Откройте актуальную версию документа прямо сейчас
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.
Приложение D
(справочное)
Методы микробиологического контроля
D.1 Общие положения
Методы борьбы с распространением микроорганизмов в системах гемодиализа в первую очередь предполагают правильное проектирование и эксплуатацию систем, а также регулярную дезинфекцию систем водоподготовки и аппаратов для диализа. Ключевая концепция обеспечения соответствия требованиям 4.2.4 и 4.4 заключается в том, что графики дезинфекции следует разрабатывать для предотвращения размножения бактерий, а не для уничтожения бактерий после того, как они размножились до неприемлемого уровня. В соответствии с этой концепцией контроль уровня бактерий и эндотоксинов служит для демонстрации эффективности программы дезинфекции, а не для указания того, когда следует проводить дезинфекцию. Водные грамотрицательные бактерии, связанные с ними липополисахариды (бактериальные эндотоксины) и нетуберкулезные микобактерии (NTM) чаще всего поступают из коммунального водоснабжения, и уровни этих бактерий могут быть усилены в зависимости от системы водоподготовки, системы распределения диализирующего раствора, типа аппарата для диализа и метода дезинфекции.
Все компоненты систем очистки и распределения воды для диализа, а также системы подготовки и распределения диализирующего раствора могут служить накопителями микробного загрязнения. В системах распределения воды для диализа часто используются трубы большего диаметра и большей длины, чем это необходимо для обеспечения требуемого потока. Крупногабаритные трубопроводы увеличивают как общий объем жидкости, так и площадь смоченной поверхности системы. Грамотрицательные бактерии в жидкостях, остающихся в трубах в течение ночи, быстро размножаются и колонизируют влажные поверхности, производя таким образом бактериальные популяции и эндотоксины в количествах, пропорциональных объему и площади поверхности. Такая колонизация приводит к образованию защитной биопленки, которую трудно удалить, как только она образуется, и которая обеспечивает барьер между бактериями и бактерицидом во время дезинфекции.
Биопленка - это сообщество микроорганизмов, состоящее из клеток, которые прикреплены к основе или поверхности раздела сред или друг к другу [88]. Биопленки могут возникать на границе раздела твердое-жидкость, твердое-воздух и жидкость-воздух. Большинство микроорганизмов могут образовывать биопленки, и более 99 % всех микроорганизмов живут в таких конгломератах. Особенностью всех биопленок является то, что организмы встроены в матрицу микробного происхождения, состоящую из внеклеточных полимерных веществ (EPS). EPS состоит в основном из полисахаридов и белков, образующих гидрогелевые матрицы [89]. Структура биопленки и физиологические свойства биопленочных организмов придают им врожденную устойчивость к противомикробным агентам, таким как антибиотики, дезинфицирующие средства или бактерициды.
Механизмы, ответственные за устойчивость, могут включать в себя:
- замедленное проникновение антимикробного агента через матрицу биопленки,
- изменение скорости роста микроорганизмов биопленки, а также
- другие физиологические изменения, связанные с режимом роста биопленки.
Образование некоторого количества биопленки считается неизбежным в системах воды для диализа. Когда уровень биопленки таков, что уровни действия микроорганизмов и эндотоксинов в воде для диализа не могут быть достигнуты регулярно, работа системы ставится под угрозу с медицинской и технической точки зрения. Этот уровень образования биопленки часто называют биообрастанием. Ключ к тому, чтобы избежать биообрастания, заключается в минимизации развития биопленки. Степень роста биопленки зависит от наличия питательных веществ. Классические биоцидные подходы обычно не ограничивают доступность питательных веществ. На самом деле некоторые биоциды повышают доступность питательных веществ, окисляя стойкие органические вещества и делая их более биодоступными [90].
