безопасности и охраны труда/Комитет по требованиям к процедурам анализа/Рабочая Группа 5).
6.2 Выбор пробоотборника
Выбор диффузионного пробоотборника зависит от многих факторов. К ним относятся:
a) цель измерений (см. раздел 5), т.е.:
- обязательные измерения;
- предварительные измерения;
- объективная оценка;
- измерения, отличные от тех, которые требуются в соответствии с основополагающей Директивой [1];
b) установление требуемого диапазона измерений с особой ссылкой на время отбора проб, предел обнаружения, скорость поглощения и возможности достижения равновесного насыщения сорбента в пробоотборнике (см. приложение В);
c) требуемое время экспозиции;
d) селективность по отношению к определяемому газу или пару и чувствительность по отношению к мешающим газам и парам (ЕН 13528-1, 5.2);
e) соответствующие показатели качества результатов измерений (ЕН 13528-1, 5.3);
f) чувствительность пробоотборника к воздействию условий окружающей среды (7.4), особенно к скорости потока воздуха;
g) соответствующая защита от неблагоприятных условий окружающей среды (см. раздел 8);
h) соответствие цели измерений, например размера, массы пробоотборника, продолжительности отбора проб (см. 6.4);
i) требования к квалификации персонала для обеспечения надежной работы, технического обслуживания и градуировки (см. раздел 10);
j) общая стоимость приобретения, эксплуатации пробоотборника, включая градуировку и техническое обслуживание;
k) соответствие требованиям к характеристикам, установленным в ЕН 13528-1, ЕН 13528-2 и национальных нормативных документах (см. 6.4);
I) соответствие системе качества, применяемой пользователем (см. раздел 11).
6.3 Конкретные применения
Конкретные примеры применения диффузионных пробоотборников для некоторых загрязнителей воздуха приведены в приложении А.
6.4 Соответствие ЕН 13528-1 и ЕН 13528-2
Маркировка "ЕН 13528" на продукции или в отношении продукции - это декларация о соответствии, предоставляемая изготовителем, т.е. заявление о соответствии требованиям Европейского стандарта, сделанное от лица изготовителя или самим изготовителем. Грамотное составление подтверждения является обязанностью лица, занимающегося этим вопросом.
7 Принципы работы
7.1 Основные принципы диффузионного отбора проб
Массу аналита, способного диффундировать на подходящий сорбент за определенный промежуток времени, вычисляют по формуле, полученной на основе первого закона диффузии Фика
.
(1a)
Эта формула отличается от той, что приведена в 13528-2 (А.2), так как она относится к более общему случаю, когда может быть не равно нулю. В идеальном случае равно массовой концентрации данного аналита в воздухе за пределами диффузионного пробоотборника (), а равно нулю (условие снижения до нуля). В этом случае скорость диффузионного поглощения, , зависит только от коэффициента диффузии данного аналита и от конструкции используемого диффузионного пробоотборника.
Рисунок 1 - Схема процесса диффузии
Входное отверстие пробоотборника с площадью поперечного сечения А (рисунок 1) в положении 1 определяет начало диффузионной зоны для аналита с массовой концентрацией . Сорбент В в положении 2, который будет понижать массовую концентрацию аналита (в идеальном случае до нуля) в результате сорбции или химической реакции, служит в качестве движущей силы диффузии на участке длиной l.
На практике существует несколько факторов, приводящих к отклонению от идеального случая, так что:
.
(1b)
Примечание - k может зависеть от содержания и времени экспозиции (см. 7.3).
Общий обзор принципов, положенных в основу диффузионного отбора проб приведен в [16].
7.2 Размерность скорости диффузионного поглощения
Для данной массовой концентрации газа или пара , в микрограммах на кубический метр, скорость диффузионного поглощения U вычисляют по формуле
.
(2а)
Примечания
1 Хотя скорость поглощения U имеет размерность единиц объема на единицу времени, она не отражает реальное значение объемного расхода воздуха (аналита в воздухе).