Для контроля бактериального загрязнения распределительных систем следует проводить плановую дезинфекцию. Частота дезинфекции будет варьироваться в зависимости от конструкции системы и степени, в которой биопленка уже сформировалась в существующих системах. Гипохлорит натрия и озон, как правило, являются наиболее эффективными средствами против биопленки, и их использование может быть более эффективным, если трубы сначала обрабатывают средством для удаления накипи. Однако в некоторых случаях полная или частичная замена системы распределения может быть единственным способом восстановить контроль над зрелой биопленкой.
Обычно считается, что постоянное поддержание потока через трубопроводные системы сводит к минимуму образование биопленки. Однако рост микроорганизмов и образование биопленок в гидравлических системах не могут контролироваться скоростью жидкости [91]. Данные полупроводниковой промышленности показывают, что число Рейнольдса 3000 в трубопроводной системе недостаточно для предотвращения бактериального загрязнения воды, так как биопленка была обнаружена на внутренних поверхностях труб [92]. [Число Рейнольдса примерно 3000 получено при скорости потока 0,15 м/с в трубке диаметром 2 см (0,5 фута/с в трубе диаметром 3/4 дюйма).]
Даже если бы можно было установить минимальную скорость потока, которая была бы эффективна для уменьшения образования биопленки и бактериального загрязнения, использование такой минимальной скорости потока не обеспечило бы замены регулярной дезинфекции распределительной системы. Другие меры также могут помочь защитить трубы от загрязнения. В распределительную систему должен быть встроен механизм, предотвращающий вытекание дезинфицирующего средства из труб в течение периода дезинфекции. Тупиковые трубы и неиспользуемые ответвления и отводы, которые могут задерживать жидкость, должны быть устранены, поскольку они действуют как накопители бактерий и способны непрерывно заселять весь объем системы. Стыки между секциями трубопроводов и между трубопроводами и фитингами должны быть выполнены таким образом, чтобы свести к минимуму образование щелей и других пустот, которые могут служить местами для бактериальной колонизации. Трубы не следует резать ножовкой. Любые заусенцы должны быть удалены до того, как будет выполнено соединение. Эти меры также сводят к минимуму вероятность того, что остатки дезинфицирующего средства могут сохраниться в трубопроводной системе после дезинфекции.
Накопитель для хранения в системе распределения воды для диализа или диализирующего раствора значительно увеличивает объем доступной жидкости и площадь поверхности и может служить нишей для водных бактерий. Поэтому накопители для хранения не рекомендуется использовать в системах распределения воды для диализа или диализирующего раствора, если они часто не сливаются и должным образом не дезинфицируются. Пользователю может потребоваться очистить стенки накопителя для удаления бактериальной биопленки, если конструкция и обслуживание накопителя не предотвращают размножение бактерий. Рекомендуется использовать бактериальный и эндотоксиновый фильтры, расположенные дистальнее накопителя для хранения, или какую-либо другую форму устройства для контроля бактерий.
Для большинства аппаратов для диализа обычная дезинфекция горячей водой или химическим бактерицидом, подключенными к дезинфекционному отверстию на аппарате, не дезинфицирует линию между выходом из системы распределения воды для диализа и задней частью аппарата для диализа. Пользователи должны установить процедуру регулярной дезинфекции этой линии. Один из подходов заключается в том, чтобы промыть аппараты для диализа водой, содержащей бактерицид, или горячей водой, когда контур распределения воды для диализа дезинфицируется. Если эта процедура используется с химическим бактерицидом, каждый аппарат для диализа должен быть промыт и протестирован на отсутствие остаточного бактерицида после дезинфекции.
Время хранения бикарбонатного концентрата должно быть сведено к минимуму (обычно менее 24 ч), а также смешивание свежего бикарбонатного концентрата с неиспользованными порциями концентрата из предыдущей партии. Необходимо следовать инструкциям изготовителя, если они имеются в наличии. Отделения диализа, которые повторно используют контейнеры для бикарбонатного концентрата, должны дезинфицировать контейнеры по крайней мере еженедельно. Бикарбонатный концентрат может поддерживать пролиферативный рост микроорганизмов. Контейнеры и приемные трубки могут быть продезинфицированы бытовыми растворами гипохлорита натрия (от 300 до 600 мг/л свободного хлора) с временем контакта около 30 мин, или в соответствии с другим национальным стандартом или правилами, или в соответствии с инструкциями изготовителя.