2 Скорость диффузионного поглощения очень часто выражают в . Эта единица удобна с практической точки зрения, поскольку большинство аналитиков, работающих в области оценки качества воздуха, используют для выражения содержания в нем газов и паров единицу объемной доли - миллиардные доли (). Зависимость скорости поглощения от температуры и давления рассмотрена ниже (7.4.1). Таким образом, для заданной объемной доли газа или пара в воздухе, выраженной в миллиардных долях, скорость диффузионного поглощения вычисляют по формуле
.
(2b)
3 Величины U' и U связаны формулой:
.
(3)
7.3 Смещение, обусловленное выбором неидеального сорбента
Характеристики диффузионного пробоотборника зависят в значительной степени от выбора и использования подходящего сорбента. В случае высокоэффективного сорбента массовая концентрация, соответствующая остаточному давлению насыщенного пара отбираемого компонента на поверхности сорбента (массовая концентрация на которой составляет ), будет очень мала по сравнению с массовой концентрацией этого соединения в атмосферном воздухе. Полученная скорость поглощения будет близка к значению в идеальном равновесном состоянии, которое может быть вычислено на основе геометрии пробоотборника и коэффициента диффузии аналита в воздухе.
В том случае, когда используется малоэффективный сорбент, в формуле (1а) не будет равно нулю и отношение /t будет уменьшаться со временем отбора проб. В формуле (1b) коэффициент k значительно меньше единицы. Поэтому U в формулах 2 также будет уменьшаться со временем при отборе проб. Массовая концентрация отбираемого загрязняющего вещества может также (в меньшей степени) влиять на отношение /t и, следовательно, на U. Степень этого влияния зависит от вида изотермы адсорбции для конкретных аналита и сорбента и может быть вычислена с помощью компьютерных моделей [17], [18].
Другим проявлением аналогичного влияния является обратная диффузия. Она происходит тогда, когда спустя некоторое время после начала отбора проб давление насыщенного пара аналита на поверхности сорбента, на которой массовая концентрация аналита достигает уровня , будет больше по сравнению с массовой концентрацией аналита в окружающем воздухе, , например, если сначала устройство отбора проб экспонируют в среде с высоким содержанием, а затем в среде с более низким или даже нулевым содержанием аналита. Такой режим экспозиции может встречаться на практике, и значение любой внесенной погрешности будет зависеть от того, в какое время наблюдается высокое содержание аналита в контролируемом воздухе: в начале, середине или конце периода отбора проб. Это явление детально обсуждалось Бартли и др. [19] - [21], и было предложено простое испытание [22] для оценки максимального ожидаемого смещения между экспозицией в среде, где содержание загрязнителя меняется импульсно, или в среде с постоянным содержанием загрязнителя, что обычно дает оценку смещения калибровки пробоотборника. Испытание, состоящее в экспозиции пробоотборника в среде с высоким содержанием загрязнителя в течение 30 мин, после чего его экспонируют в среде чистого воздуха в течение 7,5 ч, установлено в ЕН 838. Однако считается, что для атмосферного воздуха (ЕН 13528-2, 7.3.1) режим экспозиции в течение чередующихся равных периодов экспозиции в среде с высоким и низким содержанием загрязнителя для цикла продолжительностью 24 ч является наиболее типичным для предполагаемого применения там, где характерны изменения содержания в течение суток. Оценку обратной диффузии также можно получить теоретически с помощью моделирования [18], [23].
Поэтому желательно выбрать сорбент с высокой сорбционной емкостью и низким давлением насыщенного пара сорбирующего материала или продукта реакции, образующегося в результате реакции с химически активным сорбентом.
7.4 Условия окружающей среды, влияющие на характеристики пробоотборника
7.4.1 Температура и давление
Для идеального диффузионного пробоотборника зависимость U от температуры и давления определяется функцией коэффициента диффузии аналита, которая задается формулой
,
(4)
где 0,5< n <1,0
Следовательно, зависимость U, в или эквивалентных единицах, от температуры и давления можно задать формулой
.
(5)
Если U переведено с использованием формулы (3) в единицы U', или эквивалентные, то зависимость задается формулой
.
(6)
В последнем случае эта зависимость будет составлять от 0,002 до 0,004 . В случае неидеального диффузионного пробоотборника, зависимость U' от температуры может быть скомпенсирована за счет температурной зависимости коэффициента адсорбции аналита [24]. В любом случае для правильного применения формул 2а и 2b необходимо знать точные значения средней температуры и давления во время отбора проб.
7.4.2 Влажность
Высокая влажность может повлиять на сорбционную емкость гидрофильных сорбентов, таких как активированный уголь и молекулярные сита. При этом обычно происходит уменьшение времени отбора проб (при заданной концентрации) до достижения сорбентом насыщения, когда отбор проб становится нелинейным из-за того, что член в формуле (1) становится значимым. Высокая влажность может также изменить режим сорбции на экспонируемых внутренних стенках пробоотборников трубчатого типа или защитном сетчатом фильтре, особенно если происходит конденсация.
7.4.3 Нестандартные условия
Простые следствия из закона Фика предполагают наличие равновесного состояния, но при практическом применении диффузионных пробоотборников уровень содержания загрязняющих веществ может изменяться в широком диапазоне. В связи с этим возникает вопрос, будет ли пробоотборник выдавать действительный интегрированный отклик (без учета эффектов сорбента, см. 7.4.1) или будет происходить проскок промежуточных короткоживущих химических соединений до того, как они могли бы быть уловлены сорбентом. Эта проблема была рассмотрена с теоретической [19], [25] - [27] и практической [28] - [29] точек зрения и было показано, что ее можно не рассматривать, если общее время отбора проб значительно превышает (в десять раз) постоянную времени диффузионного пробоотборника . Постоянная времени диффузионного пробоотборника - это время нахождения молекулы загрязняющего вещества в диффузионном слое. Значение этой величины вычисляют по формуле
.
(7)
Для большинства серийно выпускаемых пробоотборников составляет от 1 до 10 с.
7.4.4 Влияние скорости потока воздуха
7.4.4.1 Влияние низкой и высокой скорости ветра
Скорость и направление ветра (для пробоотборника - скорость набегающего потока и ориентация пробоотборника) могут влиять на характеристики диффузионного пробоотборника, поскольку они влияют на эффективную длину пути диффузии [30] - [33]. Интенсивность поглощения аналита пробоотборником [формула (1)] есть функция длины l и площади поперечного сечения диффузионной зоны пробоотборника. Номинальная длина пути диффузии определяется конструкцией пробоотборника и равна расстоянию между поверхностью сорбента и внешней поверхностью пробоотборника. Площадь поперечного сечения также определяется конструкцией пробоотборника, и если поперечное сечение диффузионной зоны не постоянно вдоль ее длины, то берут площадь поперечного сечения, соответствующую самой узкой части. Эффективная длина l не обязательно будет равна номинальной длине и может быть больше или меньше в зависимости от обстоятельств.
В условиях низкой скорости ветра эффективная длина пути диффузии может увеличиваться [32], [33]. Это связано с тем, что между неподвижным воздухом внутри пробоотборника и подвижным воздухом снаружи существует "пограничный слой" [30], [31], толщина которого вносит вклад в эффективную толщину диффузионной зоны l. В действительности за пределами пробоотборника существует переходная область между слоем неподвижного и подвижного воздуха, что эквивалентно дополнительной длине слоя неподвижного воздуха, которую необходимо включить в значение l. Значение зависит от внешней конструкции пробоотборника. Она также уменьшается при увеличении скорости потока воздуха. Значимость этой величины зависит от номинального значения длины пути диффузии пробоотборника. Поэтому скорость потока воздуха будет оказывать незначительное влияние в случае пробоотборника с малой площадью поперечного сечения и длинной внутренней воздушной зоной и значительное влияние - в случае короткого пробоотборника с большой площадью поперечного сечения. Это было выявлено при практических исследованиях и продемонстрировано для пробоотборников с переменной длиной [32], [33]. Низкие скорости отбора проб наблюдаются при низких скоростях потока воздуха, но повышаются до значения, соответствующего плато, когда влияние пограничного слоя становится незначительным.