Контейнеры и приемные трубки следует дезинфицировать по крайней мере еженедельно или с периодичностью, требуемой местными нормативными требованиями. После дезинфекции контейнеры для бикарбонатного концентрата и трубки следует промыть очищенной водой, дать высохнуть на воздухе и хранить перевернутыми в конце каждого дня работы.
D.2 Методы микробиологического контроля
D.2.1 Общие положения
Микробиологическое качество воды для диализа регулярно проверяют для подтверждения эффективности программы дезинфекции. Периодичность контроля следует определять в процессе валидации системы. При отсутствии формального определения частоты контроля его, как правило, проводят ежемесячно. Контроль может быть выполнен путем прямого подсчета культур в сочетании с измерением эндотоксинов.
Пробы воды для диализа отбирают из нескольких мест, чтобы дать представление о микробном качестве воды во всей системе распределения воды для диализа. Для рутинного наблюдения пробы следует отбирать с последнего выхода распределительного контура воды для диализа, где вода для диализа поступает в оборудование, используемое для повторной обработки диализаторов, и в оборудование, используемое для приготовления бикарбонатного концентрата, или из резервуара для смешивания бикарбонатного концентрата. Дополнительные испытания, такие как испытание в конце каскада очистки воды и на выходе из накопителя для хранения, если таковой используется, могут потребоваться при квалификации вновь установленной системы или при устранении причины загрязнения в контуре распределения воды для диализа. Для центральных систем распределения диализирующего раствора пробы следует отбирать с последнего выхода контура распределения диализирующего раствора.
Для аппаратов для диализа, не оснащенных валидированными эндотоксиновыми фильтрами, образцы диализирующего раствора следует отбирать из достаточного количества аппаратов, чтобы каждый аппарат испытывать не реже одного раза в год. Для аппаратов для диализа, оснащенных валидированными эндотоксиновыми фильтрами, пробы следует отбирать в соответствии с инструкциями изготовителя фильтра. Если тестирование любого аппарата для диализа выявит уровень загрязнения выше уровня действия, следует провести исследование. Исследование должно быть основано на предположении, что другие аппараты для диализа также могут быть загрязнены. Оно должно включать обзор соответствия процедурам дезинфекции и отбора проб, а также оценку микробиологических данных за предыдущие три месяца с целью выявления тенденций. Выявленный аппарат должен быть подвергнут повторному испытанию и проведена дополнительная выборка аппаратов, чтобы определить, было ли загрязнение ограничено одним аппаратом или оно более распространено. Ответственное лицо также должно быть уведомлено.
Культивирование должно быть повторено, когда количество бактерий превышает допустимые уровни. Если рост культуры превышает допустимые нормы, образцы из системы распределения воды для диализа или системы распределения диализирующего раствора и аппаратов для диализа следует культивировать еженедельно до получения приемлемых результатов. Дополнительные пробы следует отбирать при наличии клинических признаков пирогенной реакции или септицемии, а также по специальному запросу клинициста или специалиста по инфекционному контролю.
Образцы всегда отбирают перед санитарной обработкой/дезинфекцией или не ранее чем через 24 ч после дезинфекции. Для систем, подвергающихся ежедневной дезинфекции, образцы должны быть отобраны до и как можно ближе к следующей дезинфекции. Образцы из аппаратов для диализа следует всегда отбирать перед дезинфекцией. Для новых систем воду для диализа и диализирующий раствор культивируют еженедельно, пока не будет установлена закономерность. Для установленных систем культивирование проводят ежемесячно, если большая частота не продиктована историческими данными в соответствующем учреждении. При подозрении на биообрастание, например из-за неустойчивых результатов микробиологических тестов, может возникнуть необходимость проверить наличие биопленки (см. D.2.3).
D.2.2 Сбор образцов
Пробы отбирают непосредственно из портов для отбора проб, расположенных в различных частях системы распределения воды для диализа или диализирующего раствора. Как правило, порты для отбора проб открывают и дают воде для диализа или диализирующему раствору свободно течь в течение не менее 60 с, прежде чем отобрать образец в стерильный контейнер, не содержащий эндотоксинов, если иное не указано в инструкции изготовителя порта для отбора проб. Для сбора проб следует использовать контейнеры, валидированные для сбора образцов эндотоксинов. Объем отобранной пробы должен составлять от 5 до 1000 мл в зависимости от проводимого испытания и/или в соответствии с требованиями лаборатории, проводящей испытание. Порты для отбора проб следует дезинфицировать с помощью ватного тампона или стерильной марли, смоченной спиртом, или в соответствии с рекомендациями изготовителя. Образец следует отбирать только в том случае, если в нем нет остатков дезинфицирующего средства.
Образцы диализирующего раствора следует отбирать из порта для отбора проб в входной линии диализирующего раствора диализатора, или из выходного отверстия диализатора, или из порта для отбора проб в выходной линии диализирующего раствора диализатора. В некоторых новых аппаратах для диализа поток диализирующего раствора прекращается, когда линии диализирующего раствора отсоединяются от порта. Такие аппараты оснащены портами для отбора проб диализирующего раствора, доступ к которым осуществляется с помощью шприца. Порты для отбора проб могут быть продезинфицированы спиртом и высушены на воздухе. Стерильный шприц следует использовать для аспирации не менее 10 мл диализирующего раствора из порта для отбора проб и выбросить. Новый стерильный шприц соответствующего размера должен быть закреплен и использован для взятия пробы. Объем собранной пробы должен составлять от 5 до 1000 мл в зависимости от проводимого испытания и/или в соответствии с требованиями лаборатории, проводящей испытание.
Контейнеры, используемые для культивирования образцов, должны быть стерильными и не содержать эндотоксинов.
D.2.3 Количество гетеротрофных организмов
Образцы должны быть проанализированы как можно скорее после сбора, чтобы избежать непредсказуемых изменений в микробной популяции. Если образцы не могут быть проанализированы в течение 4 ч после сбора, их следует хранить при температуре ниже 10 °С без замораживания до тех пор, пока они не будут готовы к транспортированию в лабораторию для анализа. Следует избегать хранения образцов более 24 ч.
Эталонным методом культивирования является метод мембранной фильтрации. В соответствии с этим методом известный объем пробы или разбавленную пробу фильтруют через мембранный фильтр 0,45 мкм и мембранный фильтр асептически переносят на поверхность агаровой пластины. Также может быть использован поверхностный метод. В этом случае инокулят, содержащий не менее 0,1 мл образца, равномерно распределяют по поверхности агаровой пластины. Использование метода калиброванного цикла для нанесения образца на агаровую пластину не допускается. Можно также использовать чашечный метод. В этом методе обычно используется объем пробы от 0,1 до 0,3 мл. Погружные пробоотборники применять не следует. Используемая питательная среда должна быть выбрана в зависимости от типа анализируемой жидкости, например стандартный диализирующий раствор, вода, используемая для приготовления стандартного диализирующего раствора, ультрачистый диализирующий раствор, вода, используемая для приготовления ультрачистого диализирующего раствора, или раствор, используемый для терапии в режиме реального времени, такой как гемодиафильтрация. Не следует использовать кровяной и шоколадный агары.