В условиях высоких скоростей ветра эффективная толщина диффузионной зоны может уменьшаться [34], [35] - [40]. Это связано с тем, что внешние потоки воздуха с высокой скоростью возмущают его неподвижный слой в пробоотборнике, что уменьшает эффективный размер воздушной зоны на значение . Значение мало при условии, что отношение длины воздушной зоны пробоотборника к ее диаметру составляет от 2,5 до 3 [34] или им можно пренебречь, или значительно уменьшить, применяя защитный сетчатый фильтр, например из нержавеющей стали, или пористую пластиковую мембрану. Альтернативой защитному фильтру является помещение пробоотборника в защитное укрытие, но в этом случае оно должно полностью окружать пробоотборник (см. также 8.4).
Таким образом, общее воздействие скорости потока воздуха описывается кривой (см. EN 13528-2, 7.4, рисунок 1).
7.4.4.2 Зависимость характеристик пробоотборника от конструкции
На характеристики пробоотборников трубчатого типа обычно не оказывают влияние низкие скорости потока воздуха [25], [41], [42], но на характеристики пробоотборников, используемых без защитного фильтра, могут повлиять высокие скорости потока воздуха.
Пробоотборники типа бейджа обычно имеют большую площадь поверхности и небольшую воздушную зону, поэтому скорость потока воздуха может оказывать большее влияние на их характеристики по сравнению с трубчатыми пробоотборниками и для них требуется минимальная скорость потока воздуха в фронтальном сечении от 0,5 до 0,2 м/с [43] - [46]. На некоторые пробоотборники типа бейджа с неподходящей защитой также может оказывать влияние высокая скорость потока воздуха [42], [44], [47].
Для диффузионных пробоотборников с круглым сечением [48], [49] необходима минимальная скорость потока воздуха в фронтальном сечении приблизительно 0,25 м/с.
7.4.5 Транспортирование
Для большинства пробоотборников необходимо транспортирование с места отбора проб в аналитическую лабораторию, поэтому важно, чтобы во время этого процесса сохранялась целостность пробы. Рекомендуется соблюдать следующие меры предосторожности:
a) обеспечивают, чтобы все соединения были достаточно герметичными для предотвращения попадания загрязнения или потери пробы во время транспортирования: металлопластиковые соединения могут привести к потерям при значительных изменениях температуры;
b) помещают пробоотборники в закрытые контейнеры из инертных материалов для сведения к минимуму попадания загрязнения извне;
c) при перевозке проб авиатранспортом обеспечивают, чтобы они не попадали в разреженную среду, например в багажном отделении;
d) избегают воздействия высоких температур во время перевозки, например в багажнике автомобиля;
e) по возможности содержат пробоотборники вдали от источников загрязнения, например топлив, при низкой температуре и влажности, избегая конденсации на пробоотборнике.
Обеспечивают, чтобы вместе с пробами транспортировались соответствующие холостые пробы таким образом, чтобы любой из вышеперечисленных факторов можно было идентифицировать.
8 Защита от неблагоприятных окружающих условий
8.1 Общие положения
При практическом использовании пробоотборников необходимо обращать внимание на три основных фактора: скорость потока воздуха, защита от осадков и безопасность.
8.2 Скорость потока воздуха
Потенциальное влияние скорости потока воздуха описано в 7.4.4. Усредненные за месяц значения скорости ветра в Европе находятся в диапазоне от 1 до 10 м/с [50], но могут временно понижаться до 0,5 м/с при стабильных метеорологических условиях (инверсиях) и/или в долинах горных районов [50], [51]. Более того, по крайней мере, для выбросов локальных источников содержание загрязняющих веществ обратно пропорционально скорости ветра [52], поэтому любая ошибка отбора проб при низких скоростях ветра будет увеличиваться для средневзвешенного по времени результата.
Если пробоотборники находятся под воздействием потоков воздуха с низкой скоростью, то необходимо обеспечивать некоторое дополнительное движение воздуха. Это может быть достигнуто с помощью небольшого вентилятора для принудительного нагнетания воздуха, хотя при этом не будет соблюдена сама цель применения "пассивного" пробоотборника, но при использовании в странах с южным климатом может оказаться полезным. В качестве альтернативы пробоотборники могут быть подвешены на тонкой нити для усиления влияния слабых движений воздуха [53].