Валидированные методы выбора среды, времени инкубации и температуры приведены в ИСО 23500-3, ИСО 23500-4 и ИСО 23500-5. Во время инкубации пластины можно запечатать или хранить в пластиковом пакете, чтобы избежать высыхания агара, если это вызывает озабоченность, например для методов, требующих 7-дневной инкубации. Колонии должны быть подсчитаны с помощью увеличительного устройства. Если требуется более точный подсчет по пластинам, содержащим менее 30 колоний или более 300 колоний, можно культивировать большие или меньшие объемы. Меньшие объемы можно получить путем последовательного разведения 1:10 в стерильном фосфатном буфере. Если требуются большие объемы, то следует использовать метод мембранной фильтрации.
Практически невозможно поддерживать стерильность воды для диализа или системы распределения диализирующего раствора; микроорганизмы всегда будут присутствовать на поверхности в ожидании питательных веществ, которые в случае литотрофных организмов могут быть даже неорганическими [93]. Количество гетеротрофных организмов не дает точного представления о наличии биопленки. Образцы жидкости не дают никакой информации о месте, объеме или составе биопленки. Хотя биопленки загрязняют жидкость в распределительной системе, они делают это очень неравномерно. Нерегулярные подсчеты колоний могут указывать на наличие биообрастания, так как группы клеток могут быть отслоены от биопленки с высвобождением бактерий в текущую жидкость. В настоящее время существует мало практических методов для рутинного обнаружения биопленки. Традиционные методы основаны на отборе проб определенных участков поверхности или на экспонировании тестовых поверхностей с последующим анализом в лаборатории. Классическим примером является так называемый "аппарат Роббинса", который состоит из вставленных пластин, омываемых со стенками трубы, испытывая при этом такое же напряжение сдвига, как и сама стенка [94]. Через определенные промежутки времени их удаляют и анализируют в лаборатории на все параметры, относящиеся к биопленке. Недостатком таких систем является задержка во времени между анализом и результатом. Jacobs и др. (1996) [95] описали простой спектрофотометрический метод контроля с использованием нуклеотид-специфичной флуоресцентной краски (4',6-диамидино-2-фенилиндол) и автоматизированного измерения. Были разработаны и другие методы, которые сообщают о росте биопленки, неразрушающие и в режиме реального времени. Все они основаны на физических методах. Если рутинной дезинфекции уделяется тщательное внимание, то рутинный контроль за биопленкой не требуется. Однако, когда уровень биопленки приводит к биообрастанию, может возникнуть необходимость определить уровень биопленки в системе с использованием доступных в настоящее время методов.
D.2.4 Испытание на эндотоксины
Испытание на эндотоксины проводят с помощью теста Limulus amoebocyte lysate (LAL). Существует множество различных методов анализа, и в настоящее время разрабатывается ряд новых методов. Существующие доступные методы включают гель-тромб метод, который является полуколичественным, хромогенный и турбидиметрический методы кинетические или по конечной точке.
LAL-тест методом гель-тромб не так чувствителен, как кинетический, и дает только положительный или отрицательный результат, то есть он показывает, присутствуют ли эндотоксины или нет в определенной концентрации. Одиночные пробирки для гель-тромб теста доступны из нескольких коммерческих источников, также доступны наборы с реагентами типичной чувствительностью: 0,015 ЕЭ, 0,03 ЕЭ, 0,06 ЕЭ, 0,125 ЕЭ, 0,25 ЕЭ и 0,5 ЕЭ. Как минимум две пробирки должны быть использованы каждый раз, когда проводится анализ. Первая пробирка содержит LAL-реактив и образец, подлежащий испытанию. Вторая пробирка содержит LAL-реактив, известное количество эндотоксинов и образец, подлежащий испытанию. Вторая пробирка действует как положительный контроль, чтобы подтвердить отсутствие каких-либо помех, которые могут привести к ложноотрицательному результату. Пробирки для положительного контроля доступны у поставщиков коммерческих LAL-тестов.
Кинетический LAL-тест использует контрольные стандартные эндотоксины для получения стандартной кривой, с которой сравниваются неизвестные и концентрации определяются с помощью линейной регрессии. Кинетические анализы, используемые в лабораториях, как правило, применяют управляемый компьютером спектрофотометр, который автоматически вычисляет количество эндотоксинов на основе оценки цвета, турбидиметрических показаний или времени начала образования геля.