Подобным образом для пробоотборников, находящихся под воздействием высоких скоростей ветра, необходимо некоторое ослабление скорости потока воздуха. Даже если ожидаются умеренные скорости ветра, могут возникнуть проблемы, если пробоотборники расположены слишком близко от зданий или других препятствий. При размещении пробоотборника (см. раздел 9) необходимо принять во внимание размер и местоположение препятствия(ий).
8.3 Осадки
Защита от осадков имеет большое значение для пробоотборников всех типов. Дождь или растаявший снег могут заблокировать рабочую поверхность пробоотборника, особенно в случае трубчатых пробоотборников, ориентированных вертикально рабочей поверхностью вниз (такое положение является обычным для предотвращения попадания твердых частиц).
8.4 Обеспечение защиты
Во избежание проблем, описанных в 8.2 и 8.3, используют защитное укрытие. Защитное укрытие должно быть оптимизировано в соответствии с типом пробоотборника с учетом следующих факторов:
- защитное укрытие должно предотвращать воздействие высоких скоростей ветра и осадков на пробоотборник, но не должно препятствовать адекватному обмену воздуха для получения значений, представительных для анализируемого воздуха, и обеспечивать выполнение требования к минимальной скорости ветра;
- конструкция защитного укрытия и приспособление для размещения пробоотборника не должны оказывать значительное влияние на скорость диффузионного поглощения пробоотборника;
- конструкция, поверхность и цвет защитного укрытия должны быть такими, чтобы обеспечивалось сведение к минимуму повышения температуры из-за воздействия прямого солнечного излучения.
Альтернативой защитному укрытию является усовершенствование диффузионного пробоотборника. Например, диффузионная насадка пробоотборника трубчатого типа может быть снабжена алюминиевым ободком для предотвращения блокирования диффузионной поверхности дождевой водой [55]. Однако это может привести к изменению характеристик пробоотборника в отношении требований к минимальной скорости потока воздуха.
8.5 Безопасность
Безопасность - это также один из основных факторов, поскольку пробоотборники, экспонированные длительное время в общественных и многолюдных местах, являются объектами кражи и вандализма. Пробоотборники должны быть по возможности размещены вне зоны досягаемости для людей, должны быть незаметны и/или иметь внешний вид, делающий их похожими на какой-либо другой предмет, например "скворечник".
9 Расположение точек отбора проб
Число, местоположение и высоту точек отбора проб выбирают в зависимости от задачи измерений, которые, как следует ожидать, дадут ответы на специально поставленные вопросы. Точки отбора проб выбирают в начале программы измерений и не меняют при ее выполнении.
Точки отбора проб размещают на расстоянии, по крайней мере, 1 м от зданий или других крупных препятствий для предотвращения местных возмущений воздуха, если не установлено другое. Высота точки отбора проб должна составлять от 1,5 до 4 м; размещение пробоотборника на высоте, по крайней мере, 2,5 м будет препятствовать краже и вандализму. Избегают размещения пробоотборника в непосредственной близости от деревьев, кустарников и т.д. для сведения к минимуму влияния местного окружения или причиняющих вред насекомых.
10 Требования к обучению персонала
Для работы на большинстве приборов операторы и лица, ответственные за техническое обслуживание и градуировку, должны быть обучены. Однако для введения диффузионных пробоотборников в эксплуатацию не требуется обученный специалист, при условии, что доступно понятное и однозначное руководство по эксплуатации (ЕН 13528-2, 5.10) и по этому поводу сделано своевременное оповещение. Минимум практической подготовки обязателен для всех операторов для предотвращения таких общих ошибок, как курение во время работы, проведение работ непосредственно около автомобиля с включенным двигателем, касание пальцами внутренних поверхностей пробоотборника или использование фломастеров для маркировки.
Техническое обслуживание важно для диффузионных пробоотборников не меньше, чем для других устройств, и особое внимание следует уделять следующему:
- для многократно используемых пробоотборников обеспечивают, чтобы снаряженный пробоотборник был неповрежденным, чистым или при необходимости заменяют его на новый;
- обеспечивают, чтобы все компоненты пробоотборника не были загрязнены;
- обеспечивают, чтобы пробоотборники использовались в соответствии с ЕН 13528-1 и ЕН 13528-2;
- обеспечивают, чтобы пробоотборники использовались в пределах срока годности, рекомендуемого изготовителем.