Помимо LAL-теста имеется ряд анализов с различной специфичностью и чувствительностью для количественной оценки и определения биологически активных веществ микробного происхождения (например, личинки шелкопряда, анализ цитокинов мононуклеарных клеток и 1,3- D-глюканы).
D.3 Интерпретация результатов микробиологического контроля
Результаты микробиологического контроля или культивирования зависят от трех основных параметров: питательной среды, температуры культивирования и продолжительности культивирования. Рекомендуемые методы и условия культивирования приведены в ИСО 23500-3, ИСО 23500-4 и ИСО 23500-5. Точный микробиологический контроль имеет важное значение для установления микробного содержания воды и диализирующего раствора. Результаты культивирования, полученные с использованием методов, изложенных в настоящем стандарте, являются лишь относительным показателем содержания бионагрузки в воде для диализа или диализирующем растворе и не дают абсолютной бактериальной нагрузки.
Использование триптоноглюкозного агара (TGEA), или агара Reasoner 2А (R2A), инкубированного при температуре 17 °С до 23 °С в течение 7 дней, или триптического соевого агара (TSA), инкубированного при температуре 35 °С в течение 48 часов, - проверенные и приемлемые методы. Пользователь должен определить, какая из этих методологий подходит для соответствующей ситуации, принимая во внимание преимущества каждой из них. Согласно фармакопее Соединенных Штатов Америки "решение об использовании более длительного времени инкубации должно приниматься после сбалансирования потребности в своевременной информации и типа корректирующих действий, необходимых при превышении уровня тревоги или действия, с возможностью восстановления интересующих микроорганизмов. Преимущества, полученные при инкубации в течение более длительного времени, а именно восстановление поврежденных микроорганизмов, медленно растущих или более прихотливых микроорганизмов, должны быть сбалансированы с необходимостью своевременного исследования и принятия корректирующих мер, а также способностью этих микроорганизмов пагубно влиять на продукты или процессы" (например, безопасность пациентов) [9].
Следует также отметить, что измерения отражают присутствие планктонных организмов в системе хранения и распределения жидкости. Однако более 99 % всех микроорганизмов в такой системе живут в биопленках на поверхности системы [96]. Таким образом, следует проявлять осторожность при интерпретации результатов культивирования, поскольку низкое количество бактерий может быть получено даже в том случае, если система была загрязнена установившейся биопленкой, если образец был взят в определенный момент времени после дезинфекции, но до того, как высвобождение из биопленки восстановило популяцию планктонных организмов.
Основным подходом в отношении интерпретации результатов микробиологических тестов является использование трендового анализа. Это позволяет определить точку, в которой должны быть предприняты корректирующие действия. Предлагаемый алгоритм действий, которые необходимо предпринять в случае уровня эндотоксинов > 0,25 ЕЭ/мл и содержания бактерий > 100 КОЕ/мл, представлен на рисунке D.1.
А - микробиологические параметры оценивают по результатам валидации системы; В - внеочередная дезинфекция (возможно, потребуется изменить методы дезинфекции). Образцы должны быть собраны не ранее чем через 24 часа после дезинфекции; С - дополнительные меры могут включать необходимость изменения методов дезинфекции, изменения компонентов (например, мембраны RO). Образцы должны быть собраны не ранее чем через 24 часа после дезинфекции; D - прерывание лечения всегда должно быть согласовано с ответственным медицинским работником на основе анализа риска. Кроме того, при этом анализе необходимо учитывать оценку диализирующего раствора
Примечание - Воспроизводится с разрешения из: Good Dialysis practice: Water and Dialysis fluids: Boccato C, Evans D, Lucena R, Vienken J. Pabst Publishers Lengerich, Germany, ISBN 978-3-95853-111-6.
Рисунок D.1 - Оценка результатов микробиологического контроля и соответствующие (корректирующие) действия
Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.