11 Обеспечение качества
Для практического применения разрабатывают план обеспечения качества по техническому обслуживанию и градуировке пробоотборников. Для обеспечения качества необходимо:
a) разработка стандартной рабочей процедуры (СРП);
b) журнал использования для пробоотборников, используемых повторно;
c) хранение записей о прослеживаемости калибровки;
d) сохранение исходных данных в соответствии с требованиями системы качества или другой системы;
e) использование уникальной системы нумерации пробоотборников. Повторно используемые пробоотборники должны иметь стойкую к износу маркировку;
f) в зависимости от цели измерений взятие соответствующего числа холостых проб в полевых условиях и повторных проб (например, 10% общего числа проб);
g) регулярная проверка скорости диффузионного отбора проб, по крайней мере, один раз во время крупных обследований (для внутренней системы обеспечения качества). Она может быть сделана при экспозиции пробоотборников в лаборатории в среде стандартных паровоздушных смесей или путем сравнения результатов измерений, полученных в лаборатории, или в полевых условиях, с результатами, полученными независимым методом (например, методом прокачки, см. А.10);
h) регулярная проверка скорости диффузионного отбора проб, по крайней мере, один раз во время крупных обследований (для внешней системы обеспечения качества). Она может быть сделана на основе сравнения результатов измерений, полученных в лаборатории или в полевых условиях, которые должны выполняться под руководством аккредитованных институтов (см. А.10);
i) протокол отбора проб, включающий необходимую информацию по ее отбору, такую как место измерений, время измерений, идентификацию пробоотборника и оператора.
_____________________________
*(1) В отечественной литературе используют термин "скорость отбора пробы/пробоотбора".
*(2) Для относительной величины "объемная доля" используют дольные от основной единицы: миллиардная доля и миллионная доля .
*(3) Внесистемная единица скорости диффузионного поглощения обозначена в тексте настоящего стандарта как .
*(4) EEC - European Economic Community (Европейское экономическое сообщество, ЕЭС).
*(5) Может быть получен в Health and Safety Laboratory, Broad Lane, Sheffield S3 7 HQ, UK.
_____________________________
*(1) Analyst является примером подходящей продукции, имеющейся в продаже (торговое название, установленное Национальным советом по исследованиям (CNR, Consiglio Nazionale delle Ricerche - Италия). Данная информация приведена для удобства пользователей настоящего стандарта и не является рекламой CEN названной продукции.
*(2) ЕРА (Environmental Protection Agency) - официальное название Агентства по охране окружающей среды США.
*(3) PSD - Passive Sampling Device.
*(4) Tenax является примером подходящей продукции, имеющейся в продаже (торговое название установлено Научно-исследовательским институтом компании Enka, штат Невада). Данная информация приведена для удобства пользователей настоящего стандарта и не является рекламой CEN названной продукции.
*(5) Porapak является примером подходящей продукции, имеющейся в продаже (торговое название установлено компанией Water Associates Inc.). Данная информация приведена для удобства пользователей настоящего стандарта и не является рекламой CEN названной продукции.
*(6) GMD - торговое название.
*(7) На территории Российской Федерации применяют также термин "нижний предел измерений".
*(8) BCR - Bureau Communautaire de Reference. [Бюро сообщества по эталонам (Европейский союз)].
_____________________________
___________________________
*Содержание ЕН 13005:1999 соответствует содержанию Руководства ИСО 98:1995, который соответствует документу "Руководство по выражению неопределенности измерения" - под редакцией проф. Слаева В.А. - СПб.: Изд-во "ВНИИМ им. Д.И. Менделеева", 1999.
Библиография
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Национальный стандарт РФ ГОСТ Р ЕН 13528-3-2010 "Качество атмосферного воздуха. Диффузионные пробоотборники, используемые при определении содержания газов и паров. Требования и методы испытаний. Часть 3. Руководство по выбору, использованию и техническому обслуживанию" (утв. приказом Федерального агентства по техническому регулированию и метрологии от 12 ноября 2010 г. N 437-ст)
Текст ГОСТа приводится по официальному изданию Стандартинформ, Москва, 2011 г.
Дата введения - 1 декабря 2011 г.